首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Technologies are available which will allow the conversion of lignocellulose into fuel ethanol using genetically engineered bacteria. Assembling these into a cost-effective process remains a challenge. Our work has focused primarily on the genetic engineering of enteric bacteria using a portable ethanol production pathway. Genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase have been integrated into the chromosome of Escherichia coli B to produce strain KO11 for the fermentation of hemicellulose-derived syrups. This organism can efficiently ferment all hexose and pentose sugars present in the polymers of hemicellulose. Klebsiella oxytoca M5A1 has been genetically engineered in a similar manner to produce strain P2 for ethanol production from cellulose. This organism has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes. The optimal pH for cellulose fermentation with this organism (pH 5.0-5.5) is near that of fungal cellulases. The general approach for the genetic engineering of new biocatalysts has been most successful with enteric bacteria thus far. However, this approach may also prove useful with Gram-positive bacteria which have other important traits for lignocellulose conversion. Many opportunities remain for further improvements in the biomass to ethanol processes. These include the development of enzyme-based systems which eliminate the need for dilute acid hydrolysis or other pretreatments, improvements in existing pretreatments for enzymatic hydrolysis, process improvements to increase the effective use of cellulase and hemicellulase enzymes, improvements in rates of ethanol production, decreased nutrient costs, increases in ethanol concentrations achieved in biomass beers, increased resistance of the biocatalysts to lignocellulosic-derived toxins, etc. To be useful, each of these improvements must result in a decrease in the cost for ethanol production. Copyright 1998 John Wiley & Sons, Inc.  相似文献   

2.
The development of methods to reduce costs associated with the solubilization of cellulose is essential for the utilization of lignocellulose as a renewable feedstock for fuels and chemicals. One promising approach is the genetic engineering of ethanol-producing microorganisms that also produce cellulase enzymes during fermentation. By starting with an ethanologenic derivative (strain P2) of Klebsiella oxytoca M5A1 with the native ability to metabolize cellobiose, the need for supplemental beta-glucosidase was previously eliminated. In the current study, this approach has been extended by adding genes encoding endoglucanase activities. Genes celY and celZ from Erwinia chrysanthemi have been functionally integrated into the chromosome of P2 using surrogate promoters from Zymomonas mobilis for expression. Both were secreted into the extracellular milieu, producing more than 20,000 endoglucanase units (carboxymethyl cellulase activity) per liter of fermentation broth. During the fermentation of crystalline cellulose with low levels of commercial cellulases of fungal origin, these new strains produced up to 22% more ethanol than unmodified P2. Most of the beneficial contribution was attributed to CelY rather than to CelZ. These results suggest that fungal enzymes with substrate profiles resembling CelY (preference for long-chain polymers and lack of activity on soluble cello-oligosaccharides of two to five glucosyl residues) may be limiting in commercial cellulase preparations.  相似文献   

3.
The development of methods to reduce costs associated with the solubilization of cellulose is essential for the utilization of lignocellulose as a renewable feedstock for fuels and chemicals. One promising approach is the genetic engineering of ethanol-producing microorganisms that also produce cellulase enzymes during fermentation. By starting with an ethanologenic derivative (strain P2) of Klebsiella oxytoca M5A1 with the native ability to metabolize cellobiose, the need for supplemental β-glucosidase was previously eliminated. In the current study, this approach has been extended by adding genes encoding endoglucanase activities. Genes celY and celZ from Erwinia chrysanthemi have been functionally integrated into the chromosome of P2 using surrogate promoters from Zymomonas mobilis for expression. Both were secreted into the extracellular milieu, producing more than 20,000 endoglucanase units (carboxymethyl cellulase activity) per liter of fermentation broth. During the fermentation of crystalline cellulose with low levels of commercial cellulases of fungal origin, these new strains produced up to 22% more ethanol than unmodified P2. Most of the beneficial contribution was attributed to CelY rather than to CelZ. These results suggest that fungal enzymes with substrate profiles resembling CelY (preference for long-chain polymers and lack of activity on soluble cello-oligosaccharides of two to five glucosyl residues) may be limiting in commercial cellulase preparations.  相似文献   

4.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

5.
The Zymomonas mobilis genes for ethanol production have been integrated into the chromosome of Klebsiella oxytoca M5A1. The best of these constructs, strain P2, produced ethanol efficiently from cellobiose in addition to monomeric sugars. Utilization of cellobiose and cellotriose by this strain eliminated the requirement for external beta-glucosidase and reduced the amount of commercial cellulase needed to ferment Solka Floc SW40 (primarily crystalline cellulose). The addition of plasmids encoding endoglucanases from Clostridium thermocellum resulted in the intracellular accumulation of thermostable enzymes as coproducts with ethanol during fermentation. The best of these, strain P2(pCT603T) containing celD, was used to hydrolyze amorphous cellulose to cellobiose and produce ethanol in a two-stage process. Strain P2(pCT603T) was also tested in combination with commercial cellulases. Pretreatment of Solka Floc SW40 at 60 degrees C with endoglucanase D substantially reduced the amount of commercial cellulase required to ferment Solka Floc. The stimulatory effect of the endoglucanase D pretreatment may result from the hydrolysis of amorphous regions, exposing additional sites for attack by fungal cellulases. Since endoglucanase D functions as part of a complex in C. thermocellum, it is possible that this enzyme may complex with fungal enzymes or bind cellulose to produce a more open structure for hydrolysis.  相似文献   

6.
In the fermentation process of lignocellulosic biomass (such as wood and rice straw), efficient conversion of pentose (mainly xylose) into ethanol is important. Mutants of Pichia stipitis NBRC1687 were obtained after UV mutagenesis and selection of large colonies on ethanol-containing medium. One mutant, PXF58, produced 4.3% ethanol from 11.4% xylose while the parent strain only produced 3.1%. The ethanol productivities of PXF58 from glucose and fructose were about were about 1.4-fold higher than those of the parent strain. After continuous cultivation of PXF58 in YNB (yeast nitrogen base) medium containing 2% xylose and 5-7% ethanol, an ethanol-tolerant mutant, PET41, was obtained. Strain PET41 was able to produce 4.4% ethanol when first supplied with xylose then with glucose. This isolate might be thus useful for two-phase fermentation in which xylan is saccharified by xylanase to produce xylose, and glucan is saccharified later by cellulase and β-glucosidase to produce glucose.  相似文献   

7.
利用高温细菌发酵,纤维素乙醇生产有望实现“生物质降解-乙醇发酵-乙醇蒸馏”过程的同步化,从而最大限度地降低纤维素乙醇的生产成本;这是一个目标更高、道路更远、科学性更强的可再生能源发展策略.纤维素乙醇高温发酵研究已经取得了重要进展,目前面临的主要挑战包括发酵乙醇的高温细菌的遗传转化系统不够稳定、缺少内源的高活性和耐热性纤维素酶,以及乙醇代谢调控机理有待进一步解析.这些科技难题将会在DNA生物合成和进化技术、细胞生物学技术,以及合成生物学技术的发展中得到解决.  相似文献   

8.
木质纤维素乙醇具有替代化石燃料的潜力,其生产过程包括生物质预处理、纤维素酶生产、水解和发酵等多个步骤。将纤维素酶生产、水解和发酵组合在一起的统合生物加工过程(consolidated bioprocessing,CBP)由于能降低水解和发酵成本而具有应用于纤维素乙醇生产的潜力,该技术的关键是构建能有效降解纤维素的工程菌株,而构建表达纤维素酶的酿酒酵母即是其中一种选择。采用鸡尾酒多拷贝δ整合的策略将7种纤维素酶基因(Trichoderma reesei cbh1、cbh2和egl2,Aspergillus aculeatus cbh1、egl1和bgl1)表达盒整合至酿酒酵母W303-1A染色体上,经4轮整合筛选得到菌株LA1、LA2、LA3和LA4。对这4个菌株进行纤维素酶活性测定,结果表明从LA1到LA3各种纤维素酶活性呈递增趋势,而LA4的酶活性与LA3的酶活水平相当。对菌株LA3进行酸碱预处理玉米芯料的发酵评价,结果表明:①在外加商品化纤维素酶的情况下,与对照菌株W303-1A和AADY相比,LA3能有效利用纤维素料发酵产醇;②与分步整合的菌株W3相比,发酵性能更优;③培养基中的营养成分影响菌株发酵性能。这些结果表明,鸡尾酒δ整合是一种有效的构建酿酒酵母CBP菌株的方法。  相似文献   

9.
Xylose fermentation is necessary for the bioconversion of lignocellulose to ethanol as fuel, but wild‐type Saccharomyces cerevisiae strains cannot fully metabolize xylose. Several efforts have been made to obtain microbial strains with enhanced xylose fermentation. However, xylose fermentation remains a serious challenge because of the complexity of lignocellulosic biomass hydrolysates. Genome shuffling has been widely used for the rapid improvement of industrially important microbial strains. After two rounds of genome shuffling, a genetically stable, high‐ethanol‐producing strain was obtained. Designated as TJ2‐3, this strain could ferment xylose and produce 1.5 times more ethanol than wild‐type Pichia stipitis after fermentation for 96 h. The acridine orange and propidium iodide uptake assays showed that the maintenance of yeast cell membrane integrity is important for ethanol fermentation. This study highlights the importance of genome shuffling in P. stipitis as an effective method for enhancing the productivity of industrial strains.  相似文献   

10.
《FEMS microbiology reviews》1995,16(2-3):235-241
The plant cell wall can be regarded as a giant bag-like macromolecule in which crystalline bundles of cellulose are embedded in a covalently linked matrix of hemicellulose and lignin. This heterologous polymer represents the dominant form of biomass on earth and a formidable challenge for solubilization and bioconversion. Bioconversion of lignocellulose requires the saccharification of both the hemicellulose and cellulose. Hemicellulose is composed of a mixture of sugars and can be readily hydrolysed by dilute acid at 140°C to produce a syrup containing pentoses and hexoses. However, no organisms in nature rapidly and efficiently convert both pentoses and hexoses into a single product of value. Our laboratory has developed such an organism by genetic engineering. Recombinant strains of Gram-negative bacteria (Escherichia coli or Klebsiella oxytoca or Erwinia sp.) have been constructed in which genes encoding the ethanol pathway from Zymomonas mobilis (pdc and adh) were inserted into the chromosome. These strains now efficiently convert all of the component sugars of hemicellulose and (cellulose) into ethanol. The saccharification of cellulose is more difficult and more complex. An enzymatic approach is preferred but at least three classes of enzymes are needed: endoglucanase, exoglucanase, and β-glucosidase. Klebsiella oxytoca and Erwinia sp. possess the native ability to transport and metabolize cellobiose (also cellotriose, xylobiose, and xylotriose), minimizing the need for added β-glucosidase. K. oxytoca strain P2, an ethanol-producing recombinant, has been evaluated in simultaneous saccharification and fermentation experiments to determine optimal conditions and limits of performance. Temperature was varied between 32 and 40°C over a pH range of 5.0–5.8 with 100 g 1−1 of crystalline cellulose (Sigmacell 50, Sigma Chemical Company, St. Louis, MO) as the substrate and commercial cellulase (Spezyme CE; Genencor, South San Francisco, CA). A broad optimum for fermentation was observed which allowed the production of over 44 g ethanol 1−1 (82–87% of the maximum theoretical yield). Two optimal saccharification and fermentation conditions were identified for fermentation yield, pH 5.2 at 35°C and pH 5.5 at 32°C, which produced 47 g ethanol 1−1 in 144 h (0.48 g ethanol (g cellulose) −1). Although yields were reduced at the lowest cellulase levels tested (2–5 filter paper units (g cellulose)−1), ethanol production per unit enzyme was much higher.  相似文献   

11.
Butanol is an important bulk chemical, as well as a promising renewable gasoline substitute, that is commonly produced by solventogenic Clostridia. The main cost of cellulosic butanol fermentation is caused by cellulases that are required to saccharify lignocellulose, since solventogenic Clostridia cannot efficiently secrete cellulases. However, cellulolytic Clostridia can natively degrade lignocellulose and produce ethanol, acetate, butyrate and even butanol. Therefore, cellulolytic Clostridia offer an alternative to develop consolidated bioprocessing (CBP), which combines cellulase production, lignocellulose hydrolysis and co-fermentation of hexose/pentose into butanol in one step. This review focuses on CBP advances for butanol production of cellulolytic Clostridia and various synthetic biotechnologies that drive these advances. Moreover, the efforts to optimize the CBP-enabling cellulolytic Clostridia chassis are also discussed. These include the development of genetic tools, pentose metabolic engineering and the improvement of butanol tolerance. Designer cellulolytic Clostridia or consortium provide a promising approach and resource to accelerate future CBP for butanol production.  相似文献   

12.
里氏木霉产纤维素酶研究进展   总被引:1,自引:0,他引:1  
木质纤维素类生物质被认为是重要且可持续的可再生能源,其主要组成部分是纤维素.纤维素酶是一种能将纤维素分解为葡萄糖的复合酶,能有效地降解木质纤维素生物质.真菌、细菌、放线菌、酵母等多种微生物均可以产生纤维素酶,其中里氏木霉具有完整的纤维素酶系结构,常作为生物技术领域中一个重要菌株,广泛应用于纤维素酶的商业生产.介绍了纤维...  相似文献   

13.
木质纤维素预处理抑制物产生及脱除方法的研究进展   总被引:1,自引:0,他引:1  
利用纤维素酶将木质纤维素降解成可发酵性糖,然后发酵生产氢气、乙醇、丁醇等生物燃料及高附加值产品,是当今全球研究的热点。预处理是生物质转化过程中至关重要的步骤,而预处理过程中产生的抑制物对木质纤维素后续的酶解和发酵微生物有负面影响。因此了解预处理方法及其过程中产生的抑制物及脱除方法是能否高效转化生物质的基础。文中首先介绍了木质纤维素常用的两类预处理方法即化学法和物理化学法。随后阐述了不同抑制物的产生及其抑制机制,并重点介绍了多种脱毒方法。最后展望了脱除木质纤维素预处理抑制物的研究趋势:应用交联聚乙烯亚胺和金属有机骨架化合物等新型材料脱除抑制物或通过基因工程、代谢工程技术等构建抑制物耐受性菌株等。  相似文献   

14.
Levoglucosan is a major product of biomass pyrolysis. While this pyrolyzed biomass, also known as bio-oil, contains sugars that are an attractive fermentation substrate, commonly-used biocatalysts, such as Escherichia coli, lack the ability to metabolize this anhydrosugar. It has previously been shown that recombinant expression of the levoglucosan kinase enzyme enables use of levoglucosan as carbon and energy source. Here, ethanologenic E. coli KO11 was engineered for levoglucosan utilization by recombinant expression of levoglucosan kinase from Lipomyces starkeyi. Our engineering strategy uses a codon-optimized gene that has been chromosomally integrated within the pyruvate to ethanol (PET) operon and does not require additional antibiotics or inducers. Not only does this engineered strain use levoglucosan as sole carbon source, but it also ferments levoglucosan to ethanol. This work demonstrates that existing biocatalysts can be easily modified for levoglucosan utilization.  相似文献   

15.
Despite the well‐recognized merits of simultaneous saccharification and co‐fermentation (SSCF) on relieving sugar product inhibition on cellulase activity, a practical concomitance difficulty of xylose with inhibitors in the pretreated lignocellulose feedstock prohibits the essential application of SSCF for cellulosic ethanol fermentation. To maximize the SSCF potentials for cellulosic ethanol production, a dry biorefining approach was proposed starting from dry acid pretreatment, disk milling, and biodetoxification of lignocellulose feedstock. The successful SSCF of the inhibitor free and xylose conserved lignocellulose feedstock after dry biorefining reached a record high ethanol titer at moderate cellulase usage and minimum wastewater generation. For wheat straw, 101.4 g/L of ethanol (equivalent to 12.8% in volumetric percentage) was produced with the overall yield of 74.8% from cellulose and xylose, in which the xylose conversion was 73.9%, at the moderate cellulase usage of 15 mg protein per gram cellulose. For corn stover, 85.1 g/L of ethanol (equivalent to 10.8% in volumetric percentage) is produced with the overall conversion of 84.7% from cellulose and xylose, in which the xylose conversion was 87.7%, at the minimum cellulase usage of 10 mg protein per gram cellulose. Most significantly, the SSCF operation achieved the high conversion efficiency by generating the minimum amount of wastewater. Both the fermentation efficiency and the wastewater generation in the current dry biorefining for cellulosic ethanol production are very close to that of corn ethanol production, indicating that the technical gap between cellulosic ethanol and corn ethanol has been gradually filled by the advancing biorefining technology.  相似文献   

16.
随着能源价格的持续上涨,使用木质纤维素生产燃料乙醇已具有重要的实践意义.木糖是多数木质纤维素水解产物中含量仅次于葡萄糖的一种单糖,传统乙醇生产菌株酿酒酵母不能利用木糖,这为使用以木质纤维素为原料发酵生产乙醇带来了困难.多年以来人们试图通过基因工程和细胞融合等方法对其进行改造使其能够代谢木糖生产乙醇.本文主要介绍这方面的研究进展.  相似文献   

17.
随着能源价格的持续上涨, 使用木质纤维素生产燃料乙醇已具有重要的实践意义。木糖是多数木质纤维素水解产物中含量仅次于葡萄糖的一种单糖, 传统乙醇生产菌株酿酒酵母不能利用木糖, 这为使用以木质纤维素为原料发酵生产乙醇带来了困难。多年以来人们试图通过基因工程和细胞融合等方法对其进行改造使其能够代谢木糖生产乙醇。本文主要介绍这方面的研究进展。  相似文献   

18.
19.
Han Y  Chen H 《Bioresource technology》2011,102(7):4787-4792
Plant cell wall is the most abundant substrate for bioethanol production, and plants also represent a key resource for glycoside hydrolase (GH). To exploit efficient way for bioethanol production with lower cellulase loading, the potential of plant GH for lignocellulose bioconversion was evaluated. The GH activity for cell wall proteins (CWPs) was detected from fresh corn stover (FCS), and the synergism of which with Trichoderma reesei cellulase was also observed. The properties for the GH of FCS make it a promising enzyme additive for lignocellulose biodegradation. To make use of the plant GH, novel technology for hydrolysis and ethanol fermentation was developed with corn stover as substrate. Taking steam-exploded corn stover as substrate for hydrolysis and ethanol fermentation, compared with T. reesei cellulase loaded alone, the final glucose and ethanol accumulation increased by 60% and 63% respectively with GH of FCS as an addition.  相似文献   

20.
Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the thermophilic anaerobic bacterial strain Thermoanaerobacter BG1L1 was assessed for its ability to ferment undetoxified PCS hydrolysate in a continuous immobilized reactor system at 70°C. The tested strain showed significant resistance to PCS, and substrate concentrations up to 15% total solids (TS) were fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent for preventing bacterial infections. This study demonstrated that the use of immobilized thermophilic anaerobic bacteria for continuous ethanol fermentation could be promising in a commercial ethanol process in terms of system stability to process hardiness and reactor contamination. The tested microorganism has considerable potential to be a novel candidate for lignocellulose bioconversion into ethanol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号