首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study we explored the role of β-catenin in mediating chick retina regeneration. The chick can regenerate its retina by activating stem/progenitor cells present in the ciliary margin (CM) of the eye or via transdifferentiation of the retinal pigmented epithelium (RPE). Both modes require fibroblast growth factor 2 (FGF2). We observed, by immunohistochemistry, dynamic changes of nuclear β-catenin in the CM and RPE after injury (retinectomy). β-catenin nuclear accumulation was transiently lost in cells of the CM in response to injury alone, while the loss of nuclear β-catenin was maintained as long as FGF2 was present. However, nuclear β-catenin positive cells remained in the RPE in response to injury and were BrdU-/p27+, suggesting that nuclear β-catenin prevents those cells from entering the cell cycle. If FGF2 is present, the RPE undergoes dedifferentiation and proliferation concomitant with loss of nuclear β-catenin. Moreover, retinectomy followed by disruption of active β-catenin by using a signaling inhibitor (XAV939) or over-expressing a dominant negative form of Lef-1 induces regeneration from both the CM and RPE in the absence of FGF2. Our results imply that β-catenin protects cells of the CM and RPE from entering the cell cycle in the developing eye, and specifically for the RPE during injury. Thus inactivation of β-catenin is a pre-requisite for chick retina regeneration.  相似文献   

2.
Observations in thyroid patients and experimental animals show that the skin is an important target for the thyroid hormones. We previously showed that deletion in mice of the thyroid hormone nuclear receptors TRα1 and TRβ (the main thyroid hormone–binding isoforms) results in impaired epidermal proliferation, hair growth, and wound healing. Stem cells located at the bulges of the hair follicles are responsible for hair cycling and contribute to the regeneration of the new epidermis after wounding. Therefore a reduction in the number or function of the bulge stem cells could be responsible for this phenotype. Bulge cells show increased levels of epigenetic repressive marks, can retain bromodeoxyuridine labeling for a long time, and have colony-forming efficiency (CFE) in vitro. Here we demonstrate that mice lacking TRs do not have a decrease of the bulge stem cell population. Instead, they show an increase of label-retaining cells (LRCs) in the bulges and enhanced CFE in vitro. Reduced activation of stem cells leading to their accumulation in the bulges is indicated by a strongly reduced response to mobilization by 12-O-tetradecanolyphorbol-13-acetate. Altered function of the bulge stem cells is associated with aberrant activation of Smad signaling, leading to reduced nuclear accumulation of β-catenin, which is crucial for stem cell proliferation and mobilization. LRCs of TR-deficient mice also show increased levels of epigenetic repressive marks. We conclude that thyroid hormone signaling is an important determinant of the mobilization of stem cells out of their niche in the hair bulge. These findings correlate with skin defects observed in mice and alterations found in human thyroid disorders.  相似文献   

3.
Rat limbal niche cells (LNCs) have been proven to induce transdifferentiation of oral mucosal epithelial cells (OMECs) into corneal epithelial-like cells termed transdifferentiated oral mucosal epithelial cells (T-OMECs). This investigation aimed to evaluate the effect of subconjunctival T-OMEC injections on alkali-induced limbal stem cell deficiency (LSCD) in rats. LNCs were cocultured with OMECs in the Transwell system to obtain T-OMECs, with NIH-3T3 cells serving as a control. Subconjunctival injection of single T-OMEC or OMEC suspension was performed immediately after corneal alkali injury. T-OMECs were prelabeled with the fluorescent dye CM-DiI in vitro and tracked in vivo. Corneal epithelial defect, opacity, and neovascularization were quantitatively analyzed. The degree of corneal epithelial defect (from day 1 onward), opacity (from day 5 onward), and neovascularization (from day 2 onward) was significantly less in the T-OMEC group than in the OMEC group. Cytokeratin 12 (CK12), pigment epithelium–derived factor, and soluble fms-like tyrosine kinase-1 were expressed at a higher rate following T-OMEC injection. Some CM-DiI-labeled cells were found to be coexpressed with CK12, Pax6, and ΔNp63α in the corneal epithelium after subconjunctival injection. Subconjunctival injection of T-OMECs prevents conjunctival invasion and maintains a normal corneal phenotype, which might be a novel strategy in the treatment of LSCD:  相似文献   

4.
5.
Corneal epithelium maintains visual acuity and is regenerated by the proliferation and differentiation of limbal progenitor cells. Transplantation of human limbal progenitor cells could restore the integrity and functionality of the corneal surface in patients with limbal stem cell deficiency. However, multiple protocols are employed to differentiate human induced pluripotent stem (iPS) cells into corneal epithelium or limbal progenitor cells. The aim of this study was to optimize a protocol that uses bone morphogenetic protein 4 (BMP4) and limbal cell-specific medium. Human dermal fibroblast-derived iPS cells were differentiated into limbal progenitor cells using limbal cell-specific (PI) medium and varying doses (1, 10, and 50 ng/mL) and durations (1, 3, and 10 days) of BMP4 treatment. Differentiated human iPS cells were analyzed by real-time polymerase chain reaction (RT-PCR), Western blotting, and immunocytochemical studies at 2 or 4 weeks after BMP4 treatment. Culturing human dermal fibroblast-derived iPS cells in limbal cell-specific medium and BMP4 gave rise to limbal progenitor and corneal epithelial-like cells. The optimal protocol of 10 ng/mL and three days of BMP4 treatment elicited significantly higher limbal progenitor marker (ABCG2, ∆Np63α) expression and less corneal epithelial cell marker (CK3, CK12) expression than the other combinations of BMP4 dose and duration. In conclusion, this study identified a successful reprogramming strategy to induce limbal progenitor cells from human iPS cells using limbal cell-specific medium and BMP4. Additionally, our experiments indicate that the optimal BMP4 dose and duration favor limbal progenitor cell differentiation over corneal epithelial cells and maintain the phenotype of limbal stem cells. These findings contribute to the development of therapies for limbal stem cell deficiency disorders.  相似文献   

6.
It is critical to understand how stem cell activity is regulated during regeneration. Hair follicles constitute an important model for organ regeneration because, throughout adult life, they undergo cyclical regeneration. Hair follicle stem cells—epithelial cells located in the follicle bulge—are activated by periodic β-catenin activity, which is regulated not only by epithelial-derived Wnt, but also, through as-yet-undefined mechanisms, the surrounding dermal microenvironment. The matricellular protein connective tissue growth factor (CCN2) is secreted into the microenvironment and acts as a multifunctional signaling modifier. In adult skin, CCN2 is largely absent but is unexpectedly restricted to the dermal papillae and outer root sheath. Deletion of CCN2 in dermal papillae and the outer root sheath results in a shortened telogen-phase length and elevated number of hair follicles. Recombinant CCN2 causes decreased β-catenin stability in keratinocytes. In vivo, loss of CCN2 results in elevated numbers of K15-positive epidermal stem cells that possess elevated β-catenin levels and β-catenin–dependent reporter gene expression. These results indicate that CCN2 expression by dermal papillae cells is a physiologically relevant suppressor of hair follicle formation by destabilization of β-catenin and suggest that CCN2 normally acts to maintain stem cell quiescence.  相似文献   

7.
8.
Emerging evidence indicates that human mesenchymal stem cells (hMSCs) can be recruited to tumor sites, and affect the growth of human malignancies. However, little is known about the underlying molecular mechanisms. Here, we observed the effects of hMSCs on the human cholangiocarcinoma cell line, HCCC-9810, using an animal transplantation model, and conditioned media from human umbilical cord-derived mesenchymal stem cells (hUC-MSCs). Animal studies showed that hUC-MSCs can inhibit the growth of cholangiocarcinoma xenograft tumors. In cell culture, conditioned media from hUC-MSCs inhibited proliferation and induced apoptosis of tumor cells in a dose- and time-dependent manner. The proliferation inhibition rate increased from 6.21% to 49.86%, whereas the apoptosis rate increased from 9.3% to 48.1% when HCCC-9810 cells were cultured with 50% hUC-MSC conditioned media for 24 h. Immunoblot analysis showed that the expression of phosphor-PDK1 (Ser241), phosphor-Akt (Ser 437 and Thr308), phosphorylated glycogen synthase kinase 3β (phospho-GSK-3βSer9), β-catenin, cyclin-D1, and c-myc were down-regulated. We further demonstrated that CHIR99021, a GSK-3β inhibitor reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells and increased the expression of β-catenin. The GSK-3β activator, sodium nitroprusside dehydrate (SNP), augmented the anti-tumor effects of hUC-MSCs and decreased the expression of β-catenin. IGF-1 acted as an Akt activator, and also reversed the suppressive effects of hUC-MSCs on HCCC-9810 cells. All these results suggest that hUC-MSCs could inhibit the malignant phenotype of HCCC-9810 human cholangiocarcinoma cell line. The cross-talk role of Wnt/β-catenin and PI3K/Akt signaling pathway, with GSK-3β as the key enzyme bridging these pathways, may contribute to the inhibition of cholangiocarcinoma cells by hUC-MSCs.  相似文献   

9.
We have recently shown that genetic replacement of VE-cadherin by a VE-cadherin–α-catenin fusion construct strongly impairs opening of endothelial cell contacts during leukocyte extravasation and induction of vascular permeability in adult mice. Here we show that this mutation leads to lethality at midgestation on a clean C57BL/6 background. Investigating the reasons for embryonic lethality, we observed a lack of fetal liver hematopoiesis and severe lymphedema but no detectable defects in blood vessel formation and remodeling. As for the hematopoiesis defect, VE-cadherin–α-catenin affected neither the generation of hematopoietic stem and progenitor cells (HSPCs) from hemogenic endothelium nor their differentiation into multiple hematopoietic lineages. Instead, HSPCs accumulated in the fetal circulation, suggesting that their entry into the fetal liver was blocked. Edema formation was caused by disturbed lymphatic vessel development. Lymphatic progenitor cells of VE-cadherin–α-catenin-expressing embryos were able to leave the cardinal vein and migrate to the site of the first lymphatic vessel formation, yet subsequently, these cells failed to form large lumenized lymphatic vessels. Thus, stabilizing endothelial cell contacts by a covalent link between VE-cadherin and α-catenin affects recruitment of hematopoietic progenitors into the fetal liver and the development of lymph but not blood vessels.  相似文献   

10.
11.
Zinc protoporphyrin (ZnPP) has been found to have anticancer activity both in vitro and in vivo. We have recently demonstrated that ZnPP diminishes β-catenin protein expression in cancer cells. The present study examined the cellular mechanisms that mediate ZnPP’s suppression of β-catenin expression. We demonstrate that ZnPP induces a rapid degradation of the β-catenin protein in cancer cells, which is accompanied by a significant inhibition of proteasome activity, suggesting that proteasome degradation does not directly account for the suppression. The possibility that ZnPP induces β-catenin exportation was rejected by the observation that there was no detectable β-catenin protein in the conditioned medium after ZnPP treatment of cancer cells. Further experimentation demonstrated that ZnPP induces lysosome membrane permeabilization, which was reversed by pretreatment with a protein transportation inhibitor cocktail containing Brefeldin A (BFA) and Monensin. More significantly, pretreatment of cancer cells with BFA and Monensin attenuated the ZnPP-induced suppression of β-catenin expression in a concentration- and time-dependent manner, indicating that the lysosome protein degradation pathway is likely involved in the ZnPP-induced suppression of β-catenin expression. Whether there is cross-talk between the ubiquitin-proteasome system and the lysosome pathway that may account for ZnPP-induced β-catenin protein degradation is currently unknown. These findings provide a novel mechanism of ZnPP’s anticancer action and reveal a potential new strategy for targeting the β-catenin Wnt signaling pathway for cancer therapy.  相似文献   

12.
Fibrodysplasia ossificans progressiva is characterized by extensive ossification within muscle tissues, and its molecular pathogenesis is responsible for the constitutively activating mutation (R206H) of the bone morphogenetic protein type 1 receptor, activin-like kinase 2 (ALK2). In this study, we investigated the effects of implanting ALK2 (R206H)-transfected myoblastic C2C12 cells into nude mice on osteoclast formation during heterotopic ossification in muscle and subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells with BMP-2 in nude mice induced robust heterotopic ossification with an increase in the formation of osteoclasts in muscle tissues but not in subcutaneous tissues. The implantation of ALK2 (R206H)-transfected C2C12 cells in muscle induced heterotopic ossification more effectively than that of empty vector-transfected cells. A co-culture of ALK2 (R206H)-transfected C2C12 cells as well as the conditioned medium from ALK2 (R206H)-transfected C2C12 cells enhanced osteoclast formation in Raw264.7 cells more effectively than those with empty vector-transfected cells. The transfection of ALK2 (R206H) into C2C12 cells elevated the expression of transforming growth factor (TGF)-β, whereas the inhibition of TGF-β signaling suppressed the enhanced formation of osteoclasts in the co-culture with ALK2 (R206H)-transfected C2C12 cells and their conditioned medium. In conclusion, this study demonstrated that the causal mutation transfection of fibrodysplasia ossificans progressiva in myoblasts enhanced the formation of osteoclasts from its precursor through TGF-β in muscle tissues.  相似文献   

13.
Skin development is governed by complex programs of gene activation and silencing, including microRNA-dependent modulation of gene expression. Here, we show that miR-214 regulates skin morphogenesis and hair follicle (HF) cycling by targeting β-catenin, a key component of the Wnt signaling pathway. miR-214 exhibits differential expression patterns in the skin epithelium, and its inducible overexpression in keratinocytes inhibited proliferation, which resulted in formation of fewer HFs with decreased hair bulb size and thinner hair production. The inhibitory effects of miR-214 on HF development and cycling were associated with altered activities of multiple signaling pathways, including decreased expression of key Wnt signaling mediators β-catenin and Lef-1, and were rescued by treatment with pharmacological Wnt activators. Finally, we identify β-catenin as one of the conserved miR-214 targets in keratinocytes. These data provide an important foundation for further analyses of miR-214 as a key regulator of Wnt pathway activity and stem cell functions during normal tissue homeostasis, regeneration, and aging.  相似文献   

14.
The aim of this study is to investigate the effect of Wnt3a in the transdifferentiation of type II alveolar epithelial cells (AECIIs) to type I alveolar epithelial cells (AECIs) under hyperoxia condition. In the in vivo study, preterm rats were exposed in hyperoxia for 21 days. In the in vitro study, primary rat AECIIs were subjected to a hyperoxia and normoxia exposure alternatively every 24 hr for 7 days. siRNA-mediated knockout of Wnt3a and exogenous Wnt3a were used to investigate the effect of Wnt3a on transdifferentiation of AECIIs to AECIs. Wnt5a-overexpressed AECIIs were also used to investigate whether Wnt3a could counteract the effect of Wnt5a. The results showed that hyperoxia induced alveolar damage in the lung of preterm born rats, as well as an increased expression of Wnt3a and nuclear accumulation of β-catenin. In addition, Wnt3a/β-catenin signaling was activated in isolated AECIIs after hyperoxia exposure. Wnt3a knockout blocked the inhibition of the transdifferentiation induced by hyperoxia, and Wnt3a addition exacerbated this inhibition. Furthermore, Wnt3a addition blocked the transdifferentiation-promoting effect of Wnt5a in hyperoxia-exposed Wnt5a-overexpressed AECIIs. In conclusion, our results demonstrate that the activated Wnt3a/β-catenin signal may be involved in the hyperoxia-induced inhibition of AECIIs’ transdifferentiation to AECIs.  相似文献   

15.
目的:探讨大鼠骨髓间充质干细胞(rBMMSCs)转分化为角膜上皮的潜能,并在体外共培养体系中研究rBMMSCs对促炎细胞因子干扰素-γ(IFN-γ)和肿瘤坏死因子-α(TNF-α)刺激下的人角膜上皮细胞(hCECs)的免疫调节作用。方法采用聚蔗糖梯密度离心法获得rBMMSCs,并通过上皮细胞培养微环境来诱导rBMMSCs分化为上皮样细胞。通过免疫组织化学方法鉴定CD29、CD34、CK5&8和ZO-1等标记物在rBMMSCs及诱导的上皮样细胞中的表达。流式细胞术用来分析CD29/CD34的表达及细胞分化过程中表达量的变化。hCECs单独培养或与rBMMSCs共培养,并采用IFN-γ/TNF-α刺激24或48 h。通过流式细胞术来分析细胞间黏附分子-1(ICAM-1)于IFN-γ/TNF-α刺激前后在hCECs上的表达,并通过黏附分析实验验证rBMMSC条件培养基对单核细胞黏附于IFN-γ/TNF-α刺激后的hCECs的作用。多组间比较采用单因素方差分析(ANOVA),两组间比较采用双侧t检验。结果成功分离rBMMSCs,细胞表达CD29,但不表达CD34。在上皮细胞培养条件中培养5 d,大约4﹪的rBMMSCs可分化为上皮样细胞。此类细胞失去了CD29的标志,转为表达CK5&8和ZO-1。IFN-γ/TNF-α能显著上调hCECs中ICAM-1的表达,在IFN-γ/TNF-α处理24 h和48 h后,ICAM-1分别呈现10倍和8倍的升高,分别达到4524±554.2和3107±329.6(P=0.0025,0.0014)。但与MSC共同培养时,上调作用被显著抑制,ICAM-1平均值为1356±325.6(24 h)与1323±106.6(48 h)(P=0.0079,0.0024)。MSC条件培养基可显著抑制单核细胞对hCECs的黏附作用,黏附细胞数从(10.01±3.01)×10^3/ml细胞降至(2.21±0.19)×10^3/ml细胞(P=0.0271)。结论rBMMSCs可转分化为角膜上皮样细胞,并抑制由促炎细胞因子诱导的ICAM-1在hCECs上的表达,同时对促炎细胞因子诱导的单核细胞的黏附性具有抑制作用,提示BMMSCs具有在角膜炎症疾病和损伤修复中的治疗潜能。  相似文献   

16.
17.
β-catenin mediated Wnt-signaling is assumed to play a major function in embryonic stem cells in maintaining their stem cell character and the exit from this unique trait. The complexity of β-catenin action and conflicting results on the role of β-catenin in maintaining the pluripotent state have made it difficult to understand its precise cellular and molecular functions. To attempt this issue we have generated new genetically modified mouse embryonic stem cell lines allowing for the deletion of β-catenin in a controlled manner by taking advantage of the Cre-ER-T2 system and analyzed the effects in a narrow time window shortly after ablation. By using this approach, rather then taking long term cultured β-catenin null cell lines we demonstrate that β-catenin is dispensable for the maintenance of pluripotency associated genes. In addition we observed that the removal of β-catenin leads to a strong increase of cell death, the appearance of multiple clustered functional centrosomes most likely due to a mis-regulation of the polo-like-kinase 2 and furthermore, alterations in chromosome segregation. Our study demonstrates the importance of β-catenin in maintaining correct cellular functions and helps to understand its role in embryonic stem cells.  相似文献   

18.
Muscle-derived stem cells (MDSCs) are multipotent stem cells with a remarkable long-term self-renewal and regeneration capacity. Here, we show that postnatal MDSCs could be transdifferentiated into Schwann cell-like cells upon the combined treatment of three neurotrophic factors (PDGF, NT-3 and IGF-2). The transdifferentiation of MDSCs was initially induced by Schwann cell (SC) conditioned medium. MDSCs adopted a spindle-like morphology similar to SCs after the transdifferentiation. Immunocytochemistry and immunoblot showed clearly that the SC markers S100, GFAP and p75 were expressed highly only after the transdifferentiation. Flow cytometry assay showed that the portion of S100 expressed cells was more than 60 percent and over one fourth of the transdifferentiated cells expressed all the three SC markers, indicating an efficient transdifferentiation. We then tested neurotrophic factors in the conditioned medium and found it was PDGF, NT-3 and IGF-2 in combination that conducted the transdifferentiation. Our findings demonstrate that it is possible to use specific neurotrophic factors to transdifferentiate MDSCs into Schwann cell-like cells, which might be therapeutically useful for clinical applications.  相似文献   

19.
Cancer-associated fibroblasts (CAFs) contribute to tumour epithelial-mesenchymal transition (EMT) via interaction with cancer cells. However, the molecular mechanisms underlying tumour-promoting EMT of CAFs in lung adenocarcinoma (ADC) remain unclear. Here, we observed that CAFs isolated from lung ADC promoted EMT via production of stromal cell-derived factor-1 (SDF-1) in conditioned medium (CM). CAF-derived SDF-1 enhanced invasiveness and EMT by upregulating CXCR4, β-catenin, and PPARδ, while downregulating these proteins reversed the effect. Furthermore, RNAi-mediated CXCR4 knockdown suppressed β-catenin and PPARδ expression, while β-catenin inhibition effectively downregulated PPARδ without affecting CXCR4; however, treatment with a PPARδ inhibitor did not inhibit CXCR4 or β-catenin expression. Additionally, pairwise analysis revealed that high expression of CXCR4, β-catenin, and PPARδ correlated positively with 75 human lung adenocarcinoma tissues, which was predictive of poor prognosis. Thus, targeting the CAF-derived, SDF-1-mediated CXCR4 β-catenin/ PPARδ cascade may serve as an effective targeted approach for lung cancer treatment.Subject terms: Cancer microenvironment, Non-small-cell lung cancer  相似文献   

20.
Growth factor deprivation of endothelial cells induces apoptosis, which is characterized by membrane blebbing, cell rounding, and subsequent loss of cell–matrix and cell–cell contacts. In this study, we show that initiation of endothelial apoptosis correlates with cleavage and disassembly of intracellular and extracellular components of adherens junctions. β-Catenin and plakoglobin, which form intracellular links between vascular endothelial cadherin (VE-cadherin) and actin-binding α-catenin in adherens junctions, are cleaved in apoptotic cells. In vitro incubations of cell lysates and immunoprecipitates with recombinant caspases indicate that CPP32 and Mch2 are involved, possibly by initiating proteolytic processing. Cleaved β-catenin from lysates of apoptotic cells does not bind to endogenous α-catenin, whereas plakoglobin retains its binding capacity. The extracellular portion of the adherens junctions is also altered during apoptosis because VE-cadherin, which mediates endothelial cell–cell interactions, dramatically decreases on the surface of cells. An extracellular fragment of VE-cadherin can be detected in the conditioned medium, and this “shedding” of VE-cadherin can be blocked by an inhibitor of metalloproteinases. Thus, cleavage of β-catenin and plakoglobin and shedding of VE-cadherin may act in concert to disrupt structural and signaling properties of adherens junctions and may actively interrupt extracellular signals required for endothelial cell survival.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号