首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The steady-state maintenance of highly asymmetric concentrations of the major inorganic cations and anions is a major function of both plasma membranes and the membranes of intracellular organelles. Homeostatic regulation of these ionic gradients is critical for most functions. Due to their charge, the movements of ions across biological membranes necessarily involves facilitation by intrinsic membrane transport proteins. The functional characterization and categorization of membrane transport proteins was a major focus of cell physiological research from the 1950s through the 1980s. On the basis of these functional analyses, ion transport proteins were broadly divided into two classes: channels and carrier-type transporters (which include exchangers, cotransporters, and ATP-driven ion pumps). Beginning in the mid-1980s, these functional analyses of ion transport and homeostasis were complemented by the cloning of genes encoding many ion channels and transporter proteins. Comparison of the predicted primary amino acid sequences and structures of functionally similar ion transport proteins facilitated their grouping within families and superfamilies of structurally related membrane proteins. Postgenomics research in ion transport biology increasingly involves two powerful approaches. One involves elucidation of the molecular structures, at the atomic level in some cases, of model ion transport proteins. The second uses the tools of cell biology to explore the cell-specific function or subcellular localization of ion transport proteins. This review will describe how these approaches have provided new, and sometimes surprising, insights regarding four major questions in current ion transporter research. 1) What are the fundamental differences between ion channels and ion transporters? 2) How does the interaction of an ion transport protein with so-called adapter proteins affect its subcellular localization or regulation by various intracellular signal transduction pathways? 3) How does the specific lipid composition of the local membrane microenvironment modulate the function of an ion transport protein? 4) How can the basic functional properties of a ubiquitously expressed ion transport protein vary depending on the cell type in which it is expressed?  相似文献   

3.
This historical review describes the research on the regulation of glucose transport in skeletal muscle conducted in my laboratory and in collaboration with a number of colleagues in other laboratories. This research includes studies of stimulation of glucose transport, GLUT4 translocation, and GLUT4 expression by exercise/muscle contractions, the role of Ca(2+) in these processes, and the interactions between the effects of exercise and insulin. Among the last are the additive effects of insulin and contractions on glucose transport and GLUT4 translocation and the increases in muscle insulin sensitivity and responsiveness induced by exercise.  相似文献   

4.
Ion transport across lipid bilayer membranes in the presence of macrotetrolide antibiotics has been studied by stationary conductance and nonstationary relaxation methods. The results are discussed on the basis of a carrier model which has already been successfully applied to valinomycin induced ion transport. Again a kinetic analysis has been performed from which the single rate constants of the carrier model could be derived. In addition the equilibrium constant of complex formation in the aqueous phase could be determined. Measurements have been made for 4 macrotetrolides, for several ions and for various chain lengths of the lipids molecules composing the membrane.  相似文献   

5.
Addition of the ionophoric antibiotics salinomycin or narasin to preparations of large unilamellar vesicles made from egg yolk phosphatidylcholine in sodium or potassium chloride solutions gives rise to dynamic effects in the 23Na- and 39K-NMR spectra. The dynamic spectra arise from the ionophore-mediated transport of the metal ions through the membrane. The kinetics of the transport are followed as a function of the concentrations of ionophore and the metal ion and are compatible in all cases with a model in which one ionophore molecule transports one metal ion. For both ionophores the transport of potassium ions is appreciably faster than that of sodium and in both cases the rate-limiting step for sodium transport is dissociation of the ionophore-metal complex. Assuming dissociation to be rate limiting in all four cases it is shown that the transport rate differences between the pairs of complexes of each metal arise solely from differences in the rates of formation. The stability constants for ionophore-metal complex formation in the membrane/water interface are evaluated.  相似文献   

6.
BACKGROUND: Both intrinsic and acquired multidrug resistance play an important role in the insurgence of tuberculosis. Detailed knowledge of the molecular basis of drug recognition and transport by multidrug transport systems is required for the development of new antibiotics that are not extruded or of inhibitors that block the multidrug transporter and allow traditional antibiotics to be effective. MATERIALS AND METHODS: We have undertaken the inventory of the drug transporters subfamily, included in the major facilitator superfamily (MFS), encoded by the complete genome of Mycobacterium tuberculosis (MTB). These proteins were identified on the basis of their characteristic stretches of amino acids and transmembrane segments (TMS) number. CONCLUSIONS: Genome analysis and searches of homology between the identified transporters and proteins characterized in other organisms revealed 16 open reading frames encoding putative drug efflux pumps belonging to MFS. In the case of two of them, we also have demonstrated that they function as drug efflux proteins.  相似文献   

7.
Mutants in the cyclic AMP (cAMP) control system in Salmonella typhimurium (cya = adenyl cyclase, crp = cAMP receptor protein) were partially resistant to growth inhibition by 22 antibiotics (including fosfomycin, nalidixic acid, and streptomycin) and 29 inhibitory analogs of normal bacterial fuel/carbon sources. This resistance was used as the basis for an efficient positive selection of cya and crp mutants. We propose that these antibiotics and analogs enter the bacteria through transport systems normally used for transporting fuel/carbon sources and that this is accomplished because of a structural similarity between the antibiotic and the natural substrate of the particular transport system involved. We propose that these transport systems are all under positive control by cAMP and that cAMP acts as a signal molecule (alarmone) for fuel/carbon deprivation. Evidence is provided for a hierarchy within operons controlled by cAMP. The methodology is shown to be useful for analyzing both antibiotic transport systems and the cAMP super-control system.  相似文献   

8.
The physical principles that material and charge are conserved provide a basis for the design of a membrane capable of performing active ion transport in which the connection between “metabolic energy” input and the ion transport process itself is electrical rather than material. Molecular interactions between components in this system are irrelevant to its function. A second model built on the same principles performs active ion transport in a statically symmetrical membrane. The basis of its operation is a weakly stable unsymmetrical concentration profile arising from an enzyme-catalyzed reaction occurring within the membrane. The function of this membrane is irreversibly terminated (“killed”) by interference either with intramembrane concentration gradients or with the reactions which maintain them. Hence, any attempt to study this system by breaking it apart destroys the basis of its function. The existence of these models reveals the logical insufficiency of the molecular biologist's approach to understanding the basis of active transport: Neither the experimental techniques for structure determination (disruption, purification, characterization, and reconstitution) nor the fundamental question of that discipline (What is the molecular connection between &*|… ?) of the molecular biologist are applicable to the study or interpretation of these model systems. While the model systems are artificial, they incorporate only widely applicable concepts of physical chemistry and biochemical kinetics. The is no reason for excluding such mechanisms in natural membrane transport systems. If they are present, then more effective strategies of investigation will be required.  相似文献   

9.
A mathematical model of the active transport of main ions in cells of archaebacteria has been constructed. A set of equations has been developed and solved for ion fluxes through the bacterium membrane. The model is based on the principle “one ion—one transport system.” Considering experimental data, the major transport mechanism was determined for each ion and the balance equation was written on the basis of this mechanism in the stationary state. This allowed calculating values of the membrane potential and intracellular concentrations of the ions independently. The calculated values of the intracellular concentrations and resting potential are in qualitative agreement with the corresponding experimental values for cells of extremely halophilic archaea.  相似文献   

10.
利用11对微卫星引物对贵州白水牛和6个普通水牛群体的有效等位基因数、基因杂合度、多态信息含量和遗传距离进行了分析。结果表明,11个微卫星基因座在7个水牛群体中均存在多态性,可以用于水牛的遗传多样性评估。贵州白水牛和6个普通水牛群体的平均杂合度和平均多态信息含量分别为0·7450~0·7922和0·7021~0·7605。贵州白水牛和遵义普通水牛的亲缘关系最近,遗传距离为0·0910。由UPGMA聚类法得到的系统聚类图反映了贵州白水牛和6个普通水牛群体的亲缘关系远近程度,贵州白水牛没有单独聚为一类,而是与同分布区的遵义普通水牛首先聚类,然后依次与其余地区的普通水牛聚类。研究提出了贵州白水牛应是其产地的普通水牛群体中的一个突变群的见解,为开展贵州白水牛的遗传资源评估、保护与利用提供了分子水平的遗传学依据。  相似文献   

11.
Over the last 40 years, there has been a steady supply of novel, useful antibiotics produced by microbes isolated from soil and other natural environments. The increased efficiency of screening procedures in the last decade has played a major part in maintaining this supply. However, the selection and sampling of natural environments are still essentially random processes. The main reasons for this are an almost total lack of knowledge of the significance of antibiotics in nature, deficiencies in the taxonomy of antibiotic-producing microbes and its application, and lack of information about the distribution and ecology of known or potential antibiotic producers. The origins of these problems are discussed and some possible solutions are suggested.  相似文献   

12.
Molecular mechanisms of disturbances in the system responsible for ion transport taking place in the development of the initial hypertension in linear animals have been analysed in this review. On the basis of own and literary data the diagnostic significance of the biochemical parameters which characterize the membrane ion transport state at given disease is estimated. Using the results of correlation analysis of facts which characterize the connection between the human hypertension and specific blood factors, a probability of hypertension development depending on the degree of the given factors expression is determined.  相似文献   

13.
Electrostatic interactions often play key roles in the recognition of small molecules by nucleic acids. An example is aminoglycoside antibiotics, which by binding to ribosomal RNA (rRNA) affect bacterial protein synthesis. These antibiotics remain one of the few valid treatments against hospital-acquired infections by Gram-negative bacteria. It is necessary to understand the amplitude of electrostatic interactions between aminoglycosides and their rRNA targets to introduce aminoglycoside modifications that would enhance their binding or to design new scaffolds. Here, we calculated the electrostatic energy of interactions and its per-ring contributions between aminoglycosides and their primary rRNA binding site. We applied either the methodology based on the exact potential multipole moment (EPMM) or classical molecular mechanics force field single-point partial charges with Coulomb formula. For EPMM, we first reconstructed the aspherical electron density of 12 aminoglycoside-RNA complexes from the atomic parameters deposited in the University at Buffalo Databank. The University at Buffalo Databank concept assumes transferability of electron density between atoms in chemically equivalent vicinities and allows reconstruction of the electron densities from experimental structural data. From the electron density, we then calculated the electrostatic energy of interaction using EPMM. Finally, we compared the two approaches. The calculated electrostatic interaction energies between various aminoglycosides and their binding sites correlate with experimentally obtained binding free energies. Based on the calculated energetic contributions of water molecules mediating the interactions between the antibiotic and rRNA, we suggest possible modifications that could enhance aminoglycoside binding affinity.  相似文献   

14.
A triphasic analysis of corneal swelling and hydration control.   总被引:1,自引:0,他引:1  
Physiological studies strongly support the view that hydration control in the cornea is dependent on active ion transport at the corneal endothelium. However, the mechanism by which endothelial ion transport regulates corneal thickness has not been elaborated in detail. In this study, the corneal stroma is modeled as a triphasic material under steady-state conditions. An ion flux boundary condition is developed to represent active transport at the endothelium. The equations are solved in cylindrical coordinates for confined compression and in spherical coordinates to represent an intact cornea. The model provides a mechanism by which active ion transport at the endothelium regulates corneal hydration and provides a basis for explaining the origin of the "imbibition pressure" and stromal "swelling pressure." The model encapsulates the Donnan view of corneal swelling as well as the "pump-leak hypothesis."  相似文献   

15.
The transport of inorganic and organic ions across the plasma membrane and organelle membranes of higher plants by ion channels, electrogenic pumps and co-transporters is essential to vital processes such as osmoregulation, growth, development, signal transduction and the storage of solutes. Recent studies have led to the identification of specialized transport proteins in the plasma membrane and vacuolar membrane of higher plant cells. Here we have integrated the functional aspects of these membrane proteins into a model which proposes a novel basis for ion transport processes involved in the regulation of gas exchange in leaves.  相似文献   

16.
Methylamine and ammonia transport in Saccharomyces cerevisiae.   总被引:20,自引:15,他引:5       下载免费PDF全文
Methylamine (methylammonium ion) entered Saccharomyces cerevisiae X2180-A by means of a specific active transport system. Methylamine uptake was pH dependent (maximum rate between pH 6.0 and 6.5) and temperature dependent (increasing up to 35 C) and required the presence of a fermentable or oxidizable energy source in the growth medium. At 23 C the vmax for methylamine transport was similar 17 nmol/min per mg of cells (dry weight) and the apparent Km was 220 muM. The transport system exhibited maximal activity in ammonia-grown cells and was repressed 60 to 70 percent when glutamine or asparagine was added to the growth medium. There was no significant derepression of the transport system during nitrogen starvation. Ammonia (ammonium ion) was a strong competitive inhibitor of methylamine uptake, whereas other amines inhibited to a much lesser extent. Mutants selected on the basis of their reduced ability to transport methylamine (Mea-R) simultaneously exhibited a decreased ability to transport ammonia.  相似文献   

17.
Ribosomal antibiotics must discriminate between bacterial and eukaryotic ribosomes to various extents. Despite major differences in bacterial and eukaryotic ribosome structure, a single nucleotide or amino acid determines the selectivity of drugs affecting protein synthesis. Analysis of resistance mutations in bacteria allows the prediction of whether cytoplasmic or mitochondrial ribosomes in eukaryotic cells will be sensitive to the drug. This has important implications for drug specificity and toxicity. Together with recent data on the structure of ribosomal subunits these data provide the basis for development of new ribosomal antibiotics by rationale drug design.  相似文献   

18.
One of the major attributes for the biological action of the aureolic acid anticancer antibiotics chromomycin A3 (CHR) and mithramycin (MTR) is their ability to bind bivalent cations such as Mg(II) and Zn(II) ions and form high affinity 2:1 complexes in terms of the antibiotic and the metal ion, respectively. As most of the cellular Zn(II) ion is found to be associated with proteins, we have examined the effect of MTR/CHR on the structure and function of a representative structurally well characterized Zn(II) metalloenzyme, alcohol dehydrogenase (ADH) from yeast. MTR and CHR inhibit enzyme activity of ADH with inhibitory constants of micromolar order. Results from size-exclusion column chromatography, dynamic light scattering, and isothermal titration calorimetry have suggested that the mechanism of inhibition of the metalloenzyme by the antibiotics is due to the antibiotic-induced disruption of the enzyme quaternary structure. The nature of the enzyme inhibition, the binding stoichiometry of two antibiotics per monomer, and comparable dissociation constants for the antibiotic and free (or substrate-bound) ADH imply that the association occurs as a consequence of the binding of the antibiotics to Zn(II) ion present at the structural center. Confocal microscopy shows the colocalization of the antibiotic and the metalloenzyme in HepG2 cells, thereby supporting the proposition of physical association between the antibiotic(s) and the enzyme inside the cell.  相似文献   

19.
The postthaw motility and fertility of buffalo and cattle semen is reduced when they are cryopreserved for artificial insemination. In the present study, an attempt was made to characterize the cryogenic changes in proteases and antiprotease activities (APA) of buffalo and cattle semen because these proteolysis regulators have been reported to be associated with sperm motility and fertility. Buffalo sperm demonstrated at least two major proteases of 45 and 42 kDa and three minor proteases of 95, 52, and 33 kDa. Similarly, cattle sperm demonstrated three major proteases of 62, 45, and 42 kDa and two minor proteases of 85 and 78 kDa. Buffalo seminal plasma demonstrated at least three major proteases of 78, 68, and 62 kDa and one minor protease of 98 kDa and cattle seminal plasma demonstrated one major protease of 68 kDa and two minor proteases of 78 and 75 kDa. Except for the 45 kDa protease, most of the previously mentioned proteases were found to be metalloproteinases. Compared with fresh sperm, cryopreserved buffalo and cattle sperm demonstrated a major protease band of 52/49 kDa and the activity of this protease reduced progressively with the duration of cryopreservation. On the contrary, compared with the fresh seminal plasma, cryopreserved buffalo and cattle semen extenders displayed the presence of a new protease band of 45 kDa and demonstrated that this protease activity was leaked from buffalo and cattle cryopreserved spermatozoa. Buffalo and cattle seminal plasmas displayed at least two major APA of 86 and 26 kDa. Compared with buffalo, cattle seminal plasma demonstrated significantly greater APA. Thus, the present study demonstrated the presence of an array of proteases and APA in buffalo and cattle semen and the activities of which changed during cryopreservation. The leakage of the specific protease activity and changes in the proteases and APA might be attributed to reduced motility and fertility of cryopreserved semen in these species.  相似文献   

20.
Antibiotic-resistant bacteria, particularly gram negative species, present significant health care challenges. The permeation of antibiotics through the outer membrane is largely effected by the porin superfamily, changes in which contribute to antibiotic resistance. A series of antibiotic resistant E. coli isolates were obtained from a patient during serial treatment with various antibiotics. The sequence of OmpC changed at three positions during treatment giving rise to a total of four OmpC variants (denoted OmpC20, OmpC26, OmpC28 and OmpC33, in which OmpC20 was derived from the first clinical isolate). We demonstrate that expression of the OmpC K12 porin in the clinical isolates lowers the MIC, consistent with modified porin function contributing to drug resistance. By a range of assays we have established that the three mutations that occur between OmpC20 and OmpC33 modify transport of both small molecules and antibiotics across the outer membrane. This results in the modulation of resistance to antibiotics, particularly cefotaxime. Small ion unitary conductance measurements of the isolated porins do not show significant differences between isolates. Thus, resistance does not appear to arise from major changes in pore size. Crystal structures of all four OmpC clinical mutants and molecular dynamics simulations also show that the pore size is essentially unchanged. Molecular dynamics simulations suggest that perturbation of the transverse electrostatic field at the constriction zone reduces cefotaxime passage through the pore, consistent with laboratory and clinical data. This subtle modification of the transverse electric field is a very different source of resistance than occlusion of the pore or wholesale destruction of the transverse field and points to a new mechanism by which porins may modulate antibiotic passage through the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号