首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Abstract. Populations of Carex curvula ssp. curvula, C. curvula ssp. rosae and their intermediate form were investigated in the Central Alps over a three-year period. The closely related taxa showed a different dominance behaviour in their respective communities. This may be caused by different growth strategies and a different reproduction biology. Therefore, the main aim of the study was to compare the demography of the three taxa. Shoot and leaf turnover, flower and seed production and population half-lives were determined. Differences in growth dynamics were less pronounced between the two species of Carex curvula than between these taxa and their intermediate form which showed the highest shoot turnover, highest number of fertile inflorescences and highest number of seeds per inflorescence. Carex curvula ssp. rosae showed a slightly higher shoot and leaf production but a lower reproduction capacity than Carex curvula ssp. curvula. Recruitment of populations of the three Carex-forms was only by vegetative shoots. Flowering had a striking effect on the shoot dynamics of the species grown in the grassland sites: up to about 70 % of all dead shoots could be identified as dead flowering shoots from the previous year. The different dominance behaviour of the three taxa could not be explained by their demographical features. Interspecific interactions and the occurrence of microniches might affect the growth and reproduction processes of the taxa.  相似文献   

2.
Makoto Kato 《Oecologia》1994,97(1):17-25
The parasitoid community dynamics of an agromyzid honeysuckle leafminer, Chromatomyia suikazurae (Agromyzidae, Diptera) were studied between 1981 and 1990 in a natural forest in Kyoto, Japan. The parasitoid fauna composed three koinobionts (all larval-pupal solitary parasitoids) and 22 idiodiont species (11 larval solitary, nine pupal solitary and one pupal gregarious). The parasitoid community was dominated by early-attacking oligophagous braconid koinobionts at early periods, but was gradually displaced by late-attacking polyphagous eulophid idiobionts. Accordingly, the diversity index of the parasitoid community peaked at an intermediate point in the intra-generational succession. The succeeding attack-in-waves by the late-attacking idiobionts greatly reduced not only the survival rates of early-attacking parasitoid larvae but also the survival rates of hosts. The density-dependence observed in the host pupal mortality was thought to result from density-dependent host-switching by a keystone polyphagous pupal idiobiont parasitoid, Chrysocharis pubens, whereas high host pupal mortality was potentially attained by an early-attacking koinobiont braconid. Supposed aggregation of polyphagous parasitoids at high host density resulted in intense within-host competition and in an increase of host-feeding attack, both of which contributed to low emergence rates of parasitoids at high host densities. Parasitoid emergence rates were also reduced at low host densities, probably by inter- and intra-specific hyperparasitism among oligophagous parasitoids for limited hosts. The regulation effects of the species-rich parasitoid community upon the host population dynamics are thought to derive from succeeding attack-in-waves by polyphagous late-attacking idiobionts, especially by the keystone species.  相似文献   

3.
Helms SE  Hunter MD 《Oecologia》2005,145(2):196-203
In the attempt to use results from small-scale studies to make large-scale predictions, it is critical that we take into account the greater spatial heterogeneity encountered at larger spatial scales. An important component of this heterogeneity is variation in plant quality, which can have a profound influence on herbivore population dynamics. This influence is particularly relevant when we consider that the strength of density dependence can vary among host plants and that the strength of density dependence determines the difference between exponential and density- dependent growth. Here, we present some simple models and analyses designed to examine the impact of variable plant quality on the dynamics of insect herbivore populations, and specifically the consequences of variation in the strength of density dependence among host plants. We show that average values of herbivore population growth parameters, calculated from plants that vary in quality, do not predict overall population growth. Furthermore, we illustrate that the quality of a few individual plants within a larger plant population can dominate herbivore population growth. Our results demonstrate that ignoring spatial heterogeneity that exists in herbivore population growth on plants that differ in quality can lead to a misunderstanding of the mechanisms that underlie population dynamics.  相似文献   

4.
Understanding the role of feedback structure (endogenous processes) and exogenous (climatic and environmental) factors in shaping the dynamics of natural populations is a central challenge within the field of population ecology. We attempted to explain the numerical fluctuations of two sympatric rodent species in agro-ecosystems of central Argentina using Royama’s theoretical framework for analyzing the dynamics of populations influenced by exogenous climatic forces. We found that both rodent species show a first-order negative feedback structure, suggesting that these populations are regulated by intra-specific competition (limited by food, space, or enemy-free space). In Akodon azarae endogenous structure seems to be very strongly influenced by human land-use represented by annual minimum normalized difference vegetation index (NDVI), with spring and summer rainfall having little influence upon carrying capacity. Calomys venustus’ population dynamics, on the other hand, seem to be more affected by local climate, also with spring and summer rainfall influencing the carrying capacity of the environment, but combined with spring mean temperature. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
While it is known that population cycles are driven by delayed density-dependent feedbacks, the search for a common feedback mechanism in natural populations with cyclic dynamics has remained unresolved for almost a century. To identify the existence and cause of delayed feedbacks I apply six age- and sex-structured population dynamics models to seven species of baleen whales (suborder Mysticeti) that were heavily depleted by past commercial whaling. The six models include a predator–prey model with killer whale (Orcinus orca) as the predator, and five singe-species models based on (1) exponential growth, (2) density-regulated growth, (3) density-regulated growth with depensation, (4) delayed density-regulated growth and (5) selection-delayed dynamics. The latter model has a density-regulated growth rate that is accelerated and decelerated by the intra-specific natural selection that arises from the density-dependent competitive interactions between the individuals in the population. Essential parameters are estimated by a Bayesian statistical framework, and it is shown that baleen whales have a delayed recovery relative to density-regulated growth. The time-lag is not explained by depensation, or by interactions with prey or predators. It is instead resolved by a selection-delayed acceleration of the intrinsic growth rate. The results are discussed in relation to the literature on cyclic dynamics, and it is noted (1) that selection-delayed dynamics is both theoretically and empirically sufficient for cyclic population dynamics, (2) that it is widespread in natural populations owing to the widespread occurrence of otherwise unexplained phenotypic cycles in populations with cyclic dynamics, and (3) that there is a lack of empirical evidence showing that predator–prey interactions is a sufficient cause for the cyclic dynamics of natural populations. The conclusion stresses the importance of intra-specific delays in cyclic dynamics, and suggests that it is the acceleration of the growth rate, and not the growth rate itself, that is determined by the density-dependent environment.  相似文献   

6.
To assess the likely impacts of environmental change, the responses of two well-known invasive plant species, native Pueraria lobata and alien Humulus japonicus, to differences in growth temperature were studied in South Korea. Habitat preferences, physiological responses such as photosynthetic rates and chlorophyll contents, growth rates, and nutrient contents were quantified for each species. A competition experiment was conducted to evaluate the temperature preferences of the two species. All results indicated that the alien species H. japonicus can take advantage of elevated temperatures (35 °C) to enhance its competitive advantage against the native species P. lobata. While H. japonicus took advantage of elevated temperatures and preferred high-temperature areas, P. lobata showed reduced performance and dominance in high-temperature areas. Therefore, in future, due to global warming and urbanization, there are possibilities that H. japonicus takes advantage of elevated temperature against P. lobata that could lead to increased H. japonicus coverage over time. Therefore, consistent monitoring of both species especially where P. lobata is dominated are required because both species are found in every continents in the world. Controlling P. lobata requires thorough inspection of H. japonicus presence of the habitat in advance to prevent post P. lobata management invasion of H. japonicus.  相似文献   

7.
We propose a discrete-time Bayesian hierarchical model for the population dynamics of the great gerbil-flea ecological system. The model accounts for the sampling variability arising from data originally collected for other purposes. The prior for the unknown population densities incorporates specific biological hypotheses regarding the interacting dynamics of the two species, as well as their life cycles, where density-dependent effects are included. Posterior estimates are obtained via Markov chain Monte Carlo. The variance of the observed density estimates is a quadratic function of the unknown density. Our study indicates the presence of a density-dependent growth rate for the gerbil population. For the flea population there is clear evidence of density-dependent over-summer net growth, which is dependent on the flea-to-gerbil ratio at the beginning of the reproductive summer. Over-winter net growth is favored by high density. We estimate that on average 35% of the gerbil population survives the winter. Our study shows that hierarchical Bayesian models can be useful in extracting ecobiological information from observational data.  相似文献   

8.
Makoto Kato 《Oecologia》1994,97(1):9-16
The population dynamics and the relative importance of bottom-up and top-down effects in a plant-leafminer-multiparasitoid interaction was studied between 1981 and 1990 in a natural forest in Kyoto, Japan. The leafminer, Chromatomyia suikazurae (Agromyzidae, Diptera), passed two generations (G1 and G2) on Lonicera gracilipes (Caprifoliaceae). The G1 population in February was free from parasitoid attack, and the mortality in G1 was mainly caused by resource limitation. Intraspecific competition for resources occurred at the larval stage in G1, and the larval mortality was density-dependent. The G1 adult density was resource-limited (the number of newly opened leaves), and its variability was lower than that of G2. The G2 population in April was not resource-limited but subject to intense attack by a species-rich parasitoid complex, and thus total mortality was much larger than that in G1. Significant density dependence was detected not in larval but in pupal mortalities, which were mainly caused by parasitism by parasitoids that attacked the pupa. The host population alternately experienced bottom-up effects during the larval stage in G1 and top-down effects during the pupal stage in G2. Overall population fluctuation was non-cyclic and mainly due to climatically-induced fluctuation of available plant resources in G1.  相似文献   

9.
10.
Aim Human activities have weakened biogeographical barriers to dispersal, increasing the rate of introduction of alien plants. However, their impact on beta diversity and floristic homogenization is poorly understood. Our goal is to compare the phylogenetic beta diversity of native species with that of two groups of alien species, archaeophytes and neophytes (introduced before and after ad 1500, respectively), across European urban floras to explore how biological invasions affect phylogenetic turnover at a continental scale. Location Twenty European cities located in six countries between 49 and 53° N latitude in continental Europe and the British Isles. Methods To compare the phylogenetic beta diversity of native and alien species we use the average phylogenetic dissimilarity of individual floras from their group centroid in multivariate space. Differences in phylogenetic beta diversity among different species groups are then assessed using a randomization test for homogeneity of multivariate dispersions. Results Across European urban floras, and when contrasted with natives, archaeophytes are usually associated with lower levels of phylogenetic beta diversity while neophytes tend to increase phylogenetic differentiation. Main conclusions While archaeophytes tend to promote limited homogenization in phylogenetic beta diversity, because of their diverse geographical origin together with short residence times in the invaded regions, neophytes are not promoting biotic homogenization of urban floras across Europe. Therefore, in spite of the increasing rate of alien invasion, an intense phylogenetic homogenization of urban cities is not to be expected soon.  相似文献   

11.
Time- and sex-specific summer survival of roe deer fawns was estimated using capture-mark-recapture methods in two enclosed populations living in contrasting conditions. The population of Trois Fontaines (eastern France) was roughly constant in size throughout the study period, while in Chizé (western France), the population experienced frequent summer droughts and numbers decreased continuously during the study. Early survival of fawns was low and highly variable over the years at both Chizé and Trois Fontaines, and demonstrated marked variations between cohorts that need to be taken into account when modelling roe deer population dynamics. In Trois Fontaines, fawn survival was positively correlated with early body growth and total rainfall in May and June. In Chizé, fawn survival decreased with increasing density and tended to increase with increasing rainfall in May and June and adult female body mass. These factors explained more than 75% of the variability in early survival observed in both populations. Variation between cohorts had different consequences for the two populations. At Trois Fontaines, cohort variation was limited to a numerical effect on early survival. However at Chizé, cohort variation was long-lasting and affected the phenotypic quality of survivors at later ages, and thereby future survival and breeding abilities (both numerical and quality effects). Male and female fawns had similar survival over their first summer in both populations. This result contrasts with the lower survival of young males often observed in ungulates. Two ultimate causes can be proposed to account for the low and variable survival of roe deer fawns over the first summer: the high energy expenditures incurred by does during each breeding attempt and/or the low absolute body size of newborn roe deer fawns. Received: 28 April 1997 / Accepted: 14 July 1997  相似文献   

12.
Abstract. Carex curvula is a dominant sedge of European alpine tundra, exhibiting two morphological forms: C. curvula ssp. curvula (Ccc) and C. curvula ssp. rosae (Ccr). In this paper, we attempt to explore whether Ccc and Ccr are ecotypes or vicariant forms and whether between‐ and within‐regional distribution patterns can be explained by variations in the amount of available habitats and/or by changes in niche attributes. The study area covered three bioclimatically distinct regions of the southwestern Alps in which local abundances of Ccc and Ccr strongly differ. The realized niche of both forms was investigated by a direct gradient analysis performed on an extensive floristic and environmental data set. We found no evidence of niche overlap between Ccc and Ccr as their distribution curves differ strongly along disturbance, mesotopography and soil acidity gradients. We investigated the effect of region on the structure of local scale variables tables. Highly concordant patterns among regions were found, except that optimal habitat conditions for Ccc were infrequent in the southernmost regions. We compared the ecological behaviour of range centre and range margin populations of each form. We found a narrower ecological amplitude for Ccr in the northern part of its range, whereas for Ccc the niche breadth of range‐margin populations was not reduced compared to range centre populations. At its southern range limit, Ccc mostly occupies ecologically marginal habitats. We conclude that Ccc and Ccr represent ecotypes, not vicariant forms. Finally, we suggest that habitat availability, resulting from the interplay of regional‐scale and local‐scale variables, satisfactorily explains the distributional patterns of Carex curvula ecotypes in the southwestern Alps.  相似文献   

13.
Dispersal is an important early life history process that influences fish population dynamics and recruitment. We studied larval sea lamprey (Petromyzon marinus) dispersal by combining spatially explicit field sampling, genetic methods, and laboratory experiments to investigate how far sea lamprey larvae can disperse away from nests during their first growing season; subsequent dispersal by age 1 of sea lamprey; and the effect of density on larval dispersal. In two study streams sea lamprey larvae were observed to have moved >150 m downstream from the most likely source nest within 2–3 weeks of hatching. Conversely, randomization trials suggested that for both streams age 0 larvae were found closer to full siblings than would be expected if dispersal was not constrained by distance. Restricted dispersal was also observed for age 1 larvae in five streams, although for this age class full siblings were more commonly found to be separated by >1,000 m. Laboratory experiments indicated a significant effect of density on the movement of larval sea lamprey, with more larval movement at higher densities. Temperature also affected movement significantly, with reduced larval movements at cooler temperatures. Our findings suggest that larval sea lamprey dispersal is sufficient to minimize the likelihood of strong density-dependent effects on recruitment, even with large population sizes.  相似文献   

14.
Carex curvula is a very slow-growing rhizomatous sedge that forms extensive stands in the European an alpine belt. The recruitment of sexual progeny is extremely rare and propagation occurs predominantly through clonal growth. The randomly amplified polymorphic DNA (RAPD) technique was used to analyse clonal structure in a small patch (2.0x0.4 m sampling transect plus some additional samples) of a high-alpine population of the species. Amplification of the DNA of 116 tiller samples from the patch with eight ten-base primers yielded a total of 95 bands, of which 73 were polymorphic. Based on the RAPD amplification profiles a total of 15 multilocus genotypes (putative clones) were identified. Due to the high number of polymorphic loci the number of genetic markers delineating individual clones was high (range: 16–39 markers) which suggests that our estimates of clonal diversity are precise. More than half of the sampled tillers were identified as belonging to a single clone which formed a relatively homogeneous disc intermingling with other clones only at its margin. Based on the maximum diameter of this large clone of more than 7000 tillers and estimates of annual expansion growth of rhizomes (0.4 mm year-1), the age of the clone was calculated to be around 2000 years. This demonstrates that clones of C. curvula may persist on a single spot over long periods with quite diverse alpine climates ranging from rather mild periods in the Middle Ages to cool periods during the so called little ice age in the last century. Our results suggest caution with plant migration scenarios based on shifting isotherms where late-successional clonal species, which dominate the alpine vegetation all over the world, are concerned.  相似文献   

15.
D. Magda 《植被学杂志》1998,9(3):409-416
Abstract. The consequences of extensification on grassland invasion by weeds was studied in French Pyrenean hay-meadows through a survey of the population dynamics of one very successful colonizer: Chaerophyllum aureum. Experiments established in natural permanent grasslands allow us to test the effect of different intensities of cutting on the demography of adult and seedling populations and on the production of seeds and their survival in soil. Although an early cut can control population density by drastically reducing invasion by new genotypes, the results reveal a positive effect of early cutting on adult and seedling survival probably by decreasing intra-specific competition. Allocation of resources to sexual reproduction in response to cutting is limited, affecting especially the seed viability in soil. Nevertheless, the invasive ability of this species is due largely to a strategy whereby those adults showing a high survival rate tend to be perennial.  相似文献   

16.
The interplay between coevolutionary and population or community dynamics is currently the focus of much empirical and theoretical consideration. Here, we develop a simulation model to study the coevolutionary and population dynamics of a hypothetical host–parasitoid interaction. In the model, host resistance and parasitoid virulence are allowed to coevolve. We investigate how trade-offs associated with these traits modify the system's coevolutionary and population dynamics. The most important influence on these dynamics comes from the incorporation of density-dependent costs of resistance ability. We find three main outcomes. First, if the costs of resistance are high, then one or both of the players go extinct. Second, when the costs of resistance are intermediate to low, cycling population and coevolutionary dynamics are found, with slower evolutionary changes observed when the costs of virulence are also low. Third, when the costs associated with resistance and virulence are both high, the hosts trade-off resistance against fecundity and invest little in resistance. However, the parasitoids continue to invest in virulence, leading to stable host and parasitoid population sizes. These results support the hypothesis that costs associated with resistance and virulence will maintain the heritable variation in these traits found in natural populations and that the nature of these trade-offs will greatly influence the population dynamics of the interacting species. Received: December 20, 1999 / Accepted: July 17, 2000  相似文献   

17.
Until now, analytical studies on European urban floras have mostly concentrated on the central and north‐western parts of the continent. In this paper, factors determining species richness of urban flora were studied for the city of Rome, Italy, based on a comprehensive floristic survey carried out between 1985 and 1994, and updated in 2005. All species were recorded in grid cells of 1.6 km2 and classified into native and alien (the latter divided into archaeophytes and neophytes). The grids were classified with respect to the prevailing habitat type, area available to vegetation, level of disturbance and geographical position within the city. Data were analysed using minimal adequate models. Total species number was determined by habitat and its interaction with position on the north‐west gradient; other variables explained much less variance. Holding other variables constant, the average species number per grid cell was highest in archaeological sites and parks, followed by woodlands and rivers, and grasslands and recent developments. Residential areas and the historical centre were poorest in species number. Towards the north of the city, species richness in corresponding habitats increases because of higher landscape heterogeneity and closer association with diaspore pools in the surroundings. Native species make up on average 84% of the total species numbers, and trends opposite to those for the total number of species were found for the proportional representation of aliens. The occurrence of alien and native species in the flora of Rome is driven by similar factors, but factors that increase representation of aliens decrease that of natives and vice versa. The representation of neophytes and native species in grid cells was easier to explain (74% of variation accounted for) than that of archaeophytes (27%); this result reflects that in terms of ecology and response to factors, archaeophytes take an intermediate position between native plants and neophytes. Proportional representation of neophytes decreased with increasing area available to vegetation, reflecting that semi‐natural vegetation is better developed where less fragmented.  相似文献   

18.
Two versions of a stage-structured model of Cirsium vulgare population dynamics were developed. Both incorporated density dependence at one stage in the life cycle of the plant. In version 1 density dependence was assumed to operate during germination whilst in version 2 it was included at the seedling stage. Density-dependent parameter values for the model were estimated from annual census data in a factorial grazing experiment. Version 1 of the model produced significant estimates of density dependence under field conditions. The estimated values, when included in a simulation of the dynamics, produced two-point limit cycles under conditions of hard grazing. The limit cycles were most pronounced at the early rosette stage. Comparison of the effects of density dependence at the two different stages in the life cycle revealed a strong difference in predicted dynamics. This emphasizes the importance of determining where density dependence operates under field conditions and the potential problems of arbitrarily assigning it to particular life-history stages. Version 1 of the model produced a good prediction of observed mean plant density across the different grazing treatments (r 2=0.81, P<0.001).  相似文献   

19.
 The effect of overcompensatory recruitment and the combined effect of overcompensatory recruitment and generation delay in discrete nonlinear age-structured population models is studied. Considering overcompensatory recruitment alone, we present formal proofs of the supercritical nature of bifurcations (both flip and Hopf) as well as an extensive analysis of dynamics in unstable parameter regions. One important finding here is that in case of small and moderate year to year survival probabilities there are large regions in parameter space where the qualitative behaviour found in a general n+1 dimensional model is retained already in a one-dimensional model. Another result is that the dynamics at or near the boundary of parameter space may be very complicated. Generally, generation delay is found to act as a destabilizing effect but its effect on dynamics is by no means unique. The most profound effect occurs in the n-generation delay cases. In these cases there is no stable equilibrium X * at all, but whenever X * small, a stable cycle of period n+1 where the periodic points in the cycle are on a very special form. In other cases generation delay does not alter the dynamics in any substantial way. Received 25 April 1995; received in revised form 21 November 1995  相似文献   

20.
Alien species are often a major threat to native species. We consider optimal conservation strategies for a population whose viability is affected both by an alien species (such as a competitor, a predator, or a pathogen) and by random fluctuations of the environment (e.g. precipitation, temperature). We assume that the survivorship of the native population can be improved by providing resources such as food and shelter, and also by an extermination effort that decreases the abundance of the alien species. These efforts decrease the extinction probability of the native population, but they are accompanied by economic costs. We search for the optimal strategy that minimizes the weighted sum of the extinction probability and the economic costs over a single year. We derive conditions under which investment should be made in both resource-enhancement and extermination, and examine how the optimal effort levels change with parameters. When the optimal strategy includes both types of efforts, the optimal extermination effort level turns out to be independent of the density and economic value of the native species, or the variance of the environmental fluctuation. Furthermore, the optimal resource-enhancement effort is then independent of the density of the alien species. However, the parameter dependencies greatly change if one of the efforts becomes zero. We also examine the situation in which the impact of the alien species is uncertain. The optimal extermination effort increases with the uncertainty of this impact except when the cost of extermination is very high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号