首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deoxyribozymes (DNAzymes) are single-stranded DNA that catalyze nucleic acid biochemistry. Although a number of DNAzymes have been discovered by in vitro selection, the relationship between their tertiary structure and function remains unknown. We focus here on the well-studied 10-23 DNAzyme, which cleaves mRNA with a catalytic efficiency approaching that of RNase A. Using coarse-grained Brownian dynamics simulations, we find that the DNAzyme bends its substrate away from the cleavage point, exposing the reactive site and buckling the DNAzyme catalytic core. This hypothesized transition state provides microscopic insights into experimental observations concerning the size of the DNAzyme/substrate complex, the impact of the recognition arm length, and the sensitivity of the enzymatic activity to point mutations of the catalytic core. Upon cleaving the pertinent backbone bond in the substrate, we find that the catalytic core of the DNAzyme unwinds and the overall complex rapidly extends, in agreement with experiments on the related 8-17 DNAzyme. The results presented here provide a starting point for interpreting experimental data on DNAzyme kinetics, as well as developing more detailed simulation models. The results also demonstrate the limitations of using a simple physical model to understand the role of point mutations.  相似文献   

2.
Two modified 2′-deoxynucleoside 5′-triphosphates have been used for the in vitro selection of a modified deoxyribozyme (DNAzyme) capable of the sequence-specific cleavage of a 12 nt RNA target in the absence of divalent metal ions. The modified nucleotides, a C5-imidazolyl-modified dUTP and 3-(aminopropynyl)-7-deaza-dATP were used in place of TTP and dATP during the selection and incorporate two extra protein-like functionalities, namely, imidazolyl (histidine analogue) and primary amino (lysine analogue) into the DNAzyme. The functional groups are analogous to the catalytic Lys and His residues employed during the metal-independent cleavage of RNA by the protein enzyme RNaseA. The DNAzyme requires no divalent metal ions or other cofactors for catalysis, remains active at physiological pH and ionic strength and can recognize and cleave a 12 nt RNA substrate with sequence specificity. This is the first example of a functionalized, metal-independent DNAzyme that recognizes and cleaves an all-RNA target in a sequence-specific manner. The selected DNAzyme is two orders of magnitude more efficient in its cleavage of RNA than an unmodified DNAzyme in the absence of metal ions and represents a rate enhancement of 105 compared with the uncatalysed hydrolysis of RNA.  相似文献   

3.
Peroxidase‐mimicking DNAzyme has a potential to self‐assemble into a G‐quadruplex and shows peroxidase activity. In comparison to proteins, peroxidase‐mimicking DNAzyme is less expensive and more stable. Herein, it is used in fabricating non‐labeling biosensors. This paper investigates the structural and functional properties of a DNA biosensor based on split DNAzyme with a detection limit in nM range (9.48 nM). Two halves of DNAzyme were linked by a complementary sequence of DNA target. Hybridization of the DNA target pulled two DNAzyme halves apart and peroxidase activity decreased. This study can be divided into 3 stages. First, the characteristics of DNAzyme were studied by Circular Dichroism technique and UV–Vis spectroscopy to find out DNAzyme's optimum activity. It is worth to note that some divalent cations were used to form G‐quadruplex, in addition to common monovalent cations. Furthermore, the hemin incubation was also optimized. Secondly, the structural and functional properties of two types of split DNAzyme were compared with DNAzyme. Thirdly, the hybridization of DNA target was monitored. The results revealed that peroxidase activities of split types decreased by half without any specific conformational changes. Interestingly, the catalytic activities of split DNAzymes could be promoted by adding Mg2+. Besides, it was demonstrated that the structure, peroxidation reaction, and DNA target hybridization of 2:2 and 3:1 split modes were almost alike. It was also illustrated that magnesium promoted the possibility of hybridization.  相似文献   

4.
DNAzymes are known to bind metal ions specifically to carry out catalytic functions. Despite many studies since DNAzymes were discovered nearly two decades ago, the metal-binding sites in DNAzymes are not fully understood. Herein, we adopt uranyl photocleavage to probe specific uranyl-binding sites in the 39E DNAzyme with catalytically relevant concentrations of uranyl. The results indicate that uranyl binds between T23 and C25 in the bulge loop, G11 and T12 in the stem loop of the enzyme strand, as well as between T2.4 and G3 close to the cleavage site in the substrate strand. Control experiments using two 39E DNAzyme mutants revealed a different cleavage pattern of the mutated region. Another DNAzyme, the 8–17 DNAzyme, which has a similar secondary structure but shows no activity in the presence of uranyl, indicated a different uranyl-dependent photocleavage as well. In addition, a close correlation between the concentration-dependent photocleavage and enzymatic activities is also demonstrated. Together, these experiments suggest that uranyl photocleavage has been successfully used to probe catalytically relevant uranyl-binding sites in the 39E DNAzyme. As uranyl is the cofactor of the 39E DNAzyme as well as the probe, specific uranyl binding has now been identified without disruption of the structure.  相似文献   

5.
A universal label-free metal ion sensor design strategy was developed on the basis of a metal ion-specific DNA/RNA-cleaving DNAzyme and a G-quadruplex DNAzyme. In this strategy, the substrate strand of the DNA/RNA-cleaving DNAzyme was designed as an intramolecular stem-loop structure, and a G-rich sequence was caged in the double-stranded stem and could not form catalytically active G-quadruplex DNAzyme. The metal ion-triggered cleavage of the substrate strand could result in the release of the G-rich sequence and subsequent formation of a catalytic G-quadruplex DNAzyme. The self-blocking mechanism of the G-quadruplex DNAzyme provided the sensing system with a low background signal. The signal amplifications of both the DNA/RNA-cleaving DNAzyme and the G-quadruplex DNAzyme provided the sensing system with a high level of sensitivity. This sensor design strategy can be used for metal ions with reported specific DNA/RNA-cleaving DNAzymes and extended for metal ions with unique properties. As examples, dual DNAzymes-based Cu(2+), Pb(2+) and Hg(2+) sensors were designed. These "turn-on" colorimetric sensors can simply detect Cu(2+), Pb(2+) and Hg(2+) with high levels of sensitivity and selectivity, with detection limits of 4nM, 14nM and 4nM, respectively.  相似文献   

6.
A novel one-step electrochemical method for DNA detection is described. The procedure utilizes a reaction catalyzed by a peroxidase-mimicking DNAzyme to produce a product, which forms an insoluble precipitation layer on the surface of an electrode. A rationally designed forward primer, conjugated with a peroxidase DNAzyme complementary sequence at its 5′-end, is used for PCR amplification of target DNA. As a result, the DNAzyme sequence is produced by amplification only when the target DNA is present in the sample. The PCR product is then subjected to the precipitation reaction on the electrode surface using an electrolyte assay buffer containing 4-chloronaphthol, hydrogen peroxide, ferrocenemethanol, hemin, and 5′-lambdaexonuclease. Finally, analysis is carried out using Faradaic impedance spectroscopy. The impedance value was found to greatly increase when target DNA is present owing to the formation of a precipitation layer on the electrode surface caused by the catalytic action of the DNAzyme. In contrast, no impedance increase is observed when a control sample not containing target DNA is utilized. By employing this strategy, target DNA from Chlamydia trachomatis was reliably detected within a 10 min period following precipitation without the need for complicated secondary procedures. This effort has led to the development of a highly convenient electrochemical one-step method for DNA detection that utilizes a peroxidase-mimicking DNAzyme, which is specifically designed to undergo amplification during PCR of target DNA.  相似文献   

7.
富含鸟嘌呤的DNA序列在金属离子(通常是钠、钾离子)存在的条件下,可以形成稳定的G-四链体(G-quadruplex)。该G 四链体能够结合hemin(氯高铁血红素)形成具有过氧化物酶的活性的G四链体-hemin复合物DNAzyme。将这一原理联合滚环扩增技术可以对核酸进行可视化的检测。本研究旨在探索G-四链体-hemin复合物中,G-四链体结构以及两个G-四链体之间的链接长度与DNAzyme过氧化物酶活性之间的关系。实验分别选取了平行、反平行和混合结构的G-四链体,通过热差异光谱、紫外光谱、圆二色光谱对结构进行分析,不断加长链接序列并测定3种结构形成的DNAzyme活性,发现正平行结构的G-四链体具有更高的DNAzyme活性和更明显的可视化效果。综上所述,平行G-四链体结构可以用来满足裸眼可视化检测的需求,为无需复杂仪器的核酸检测奠定了方法基础。  相似文献   

8.
A new strategy for engineering of catalytic two‐component constructions based on 10–23 DNAzyme was proposed. The using of a combination of shortened DNAzyme with 2′‐O‐methyl oligomers as effectors significantly increased the catalytic activity of this DNAzyme.  相似文献   

9.
T-Hg-T base pair formation has been demonstrated to be compatible with duplex DNA context, with considerable thermal stability contribution. Here, the T-Hg-T stem in two small DNAzymes 8–17 and 10–23 was studied for its structural and functional roles. The recognition arm 5′ to the cleavage site of 10–23 DNAzyme complex and the stem in the catalytic loop of 8–17 DNAzyme could be replaced by consecutive T-Hg-T stem of different length. The linear relationship between the activity of the complex 10–23DZ-6T+D19–6T and the concentration of Hg2+ demonstrated that the T-Hg-T stem contributes thermal stability of the recognition arm binding. The effect of T-Hg-T stem in the catalytic core of 8–17 DNAzyme and the position-dependent effect in 10–23 DNAzyme demonstrated that T-Hg-T base pair is not compatible with canonical base pairs in playing the functions of nucleic acids.  相似文献   

10.
Efficient silencing of gene expression by an ASON-bulge-DNAzyme complex   总被引:1,自引:0,他引:1  
Yi J  Liu C 《PloS one》2011,6(4):e18629

Background

DNAzymes are DNA molecules that can directly cleave cognate mRNA, and have been developed to silence gene expression for research and clinical purposes. The advantage of DNAzymes over ribozymes is that they are inexpensive to produce and exhibit good stability. The “10-23 DNA enzyme” is composed of a catalytic domain of 15 deoxynucleotides, flanked by two substrate-recognition domains of approximately eight nucleotides in each direction, which provides the complementary sequence required for specific binding to RNA substrates. However, these eight nucleotides might not afford sufficient binding energy to hold the RNA substrate along with the DNAzyme, which would interfere with the efficiency of the DNAzyme or cause side effects, such as the cleavage of non-cognate mRNAs.

Methodology

In this study, we inserted a nonpairing bulge at the 5′ end of the “10–23 DNA enzyme” to enhance its efficiency and specificity. Different sizes of bulges were inserted at different positions in the 5′ end of the DNAzyme. The non-matching bulge will avoid strong binding between the DNAzyme and target mRNA, which may interfere with the efficiency of the DNAzyme.

Conclusions

Our novel DNAzyme constructs could efficiently silence the expression of target genes, proving a powerful tool for gene silencing. The results showed that the six oligo bulge was the most effective when the six oligo bulge was 12–15 bp away from the core catalytic domain.  相似文献   

11.
Wang TH  Li WT  Yu SH  Au LC 《Oligonucleotides》2008,18(3):295-299
10-23 DNAzyme is an oligodeoxyribonucleotide-based ribonuclease. It consists of a 15-nt catalytic domain flanked by two target-specific complementary arms. It has been shown to cleave target mRNA effectively at purine (R)-pyrimidine (Y) dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of a given allele at a unique RY dinucleotide while leaving the mRNA encoded from other alleles of the same gene intact. In this study, a p53-R249S (AGG-->AGT) mutant was tested. 10-23 DNAzyme was used to cut mutant mRNA at GT dinucleotide of codon 249. Both in vitro and in vivo studies showed that this DNAzyme could specifically cut the mutant p53 allele, leaving the wild-type unaffected. This proof-of-concept experiment provided a new way to knock down expression of a given allele with special single-base transversion.  相似文献   

12.
A new strategy for engineering of catalytic two-component constructions based on 10-23 DNAzyme was proposed. The using of a combination of shortened DNAzyme with 2'-O-methyl oligomers as effectors significantly increased the catalytic activity of this DNAzyme.  相似文献   

13.
Cellular uptake,distribution, and stability of 10-23 deoxyribozymes   总被引:4,自引:0,他引:4  
The cellular uptake, intracellular distribution, and stability of 33-mer deoxyribozyme oligonucleotides (DNAzymes) were examined in several cell lines. PAGE analysis revealed that there was a weak association between the DNAzyme and DOTAP or Superfect transfection reagents at charge ratios that were minimally toxic to cultured cells. Cellular uptake was analyzed by cell fractionation of radiolabeled DNAzyme, by FACS, and by fluorescent microscopic analysis of FITC-labeled and TAMRA-labeled DNAzyme. Altering DNAzyme size and chemistry did not significantly affect uptake into cells. Inspection of paraformaldehyde-fixed cells by fluorescence microscopy revealed that DNAzyme was distributed primarily in punctate structures surrounding the nucleus and that substantial delivery to the nucleus was not observed up to 24 hours after initiation of transfection. Incubation in human serum or plasma demonstrated that a 3'-inversion modification greatly increased DNAzyme stability (t(1/2) approximately 22 hours) in comparison to the unmodified form (t(1/2) approximately 70 minute). The 3'-inversion-modified DNAzymes remained stable during cellular uptake, and catalytically active oligonucleotide could be extracted from the cells 24 hours posttransfection. In smooth muscle cell proliferation assay, the modified DNAzyme targeting the c-myc gene showed a much stronger inhibitory effect than did the unmodified version. The present study demonstrates that DNAzymes with a 3'-inversion are readily delivered into cultured cells and are functionally stable for several hours in serum and within cells.  相似文献   

14.
Single-stranded DNA molecules have the capacity to adopt catalytically active structures known as DNAzymes, although the fundamental limits of this ability have not been determined. Starting with a parent DNAzyme composed of all four types of standard nucleotides, we conducted a search of the surrounding sequence space to identify functional derivatives with catalytic cores composed of only three, and subsequently only two types of nucleotides. We provide the first report of a DNAzyme that contains only guanosine and cytidine deoxyribonucleotides in its catalytic domain, which consists of just 13 nucleotides. This DNAzyme catalyzes the Mn2+-dependent cleavage of an RNA phosphodiester bond ~5300-fold faster than the corresponding uncatalyzed reaction, but ~10 000-fold slower than the parent. The demonstration of a catalytic DNA molecule made from a binary nucleotide alphabet broadens our understanding of the fundamental limits of nucleic-acid-mediated catalysis.  相似文献   

15.
The intracellular ability of the "10-23" DNAzyme to efficiently inhibit expression of targeted proteins has been evidenced by in vitro and in vivo studies. However, standard conditions for kinetic measurements of the DNAzyme catalytic activity in vitro include 25 mM Mg2+, a concentration that is very unlikely to be achieved intracellularly. To study this discrepancy, we analyzed the folding transitions of the 10-23 DNAzyme induced by Mg2+. For this purpose, spectroscopic analyzes such as fluorescence resonance energy transfer, fluorescence anisotropy, circular dichroism, and surface plasmon resonance measurements were performed. The global geometry of the DNAzyme in the absence of added Mg2+ seems to be essentially extended, has no catalytic activity, and shows a very low binding affinity to its RNA substrate. The folding of the DNAzyme induced by binding of Mg2+ may occur in several distinct stages. The first stage, observed at 0.5 mM Mg2+, corresponds to the formation of a compact structure with limited binding properties and without catalytic activity. Then, at 5 mM Mg2+, flanking arms are projected at right position and angles to bind RNA. In such a state, DNAzyme shows substantial binding to its substrate and significant catalytic activity. Finally, the transition occurring at 15 mM Mg2+ leads to the formation of the catalytic domain, and DNAzyme shows high binding affinity toward substrate and efficient catalytic activity. Under conditions simulating intracellular conditions, the DNAzyme was only partially folded, did not bind to its substrate, and showed only residual catalytic activity, suggesting that it may be inactive in the transfected cells and behave like antisense oligodeoxynucleotide.  相似文献   

16.
In the presence of hemin and under appropriate conditions, some modalities of G‐quadruplexes can form a peroxidase‐like DNAzyme that has been widely used in biology. Structure? function studies on the DNAzyme revealed that its catalytic ability may be dependent on the unimolecular parallel G‐quadruplex. In this report, we present the preliminary investigation on the relationship between the structure and function of DNAzymes through a terminal oligo modification in G‐quadruplex sequences by adding different lengths of oligo‐dT to the 3′‐ or 5′‐end of the aptamers. The results suggested that adding dTn to the 5′‐end of the DNA sequence of the enzyme improved the ability of hemin to bind with DNA, but the addition of dTn to the 3′‐end decreased the binding ability of hemin for DNA. The increased stability of the assembled DNAzyme would lead to more favorable binding between the enzyme and substrate (H2O2), facilitating higher peroxidase activity; on the contrary, with lower stability of the DNAzyme complex, we observed reduced peroxidase activity.  相似文献   

17.
Point mutations of the Ras family are frequently found in human cancers at a prevalence rate of 30%. The most common mutation K-Ras(G12V), required for tumor proliferation, survival, and metastasis due to its constitutively active GTPase activity, has provided an ideal target for cancer therapy. 10-23 DNAzyme, an oligodeoxyribonucleotide-based ribonuclease consisting of a 15-nucleotide catalytical domain flanked by two target-specific complementary arms, has been shown to effectively cleave the target mRNA at purine-pyrimidine dinucleotide. Taking advantage of this specific property, 10-23 DNAzyme was designed to cleave mRNA of K-Ras(G12V)(GGU → GUU) at the GU dinucleotide while left the wild-type (WT) K-Ras mRNA intact. The K-Ras(G12V)-specific 10-23 DNAzyme was able to reduce K-Ras(G12V) at both mRNA and protein levels in SW480 cell carrying homozygous K-Ras(G12V). No effect was observed on the WT K-Ras in HEK cells. Although K-Ras(G12V)-specific DNAzymes alone did not inhibit proliferation of SW480 or HEK cells, pre-treatment of this DNAzyme sensitized the K-Ras(G12V) mutant cells to anti-cancer agents such as doxorubicin and radiation. These results offer a potential of using allele-specific 10-23 DNAzyme in combination with other cancer therapies to achieve better effectiveness on cancer treatment.  相似文献   

18.

Background  

DNAzymes cleave at predetermined sequences within RNA. A prerequisite for cleavage is that the DNAzyme can gain access to its target, and thus the DNAzyme must be capable of unfolding higher-order structures that are present in the RNA substrate. However, in many cases the RNA target sequence is hidden in a region that is too tightly structured to be accessed under physiological conditions by DNAzymes.  相似文献   

19.
Protein metalloenzymes use various modes for functions for which metal-dependent global conformational change is required in some cases but not in others. In contrast, most ribozymes require a global folding that almost always precedes enzyme reactions. Herein we studied metal-dependent folding and cleavage activity of the 8-17 DNAzyme using single-molecule fluorescence resonance energy transfer. Addition of Zn2+ and Mg2+ induced folding of the DNAzyme into a more compact structure followed by a cleavage reaction, which suggests that the DNAzyme may require metal-dependent global folding for activation. In the presence of Pb2+, however, the cleavage reaction occurred without a precedent folding step, which suggests that the DNAzyme may be prearranged to accept Pb2+ for the activity. Neither ligation reaction of the cleaved substrates nor dynamic changes between folded and unfolded states was observed. These features may contribute to the unusually fast Pb2+-dependent reaction of the DNAzyme. These results suggest that DNAzymes can use all modes of activation that metalloproteins use.  相似文献   

20.
The 10–23 RNA cleaving DNAzyme has been shown to cleave any purine–pyrimidine (RY) junction under simulated physiological conditions. In this study, we systematically examine the DNAzymes relative activity against different RY combinations in order to determine the hierarchy of substrate core dinucleotide sequence susceptibility. The reactivity of each substrate dinucleotide compared in the same background sequence with the appropriately matched DNAzyme was found to follow the scheme AU = GU ≥≥ GC >> AC. The relatively poor activity of the DNAzyme against AC and GC containing substrates was found to be improved substantially by modifications to the binding domain which subtly weaken its interaction with the substrate core. The most effective modification resulting in rate enhancement of up to 200-fold, was achieved by substitution of deoxyguanine with deoxyinosine such that the base pair interaction with the RNA substrates core C is reduced from three hydrogen bonds to two. The increased cleavage activity generated by this modification could be important for application of the 10–23 DNAzyme particularly when the target site core is an AC dinucleotide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号