共查询到20条相似文献,搜索用时 15 毫秒
1.
Cryptococcus neoformans exhibited diphasic growth when grown under limited aeration. First, it grew exponentially, but at OD 1, the concentration of dissolved oxygen in culture decreased to 1 mg l(-1) and a second phase of slow growth was started. This phase was characterized by a shift of budding from S to G(2), a sharp decrease in budding index and a sharp increase in the proportion of unbudded G(2) cells to 80%. Thus, a deficit in oxygen was demonstrated to delay the timing of budding, prolong the G(2) phase and cause accumulation of cells after DNA synthesis, but before commitment to budding. 相似文献
2.
B. I. Lord 《Cell proliferation》1981,14(4):425-431
Normal haemopoietic stem cells, defined here as spleen colony-forming units (CFUs), are slowly proliferating and are generally considered to spend most of their time in the non-proliferative G0-state. A series of experiments using various combinations of the stem cell proliferation inhibitor (NBME-IV) and stimulator (RBME-III) together with vinblastine as a mitotic blocking agent was designed to determine the location of the G0-state relative to the cell cycle of the CFUs. From a knowledge of the effects of these agents, the expected results from three different G0-cell cycle models were charted and compared with the observed proliferative behaviour of the CFUs following these treatments. It was concluded that the out-of-cycle G0-state is located at the end of the G1-phase of the cycle, so that on receiving a stimulatory signal, the CFUs can rapidly enter the DNA-synthesis phase. 相似文献
3.
Epidermal cell flux at the G1-S, S-G2 and G2-M transition was examined during the first 4 hr after injection of epidermis extract. the flux parameters were estimated by a combination of several methods. the G1-S and S-G2 transit rates were calculated on the basis of a double labelling technique with [3H]TdR, the G2-M flux by means of colcemid and the relative proportion of cells in the S or G2 phase by means of flow cytometry. All experiments were performed both in early morning and late evening, corresponding to maximum and minimum rates of epidermal cell proliferation in the hairless mouse. the epidermis extract inhibited the S-G and G2-M transit rates to the same degree, while the inhibition of cell flux at the G1-S transit was consistently stronger. In general, the inhibition of cell flux at the different transitions was most pronounced when the rate of cell proliferation was low and vice versa. 相似文献
4.
Conventional flow cytometric DNA measurements combined with the microscopic detection of cells in the late G2 phase of the cell cycle (characterized by the occurrence of paired kinetochores) enabled us to differentiate and to quantify early and late G2 cells 0–40 h after irradiation using a radioresistant (L929) and a radiosensitive (HL-60) cell line. This approach provided us with ( 1 ) a new kind of G2 arrest characteristic revealing changes in the G2 phase which can not be detected by flow cytometric DNA measurements, ( 2 ) cell line dependent differences in the radiation-induced transition through G2, accompanied by the occurrence of micronucleation and apoptosis, and ( 3 ) the characterization of apoptotic cells occurring probably during early G2 and bearing a rapidly reduced number of kinetochores in contrast to mitotic cells, suggesting processes different from those that operate in mitosis. 相似文献
5.
The data on cell-cycle effects of two prospective antitumour agents, (+)-1,2,-bis(3,5-dioxopiperazine-l-yl)propane (soluble ICRF; NSC 169780) and 1,4-bis(2′chloroethyl)-1,4-diazabicyclo [2.2.1] heptane diperchlorate (CBH; NSC 57198) were used to determine whether a modified stathmokinetic experiment could predict the effects of continuous, long-term (0–48 hr) drug exposure in an in vitro L1210 murine leukaemia cell system. Generally, continuous drug exposure of exponentially growing cells does not provide sufficient quantitative information concerning cell-cycle-phase-specific mechanisms of drug action. Alternatively, stathmokinetic experiments, which are usually limited to some fraction of one cell doubling time, provide little information about long-term drug effects. By using mathematical models constructed for this purpose, however, stathmokinetic data can predict the overall proportion of cells affected by a drug though failing to discern between various kinds of drug action (e.g. reversible v. irreversible block, blocking v. killing action, etc.), especially when it occurs in G2 phase. In addition, it can be shown that for at least one of the drugs (soluble ICRF) the stathmokinetic experiment fails to predict ‘after-effects’ of drug treatment which extend into the following cell cycle(s). It also becomes clear that the degradation of exponential growth characteristics of quickly dividing cells during long-term, continuous drug exposure makes prediction of cell-cycle kinetic perturbations uncertain when derived from short-duration stathmokinetic experiments. However, with care, the joint application of ‘short term’ (e.g. stathmokinesis) and ‘long term’ (e.g. continuous exposure) techniques allow adequate quantitative insight into drug-perturbed cell-cycle kinetics. the applicability of modelling techniques is discussed: in the present instance it is limited to lower drug concentrations. For higher drug concentrations, effects like increased ploidy, ineffective division, etc., make it impossible in the present study to obtain a clear picture of the kinetics. 相似文献
6.
Six human colon carcinoma cell lines were induced to enter stationary phase of growth by nutrient deprivation and cell crowding. Growth kinetics parameters (cell number, flow cytometric analysis of DNA distribution, and labelling and mitotic indices) were measured sequentially for all lines during the various stages of in vitro growth. Our results demonstrated that a substantial fraction of cells (9–18%) were located in G2, phase when they changed from an exponential to a stationary mode of growth. Moreover, a large number of cells in stationary phase of growth had an S-phase DNA content, as determined by flow cytometry, but failed to incorporate radioactive DNA precursors (up to 15-fold difference). to substantiate these findings. cells in stationary phase of growth were induced to enter exponential growth by re-seeding in fresh medium at a lower density. Subsequently observed changes in DNA-compartment distribution, and in labelling and mitotic indices were those expected from cells that had been arrested at different stages of the cycle during their previous stationary phase. Thus, the non-proliferating quiescent state (Q), traditionally located ‘somewhere’ in G1, phase, appears to be composed also of cells that can be arrested at other stages of the cycle (Qs, and QG). Although the proportion of such cells is rather small, their contribution to the growth kinetics behaviour of human in vivo tumours will become apparent following ‘recruiting’ or ‘synchronizing’ clinical manoeuvres and will prevent the formation of a clear-cut wave of synchronized cells. 相似文献
7.
The relationship between mevalonate and cell cycling was investigated in developing glial cells. Primary cultures of newborn rat brains were serum-depleted (0.1%, vol/vol) for 48 h on days 4-6 in vitro, then returned to 10% calf serum (time 0). After 48 h, 70-80% of the cells were glial fibrillary acidic protein (GFAP)-negative by indirect immunofluorescence; 79 +/- 7% were GFAP-positive after an additional 3 days. Serum shift-up resulted in 12 h of quiescence, and then by 20 h (S phase) in increased proportions of cells synthesizing DNA (from 15 +/- 6% to 75 +/- 4% by bromodeoxyuridine immunofluorescence at 12 h and 20 h, respectively) and rates of DNA synthesis (42 +/- 6 versus 380 +/- 32 cpm/micrograms of protein/h of [3H]thymidine uptake). Additional mevalonate (25 mM) for 30 min at 10 h reversed the inhibition of DNA synthesis apparent with mevinolin (150 microM), an inhibitor of mevalonate synthesis, present from time 0. Cycloheximide added simultaneously with mevalonate prevented this reversal of inhibition. To cause arrest at G1/S, cultures were exposed to hydroxyurea between 10 and 22 h. By 3 h after hydroxyurea removal, bromodeoxyuridine-labeled nuclei increased from 0% to 75 +/- 9%, and DNA synthesis increased 10-fold. Mevinolin failed to inhibit these increases. Thus, primary astroglial precursors stimulated to progress through the cell cycle express a mevalonate requirement in late G1, but before the G1/S transition. The effect of mevalonate was characterized further as being brief (30 min) and as requiring polypeptides. 相似文献
8.
9.
F. Zhang J. J. Godyn M. Uskokovic L. Binderup G. P. Studzinski 《Cell proliferation》1994,27(11):643-654
Abstract. Differentiation of mammalian cells is accompanied by reduced rates of proliferation and an exit from the cell cycle. Human leukemic cells HL60 present a widely used model of neoplastic cell differentiation, and acquire the monocytic phenotype when exposed to analogs of vitamin D3 (VD3 ). The maturation process is accompanied by two blocks in the cell cycle: an arrest in the G1 /G0 phase, and a recently described G2 + M block. In this study we have analyzed the traverse of the cell cycle phases of the well-differentiating HL60-G cells exposed to one of ten analogs of VD3 , and compared the cell cycle effects of each compound with its potency as a differentiation-inducing agent. We found that in general there was a good correlation between the effects of these compounds on the cell cycle and on differentiation, but the best cell cycle predictor of differentiation potency was the extent of accumulation of the cells in the G2 compartment. All analogs induced a marked decrease in the mitotic index, and polynucleation of HL60 cells was produced, especially by compounds which were effective as inducers of differentiation. Time course studies showed that induction of differentiation was accompanied by a transient increase of the proportion of cells in the G2 + M compartment, but preceded the G1 to S, and the G2 compartment blocks. These studies indicate that complex changes in the cell cycle traverse accompany, but do not precede, the acquisition of the monocytic phenotype by HL60 cells. 相似文献
10.
Joy S. C. Chan Lisa Y. Yung Jonathan W. M. Lee Ya-Lan Wu Gang Pei Yung H. Wong 《Journal of neurochemistry》1998,71(5):2203-2210
Abstract: Nociceptin/OFQ is the endogenous ligand for the G protein-coupled opioid receptor-like (ORL1 ) receptor. To elucidate the cellular functions of the ORL1 receptor, we examined its ability to interact with Gz and G16 , two pertussis toxin (PTX)-insensitive G proteins that are known molecular partners for the opioid receptors. In HEK 293 cells transiently expressing the ORL1 and dopamine D1 receptors, nociceptin/OFQ dose-dependently inhibited dopamine-stimulated cyclic AMP (cAMP) accumulation in a PTX-sensitive manner. However, PTX failed to block the nociceptin/OFQ-induced inhibition of dopamine-stimulated cAMP accumulation in HEK 293 cells co-expressing the α-subunit of Gz . This result indicates functional interaction between the ORL1 receptor and Gz . A similar result was obtained with retinoic acid-differentiated SH-SY5Y cells, which endogenously express both the ORL1 receptor and Gz . When the ORL1 receptor was transiently co-expressed in COS-7 cells with the α-subunit of G16 , nociceptin/OFQ dose-dependently stimulated the formation of inositol phosphates. Nociceptin-induced stimulation of phospholipase C was absolutely dependent on the co-expression of α16 and exhibited the appropriate ligand selectivity. In terms of its ability to interact with PTX-insensitive G proteins, the ORL1 receptor behaves very much like the opioid receptors. 相似文献
11.
It has been postulated that mouse epidermis contains two populations of resting cells, one of which is blocked at the G1-S boundary and the other between G2 and mitosis. the ‘arrested G2 cells’ were estimated, by the labelled mitosis method, to comprise 510% of the epidermal population and presumed to function as a ‘reserve pool’ which could be activated by wounding. A comprehensive search has now been carried out for arrested G2 cells in mouse epidermis using the direct methods of single cell and flow through cytophotometry. No evidence was obtained which supports the existence of such a cell compartment. Suitable control experiments were carried out to ensure that G2 cells were not lost during the isolation of epidermal nuclei. 相似文献
12.
Observation of division of individual cells in microdrops, plus autoradiographic studies using tritiated thymidine and standard cell cycle analysis techniques, reveal that hydroxyurea (10 DIM) reversibly arrests the normal progression of exponentially growing Tetrahymena pyriformis through the initial 92 % of S-phase while not affecting cells in the terminal 8 % and in G2 and division. Thus the fraction of the population of cells that is in G2 can be approximately determined by the fraction of the population able to divide in the presence of hydroxyurea. This fraction can be related to the approximate duration of G2 by calculations which compensate for the age gradient. 相似文献
13.
The technique of velocity sedimentation was employed to fractionate mouse bone marrow CFU-s relative to two different phases of the cell cycle. CFU-s in DNA synthesis which are destroyed by hydroxyurea were separated from other smaller CFU-s which were shown to be insensitive to the drug and are presumably those CFU-s in the G2 phase of cell cycle. 相似文献
14.
Abstract The intraperitoneal administration of several substances (biliverdin, heat-killed bacteria and diatomaceous earth) to rats caused the prompt appearance of a mitotic wave in the liver. Autoradiographic analysis of livers of treated animals showed no evidence of [3 H]-thymidine uptake by mitotic hepatocytes. In addition, livers from xenobiotic-treated rats showed a very low thymidine kinase activity, close to that found in normal livers. This excludes the possibility that non-cycling cells move to mitosis through the S phase. The results suggest that mitosis could be derived from a hepatocyte subpopulation arrested in the G2 phase of the cell cycle, which is stimulated to divide by the xenobiotics. 相似文献
15.
Bioassay analysis of extracts of the major neurosecretory structures of the American lobster have revealed several different agents with stimulatory effects on the cyclic GMP metabolism of various lobster tissues. The most potent of these is a peptide extracted from the sinus gland, a neurohemal organ found in the animal's eyestalk. This molecule, called peptide G1 (for its effects on cyclic GMP metabolism), can increase the cyclic GMP content of every lobster tissue tested, sometimes by as much as 200-fold. In this article, we describe the purification and some of the chemical properties of peptide G1. Purification was accomplished by sequential anion exchange and reverse-phase HPLC. The purified peptide is a large, extremely hydrophobic molecule. Its apparent molecular mass on a reducing sodium dodecyl sulfate-containing gel is 6.4 kDa, and its calculated molecular mass (based on an amino acid analysis of the purified material) is 8.2 kDa. Amino acid analysis reveals a high proportion of leucine and valine residues. The amino terminus of the molecule is not susceptible to Edman degradation, but sequencing studies were successfully carried out on tryptic fragments. Based on the estimated size of the molecule, these studies provide approximately 60% of the total sequence. No homologies with any previously sequenced peptide were observed, but biochemical similarities to as yet unsequenced peptides found in extracts of sinus glands from other crustaceans (hyperglycemic hormone and moult-inhibiting hormone) are described. 相似文献
16.
17.
S. Cooper 《Cell proliferation》1998,31(1):9-16
Synchronization of mammalian cells by starvation-refeeding or by inhibition-release are among the most commonly used techniques for division cycle analysis. An alternative analysis—in the form of a Gedanken or thought experiment—is presented, casting doubt on the utility of this synchronization method. Arresting cell growth produces a culture where all cells contain a G1 amount of DNA. However, these cells are not arrested at a particular point in the G1 -phase. Analysis of 'G1 arrested cells' suggests that, upon resumption of growth, the cells are not synchronized. 相似文献
18.
Hairless mice were given 5 mg hydroxyurea (HU) intraperitoneally (i.p.) followed by 0.15 mg Colcemid® at various times after HU. the animals were killed at 2 and 4 hr after Colcemid, the epidermal mitotic counts in dorsal skin were determined and the mitotic rates calculated. These were compared with the normal mitotic rates, and the ratios between the results from HU-treated and -untreated animals were calculated. Hydroxyurea caused a considerable reduction in the mitotic rate with a trough at 6 hr, followed by a wave of increased mitotic rate with a peak at 14 hr, followed by a secondary drop at 20 hr, and then a return to normal. Another group of mice were given HU only, and the fraction of epidermal cells in G2 was measured by flow cytometry. From these animals, without previous injection of Colcemid, we also determined the mitotic counts and calculated the mitotic durations. Cells piled up in G2 for the first 6 hr after HU injection, then the G2 compartment was emptied. the results are discussed in relation to previous results from this department showing the effect of the same dose of HU on DNA synthesis in the same mouse strain. It is concluded that HU not only blocks or retards DNA synthesis in epidermal cells, but also affects the movement of cells through G2 and M. the cell kinetic effects of HU thus seem to be very complex. 相似文献
19.
Biological oxidation of hydrogen in soils flushed with a mixture of H2 , CO2 , O2 and N2 总被引:1,自引:0,他引:1
Lucia Dugnani Isabelle Wyrsch Mauro Gandolla Michel Aragno 《FEMS microbiology letters》1986,38(6):347-351
Abstract A stainless steel cylinder filled with soil was flushed upstream with a H2 /CO2 /air mixture. The consequence was a strong enrichment of the aerobic, autotrophic hydrogen-oxidising microflora, which reached densities enabling them to oxidize 84.5 ml H2 · dm−2 · h−1 in the first 25-cm layer. H2 concentration profiles, hydrogen uptake activity and cell numbers correlated well with each other. Most of the organisms isolated were dinitrogen fixers. Thus, soils containing hydrogen-oxidising bacteria may act as a biological shield between H2 -rich environments and air, and may be utilized as biofilters, e.g., in the waste-processing industry. 相似文献
20.
Reconciling the incompatible: N2 fixation And O2 总被引:4,自引:7,他引:4
J. R. Gallon 《The New phytologist》1992,122(4):571-609