首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
    
  1. As the Earth's climate continues to change, drought and insect population outbreaks are predicted to increase in many parts of the world. It is therefore important to understand how changes in such abiotic and biotic stressors might impact agroecosystems.
  2. The plant stress hypothesis predicts that, owing to physiological and biochemical changes, plants experiencing drought will be more susceptible to insect herbivory, which could have synergistic negative effects on plant performance. By contrast, the plant vigor hypothesis predicts that insects will preferentially feed on fast‐growing vigorous plants.
  3. These hypotheses were tested in a field experiment using 16 soybean (Glycine max (L.) Merr.) genotypes to determine: (i) the combined effects of drought and herbivory on plant performance; (ii) the impact of drought on soybean resistance to herbivores; and (iii) how genetically variable phenotypic traits in soybean correlate with these responses.
  4. It was found that drought had a greater effect on soybean performance than herbivory, and drought and herbivory did not interact to impact on any measure of plant performance. Drought caused decreased insect herbivory on average, suggesting that the plant vigor hypothesis is consistent with the effects of drought stress on soybean resistance to leaf‐chewing insect herbivores. This conclusion is further supported by genotypic correlations which show that plant growth rate is positively correlated with the amount of herbivory plants received.
  5. These results suggest that, although the effects of climate‐associated changes in drought and herbivory will have negative effects on soybean, these potential effects are quantifiable with simple experiments and can be mitigated through continued breeding of varieties that are tolerant and resistant to these abiotic and biotic stressors.
  相似文献   

3.
4.
    
The annual bluegrass weevil (ABW), Listronotus maculicollis Kirby (Coleoptera: Curculionidae), is a serious and expanding pest of short‐cut turfgrass on golf courses in eastern North America. Increasing problems with the development of insecticide resistance in this pest highlights the need for more sustainable management approaches. Plant resistance is one of the most promising alternative strategies. Bentgrasses are the dominant grass species on golf course fairways, tees, and putting greens in the areas affected by ABW. But Poa annua L. (Poaceae), a highly invasive weed, often constitutes a large percentage of turf stands in short‐mown golf courses and is thought to be particularly susceptible to ABW. We studied resistance to ABW in four cultivars of creeping bentgrass, Agrostis stolonifera L., and two cultivars each of colonial bentgrass, Agrostis capillaris L., and velvet bentgrass, Agrostis canina L. (Poaceae), in comparison with P. annua by addressing the three major components of resistance: antixenosis (adult ovipositional and feeding preferences), antibiosis (larval survival and growth), and grass tolerance (grass damage). Our findings suggest that antixenosis/non‐preference is at least partially involved in bentgrass resistance to ABW. Even though oviposition was observed in all tested grasses, females laid significantly fewer eggs in Agrostis spp. than in P. annua. Compared to P. annua, Agrostis spp. were also less suitable for larval development with lower numbers of ABW immatures recovered and larvae weighing less and being less advanced in development. Resistance levels to ABW larvae varied significantly among Agrostis spp. and cultivars. Agrostis canina was least preferred by females for oviposition and A. stolonifera was the least suitable for larval survival and development. Agrostis spp., especially A. stolonifera, were more tolerant to ABW feeding than P. annua. Our findings suggest that reduction in P. annua and replacement with Agrostis spp., especially A. stolonifera, wherever feasible should be integral to more sustainable approaches to ABW management.  相似文献   

5.
During bean seed storage, yield can be lost due to infestations of Acanthoscelides obtectus Say, the bean weevil. The use of resistant varieties has shown promising results in fighting these insects, reducing infestation levels and eliminating chemical residues from the beans. The expression of resistance to A. obtectus in bean varieties is frequently attributed to the presence of phytohemagglutinins, protease inhibitors and alpha-amylase, and especially to variants of the protein arcelin, which reduce the larval viability of these insects. To evaluate the effect of bean seed storage time on the resistance expression of bean varieties to A. obtectus , tests with seeds of three ages (freshly-harvested, 4-month-old, and 8-month-old) were conducted in the laboratory, using four commercial varieties: Carioca Pitoco, Ipa 6, Porrillo 70, ônix; four improved varieties containing arcelin protein: Arc.1, Arc.2, Arc. 3, Arc.4; and three wild varieties also containing arcelin protein: Arc.1S, Arc.3S, and Arc. 5S. The Arc.5S, Arc.1S, and Arc.2 varieties expressed high antibiosis levels against the weevil; Arc.1 and Arcs expressed the same mechanism, but at lower levels. The occurrence of oviposition non-preference was also observed in Arc.5S and Arc.1S. The Arc.3 and Arc. 4 varieties expressed low feeding non-preference levels against A. obtectus. The expression of resistance in arcelin-bearing, wild or improved varieties was affected during the storage of seeds, and was high under some parameters but low in others. The results showed that addition of chemical resistance factors such as protein arcelin via genetic breeding may be beneficial in improving the performance of bean crops.  相似文献   

6.
Plants can resist herbivore damage through three broad mechanisms: antixenosis, antibiosis and tolerance1. Antixenosis is the degree to which the plant is avoided when the herbivore is able to select other plants2. Antibiosis is the degree to which the plant affects the fitness of the herbivore feeding on it1.Tolerance is the degree to which the plant can withstand or repair damage caused by the herbivore, without compromising the herbivore''s growth and reproduction1. The durability of herbivore resistance in an agricultural setting depends to a great extent on the resistance mechanism favored during crop breeding efforts3.We demonstrate a no-choice experiment designed to estimate the relative contributions of antibiosis and tolerance to spittlebug resistance in Brachiaria spp. Several species of African grasses of the genus Brachiaria are valuable forage and pasture plants in the Neotropics, but they can be severely challenged by several native species of spittlebugs (Hemiptera: Cercopidae)4.To assess their resistance to spittlebugs, plants are vegetatively-propagated by stem cuttings and allowed to grow for approximately one month, allowing the growth of superficial roots on which spittlebugs can feed. At that point, each test plant is individually challenged with six spittlebug eggs near hatching. Infestations are allowed to progress for one month before evaluating plant damage and insect survival. Scoring plant damage provides an estimate of tolerance while scoring insect survival provides an estimate of antibiosis. This protocol has facilitated our plant breeding objective to enhance spittlebug resistance in commercial brachiariagrases5.  相似文献   

7.
    
  1. Pure forests are often seen as being more prone to damage by specialist pest insects than mixed forests, and particularly mixed forests associating host and nonhost species. We addressed the effect of tree diversity on oak colonization and defoliation by a major specialist pest, the oak processionary moth (OPM)
  2. We quantified the number of male OPM moths captured and larval defoliation in pure stands of two oak host species (Quercus robur and Quercus petraea) and in mixed stands associating the two oak species or each oak species with another nonhost broadleaved species. We conducted two complementary studies to test the effect of host species and stand composition: (i) we used pheromone trapping to compare the number of males OPM captured throughout the distribution of oak hosts in France and (ii) we noted the presence of OPM nests and estimated defoliation in mature forests of north‐eastern France.
  3. Oak species and stand composition significantly influenced the number of male OPM captured and defoliation by OPM larvae. Quercus petraea was consistently more attractive to and more defoliated by OPM than Q. robur. Both oak trees were attacked more in pure stands than in mixed stands, in particular mixed stands associating oaks with another (nonhost) broadleaved species.
  4. The results of the present study support the view that mixed forests are more resistant to specialist pest insects than pure stands, and also indicate that this trend depends on forest composition. Our study provides new insights into OPM ecology and has potential implications for forest management, including the management of urban forests where OPM causes serious human health issues.
  相似文献   

8.
    
Insect olfactory orientation along odour plumes has been studied intensively with respect to pheromonal communication, whereas little knowledge is available on how plant odour plumes (POPs) affect olfactory searching by an insect for its host plants. The primary objective of this review is to examine the role of POPs in the attraction of insects. First, we consider parameters of an odour source and the environment which determine the size, shape and structure of an odour plume, and we apply that knowledge to POPs. Second, we compare characteristics of insect pheromonal plumes and POPs. We propose a ‘POP concept’ for the olfactory orientation of insects to plants. We suggest that: (i) an insect recognises a POP by means of plant volatile components that are encountered in concentrations higher than a threshold detection limit and that occur in a qualitative and quantitative blend indicating a resource; (ii) perception of the fine structure of a POP enables an insect to distinguish a POP from an unspecific odorous background and other interfering plumes; and (iii) an insect can follow several POPs to their sources, and may leave the track of one POP and switch to another one if this conveys a signal with higher reliability or indicates a more suitable resource. The POP concept proposed here may be a useful tool for research in olfactory‐mediated plant–insect interactions.  相似文献   

9.
    
Orius sauteri (Poppius) (Hemiptera: Anthocoridae) is often used for biological control of small arthropod pests in greenhouse vegetable production systems in Asia. In addition to feeding on arthropod prey, O. sauteri consumes small quantities of plant material. Previous studies demonstrated that tomato plant chemistry confers antixenosis resistance to phloem-feeding whiteflies, but the potential nontarget effects of phytochemicals on the beneficial predator O. sauteri are unknown. Comparison of O. sauteri confined to near-isogenic lines (NILs) of tomatoes producing high levels of flavonoids (NIL-purple hypocotyl; resistant to whiteflies) and low levels of flavonoids (NIL-green hypocotyl; susceptible to whiteflies) revealed that O. sauteri had reduced oviposition, nymphal survival, and development on resistant plants, even if they were also provided with prey that did not feed on the host plant. Moreover, O. sauteri showed a significant ovipositional preference in choice assays, laying significantly more eggs on susceptible than on resistant plants. Molecular gut content analysis using the specific chloroplast trnL gene from tomato confirmed that adult and immature O. sauteri feed on both resistant and susceptible genotypes, and feeding behavior assays revealed that resistance did not affect plant feeding or prey acceptance by O. sauteri adults. These results demonstrate a direct negative effect of phytochemicals on a nontarget beneficial species and indicate that resistance mediated by phytochemicals can affect organisms that do not solely feed on phloem sap. The results also indicate that the mode of action and the potential ecological effects of phytochemical-mediated resistance are broader than previously recognized.  相似文献   

10.
    
  • 1 The vine weevil Otiorhynchus sulcatus is a major pest of horticultural crops worldwide, with root‐feeding larvae causing most damage. Adult oviposition aboveground may therefore influence levels of damage as the larvae are relatively immobile after oviposition.
  • 2 The present study investigated feeding and oviposition behaviour on red raspberry Rubus idaeus using intact plants, ensuring that choices reflected the realistic differences in cultivar appearance and chemical composition. Previous studies investigating vine weevil feeding and oviposition on other crops have used excised plant material, which may inadvertently influence behaviour.
  • 3 Adult weevils significantly preferred to feed on particular cultivars in the choice experiment (e.g. Tulameen), although they consumed significantly more foliage (0.22–1.03 cm2/day) on different raspberry cultivars (e.g. Glen Moy, Glen Rosa and a wild accession) in no‐choice situations.
  • 4 In choice experiments, weevils tended to avoid laying eggs on some cultivars (e.g. Glen Moy and the wild accession). The number of eggs laid (1.91–4.32 eggs per day) did not, however, differ significantly between the cultivars in a no‐choice situation. Foliar nitrogen and magnesium concentrations were positively, although weakly, correlated with the total number of eggs laid.
  • 5 The present study highlights the importance of considering both choice and no‐choice tests when assessing crop susceptibility to attack because weevils may avoid feeding on certain cultivars (e.g. Glen Moy) when given a choice, although this would cause significant damage to such cultivars if they were grown in monoculture (i.e. when there is no alternative).
  相似文献   

11.
    
Herbivorous insects use highly specific volatiles or blends of volatiles characteristic to particular plant species to locate their host plants. Thus, data on olfactory preferences can be valuable in developing integrated pest management tools that deal with manipulation of pest insect behaviour. We examined host plant odour preferences of the tomato leafminer, Liriomyza bryoniae (Kaltenbach) (Diptera: Agromyzidae), which is an economically important agricultural pest widespread throughout Europe. The odour preferences of leafminers were tested in dependence of feeding experiences. We ranked host plant odours by their appeal to L. bryoniae based on two‐choice tests using a Y‐tube olfactometer with five host plants: tomato, Solanum lycopersicum Mill.; bittersweet, Solanum dulcamara L.; downy ground‐cherry, Physalis pubescens L. (all Solanaceae); white goosefoot, Chenopodium album L. (Chenopodiaceae); and dead nettle, Lamium album L. (Lamiaceae). The results imply that ranking of host plant odours by their attractiveness to L. bryoniae is complicated due to the influence of larval and adult feeding experiences. Without any feeding experience as an adult, L. bryoniae males showed a preference for the airflow with host plant odour vs. pure air, whereas females did not display a preference. Further tests revealed that adult feeding experience can alter the odour choice of L. bryoniae females. After feeding experience, females showed a preference for host plant odour vs. pure air. Feeding experience in the larval stage influenced the choice by adults of both sexes: for males as well as females reared on bittersweet the odour of that plant was the most attractive. Thus, host feeding experience both in larval and/or adult stage of polyphagous tomato leafminer L. bryoniae influences host plant odour preference by adults.  相似文献   

12.
    
Contextualizing evolutionary history and identifying genomic features of an insect that might contribute to its pest status is important in developing early detection and control tactics. In order to understand the evolution of pestiferousness, which we define as the accumulation of traits that contribute to an insect population's success in an agroecosystem, we tested the importance of known genomic properties associated with rapid adaptation in the Colorado potato beetle (CPB), Leptinotarsa decemlineata Say. Within the leaf beetle genus Leptinotarsa, only CPB, and a few populations therein, has risen to pest status on cultivated nightshades, Solanum. Using whole genomes from ten closely related Leptinotarsa species native to the United States, we reconstructed a high‐quality species tree and used this phylogenetic framework to assess evolutionary patterns in four genomic features of rapid adaptation: standing genetic variation, gene family expansion and contraction, transposable element abundance and location, and positive selection at protein‐coding genes. Throughout approximately 20 million years of history, Leptinotarsa species show little evidence of gene family turnover and transposable element variation. However, there is a clear pattern of CPB experiencing higher rates of positive selection on protein‐coding genes. We determine that these rates are associated with greater standing genetic variation due to larger effective population size, which supports the theory that the demographic history contributes to rates of protein evolution. Furthermore, we identify a suite of coding genes under positive selection that are putatively associated with pestiferousness in the Colorado potato beetle lineage. They are involved in the biological processes of xenobiotic detoxification, chemosensation and hormone function.  相似文献   

13.
    
Empirical and theoretical work has suggested that plants can change their compensatory responses to herbivory as they develop. However, such a relationship is likely to be more complex than previously thought since the amount and type of damage a plant receives can also change as the plant develops. Here, we determined the survival, growth, and reproductive output of plants (Actinocephalus polyanthus) from different ontogenetic stages that received variable levels of natural or simulated herbivore damage. Juvenile plants and non‐reproductive adults in which leaves were damaged showed full vegetative compensation, whereas pre‐reproductive plants were not able to replace the lost leaves. However, these same pre‐reproductive plants produced more inflorescences and thus more seeds and seedlings than control plants. In contrast, damage to vegetative and/or reproductive structures during the reproductive phase resulted in a negative effect on seed and seedling production. Herbivory effects on plant survival, growth, and reproduction during the vegetative and pre‐reproductive phases were independent of the amount of damage. However, during reproduction, the magnitude of these effects was strongly influenced by the amount of damage and the reproductive stage of the plant at the time of the damage. In short, our results demonstrate that the survival, growth, and reproductive responses to herbivory of A. polyanthus can be dependent on the timing and/or intensity of damage. The reproductive response of A. polyanthus to our simulated herbivory treatments during the pre‐reproductive phase represents an example of overcompensation. Furthermore, it indicates that vegetative regrowth is not necessarily a driving factor for tolerance.  相似文献   

14.
    
Herbivore‐induced plant volatiles (HIPVs) are important cues for female parasitic wasps to find hosts. Here, we investigated the possibility that HIPVs may also serve parasitoids as cues to locate mates. To test this, the odour preferences of four braconid wasps – the gregarious parasitoid Cotesia glomerata (L.) and the solitary parasitoids Cotesia marginiventris (Cresson), Microplitis rufiventris Kokujev and Microplitis mediator (Haliday) – were studied in olfactometers. Each species showed attraction to pheromones but in somewhat different ways. Males of the two Cotesia species were attracted to virgin females, whereas females of M. rufiventris were attracted to virgin males. Male and female M. mediator exhibited attraction to both sexes. Importantly, female and male wasps of all four species were strongly attracted by HIPVs, independent of mating status. In most cases, male wasps were also attracted to intact plants. The wasps preferred the combination of HIPVs and pheromones over plant odours alone, except M. mediator, which appears to mainly use HIPVs for mate location. We discuss the ecological contexts in which the combined use of pheromones and HIPVs by parasitoids can be expected. To our knowledge, this is the first study to show that braconid parasitoids use HIPVs and pheromones in combination to locate mates.  相似文献   

15.
16.
    
The role of wildland weeds that serve as alternate hosts for insect pests has not been directly examined for the potential to sustain pest populations or facilitate pest outbreaks. The development of weed biological control programmes is also complicated by weed species that are closely related to economically important or native plants, especially rare or special status species. In recent surveys in southern California, USA, we found a newly introduced insect pest of cole crops, Bagrada hilaris Burmeister (Bagrada bug), feeding on Brassicaceae weeds in riparian areas adjacent to agricultural fields where cole crops are routinely grown. Insect populations grew to levels well over action thresholds and caused severe damage to populations of the invasive weed, Lepidium latifolium (perennial pepperweed). The numerical response of B. hilaris on L. latifolium and other Brassicaceae weeds in natural areas may pose a significant challenge to effectively managing pest populations in crops. However, the accidental introduction of this insect provides the opportunity to examine plant–insect interactions with important implications for development of biologically based control methods for weeds.  相似文献   

17.
    
1. How herbivore plant diversity relationships are shaped by the interplay of biotic and abiotic environmental variables is only partly understood. For instance, plant diversity is commonly assumed to determine abundance and richness of associated specialist herbivores. However, this relationship can be altered when environmental variables such as temperature covary with plant diversity. 2. Using gall‐inducing arthropods as focal organisms, biotic and abiotic environmental variables were tested for their relevance to specialist herbivores and their relationship to host plants. In particular, the hypothesis that abundance and richness of gall‐inducing arthropods increase with plant richness was addressed. Additionally, the study asked whether communities of gall‐inducing arthropods match the communities of their host plants. 3. Neither abundance nor species richness of gall‐inducing arthropods was correlated with plant richness or any other of the tested environmental variables. Instead, the number of gall species found per plant decreased with plant richness. This indicates that processes of associational resistance may explain the specialised plant herbivore relationship in our study. 4. Community composition of gall‐inducing arthropods matched host plant communities. In specialised plant herbivore relationships, the presence of obligate host plant species is a prerequisite for the occurrence of its herbivores. 5. It is concluded that the abiotic environment may only play an indirect role in shaping specialist herbivore communities. Instead, the occurrence of specialist herbivore communities might be best explained by plant species composition. Thus, plant species identity should be considered when aiming to understand the processes that shape diversity patterns of specialist herbivores.  相似文献   

18.
If parasites decrease the fitness of their hosts one could expect selection for host traits (e.g. resistance and tolerance) that decrease the negative effects of parasitic infection. To study selection caused by parasitism, we used a novel study system: we grew host plants (Urtica dioica) that originated from previously parasitized and unparasitized natural populations (four of each) with or without a holoparasitic plant (Cuscuta europaea). Infectivity of the parasite (i.e. qualitative resistance of the host) did not differ between the two host types. Parasites grown with hosts from parasitized populations had lower performance than parasites grown with hosts from unparasitized populations, indicating host resistance in terms of parasite’s performance (i.e. quantitative resistance). However, our results suggest that the tolerance of parasitic infection was lower in hosts from parasitized populations compared with hosts from unparasitized populations as indicated by the lower above‐ground vegetative biomass of the infected host plants from previously parasitized populations.  相似文献   

19.
    
1. Leaves possess traits that mediate the preference and performance of herbivores. Most evidence for the importance of leaf traits as defences against herbivory comes from studies of few model plant species. 2. In a phylogenetically explicit comparison, I explain the differences in preference and performance of tussock moth (Orgyia vetusta Boisduval) larvae on leaves of 27 oak (Quercus) species using nine putative leaf defences. 3. The preference for an oak species correlated positively with the survival of caterpillars. The correlation between preference and performance did not differ between oak species native to the range of tussock moth versus those from outside the herbivore's range. 4. The first principal component of leaf traits predicted survival of caterpillars on oak leaves but only marginally predicted their preference between oak species. A multiple regression model showed that evergreenness, toughness, and condensed tannin content were the best predictors of caterpillar survival, and leaf toughness was the best predictor of host preference. 5. Generalist caterpillars may accurately assess the value of novel food sources. Moreover, many leaf traits that have been found to affect herbivory within a plant species can also be used to predict the fitness of a generalist herbivore between species.  相似文献   

20.
    
1. Abrasive material in the diet of herbivorous organisms comes from a variety of sources, including crystalline silica or calcium in plant tissues, accidentally ingested soil while digging or grazing, and entrapped substrate on the surfaces of plants. A wide variety of plants entrap substrate, usually with glandular trichomes. 2. A previous study demonstrated that entrapped sand provided resistance to herbivory in the field. In this study, the following questions were addressed: how does entrapped sand on Abronia latifolia (Nyctaginaceae) leaves and stems affect preference and performance of a common herbivore, the large‐bodied caterpillar Hyles lineata (Sphingidae); does this effect differ from those experienced by an internally feeding leaf miner? 3. Using a combination of experimental and observational approaches, it was found that sand comprised ~4–5% of ingested weight during normal feeding of H. lineata caterpillars. This entrapped sand caused extensive wear to their mandibles, they avoided sand‐covered plants when given the choice, and the sand negatively impacted performance metrics, including pupal weight, development time, and growth rate. In contrast, a leaf‐mining caterpillar did not have a preference for or against feeding on sandy plants. 4. These results are similar to studies on mandibular wear due to grasses, and herbivorous insects that feed on these two plant groups may have similar morphologies. It is hypothesised that increased wear potential may be a convergent solution to abrasive plants in both mammals (hypsodonty) and insects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号