首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Many semi-arid shrublands in the western US have experienced invasion by a suite of exotic grasses and forbs that have altered community structure and function. The effect of the exotic grasses in this area has been studied, but little is known about how exotic forbs influence the plant community. A 3-year experiment in southern California coastal sage scrub (CSS) now dominated by exotic grasses was done to investigate the influence of both exotic grasses (mainly Bromus spp.) and exotic forbs (mainly Erodium spp.) on a restoration seeding (9 species, including grasses, forbs, and shrubs). Experimental plots were weeded to remove one, both, or neither group of exotic species and seeded at a high rate with a mix of native species. Abundance of all species varied with precipitation levels, but seeded species established best when both groups of exotic species were removed. The removal of exotic grasses resulted in an increase in exotic and native forb cover, while removal of exotic forbs led to an increase in exotic grass cover and, at least in one year, a decrease in native forb cover. In former CSS now converted to exotic annual grassland, a competitive hierarchy between exotic grasses and forbs may prevent native forbs from more fully occupying the habitat when either group of exotics is removed. This apparent competitive hierarchy may interact with yearly variation in precipitation levels to limit restoration seedings of CSS/exotic grassland communities. Therefore, management of CSS and exotic grassland in southern California and similar areas must consider control of both exotic grasses and forbs when restoration is attempted.  相似文献   

2.
There is currently much interest in restoration ecology in identifying native vegetation that can decrease the invasibility by exotic species of environments undergoing restoration. However, uncertainty remains about restoration's ability to limit exotic species, particularly in deserts where facilitative interactions between plants are prevalent. Using candidate native species for restoration in the Mojave Desert of the southwestern U.S.A., we experimentally assembled a range of plant communities from early successional forbs to late‐successional shrubs and assessed which vegetation types reduced the establishment of the priority invasive annuals Bromus rubens (red brome) and Schismus spp. (Mediterranean grass) in control and N‐enriched soils. Compared to early successional grass and shrub and late‐successional shrub communities, an early forb community best resisted invasion, reducing exotic species biomass by 88% (N added) and 97% (no N added) relative to controls (no native plants). In native species monocultures, Sphaeralcea ambigua (desert globemallow), an early successional forb, was the least invasible, reducing exotic biomass by 91%. However, the least‐invaded vegetation types did not reduce soil N or P relative to other vegetation types nor was native plant cover linked to invasibility, suggesting that other traits influenced native‐exotic species interactions. This study provides experimental field evidence that native vegetation types exist that may reduce exotic grass establishment in the Mojave Desert, and that these candidates for restoration are not necessarily late‐successional communities. More generally, results indicate the importance of careful native species selection when exotic species invasions must be constrained for restoration to be successful.  相似文献   

3.
Preventing invasion by exotic species is one of the key goals of restoration, and community assembly theory provides testable predictions about native community attributes that will best resist invasion. For instance, resource availability and biotic interactions may represent “filters” that limit the success of potential invaders. Communities are predicted to resist invasion when they contain native species that are functionally similar to potential invaders; where phenology may be a key functional trait. Nutrient reduction is another common strategy for reducing invasion following native species restoration, because soil nitrogen (N) enrichment often facilitates invasion. Here, we focus on restoring the herbaceous community associated with coastal sage scrub vegetation in Southern California; these communities are often highly invaded, especially by exotic annual grasses that are notoriously challenging for restoration. We created experimental plant communities composed of the same 20 native species, but manipulated functional group abundance (according to growth form, phenology, and N‐fixation capacity) and soil N availability. We fertilized to increase N, and added carbon to reduce N via microbial N immobilization. We found that N reduction decreased exotic cover, and the most successful seed mix for reducing exotic abundance varied depending on the invader functional type. For instance, exotic annual grasses were least abundant when the native community was dominated by early active forbs, which matched the phenology of the exotic annual grasses. Our findings show that nutrient availability and the timing of biotic interactions are key filters that can be manipulated in restoration to prevent invasion and maximize native species recovery.  相似文献   

4.
Abstract Invasive species have potentially devastating effects on ecological communities and ecosystems. To understand the invasion process of exotic forest pests in South Korea, we reviewed four major species of exotic forest pests: the pine needle gall midge (Thecodiplosis japonensis), pine wilt disease caused by the pine wood nematode (Bursaphelenchus xylophilus), the fall webworm (Hyphantria cunea) and the black pine bast scale (Matsucoccus thunbergianae). We consider their biology, ecology, invasion history, dispersal patterns and related traits, and management as exotic species. Among these species, the dispersal process of fall webworm was linear, showing a constant range expansion as a function of time, whereas the other three species showed biphasic patterns, rapidly increasing dispersal speed after slow dispersal at the early invasion stage. Moreover, human activities accelerated their expansion, suggesting that prevention of the artificial movement of damaged trees would be useful to slow expansion of exotic species. We believe that this information would be useful to establish management strategies for invasion species.  相似文献   

5.
Previous studies of the invasion of two exotic plants – Berberis thunbergii and Microstegium vimineum – in hardwood forests of New Jersey have shown a significant increase of pH in soils under the invasive plants as compared with soils from under native shrubs (Vaccinium spp). We present a further investigation of soil properties under the exotic plants in question. We measured the densities of earthworms in the soil under the two exotics and the native shrubs in three parks in New Jersey. In the same populations we also measured the extractable ammonium and nitrate in the top 5 cm of the soil, as well as the respiration of the soils and the potential rates of mineralization (aerobic lab incubation). In addition, we measured the nitrate reductase activity in leaves of the two exotic plants and several native shrubs and trees. Although there were differences between parks, we observed significantly higher earthworm densities in the soil under the exotic species. The worms were all European species. Soil pH, available nitrate and net potential nitrification were significantly higher in soils under the two exotic species. In contrast, total soil C and N and net ammonification were significantly higher under native vegetation. Nitrate reductase activities were much higher in the leaves of exotic plants than in the leaves of native shrubs and trees. Changes in soil properties, especially the change in nitrogen cycling, associated with the invasion of these two plant species may permit the invasion of other weedy or exotic species. Our results also suggest that even if the two exotic species were removed, the restoration of the native flora might be inhibited by the high nitrate concentrations in the soil.  相似文献   

6.
Land managers require landscape-scale information on where exotic plant species have successfully established, to better guide research, control, and restoration efforts. We evaluated the vulnerability of various habitats to invasion by exotic plant species in a 100,000 ha area in the southeast corner of Grand Staircase-Escalante National Monument, Utah. For the 97 0.1-ha plots in 11 vegetation types, exotic species richness (log10) was strongly negatively correlated to the cover of cryptobiotic soil crusts (r = −0.47, P < 0.001), and positively correlated to native species richness (r = 0.22, P < 0.03), native species cover (r = 0.23, P < 0.05), and total nitrogen in the soil (r = 0.40, P < 0.001). Exotic species cover was strongly positively correlated to exotic species richness (r = 0.68, P < 0.001). Only 6 of 97 plots did not contain at least one exotic species. Exotic species richness was particularly high in locally rare, mesic vegetation types and nitrogen rich soils. Dry, upland plots (n = 51) had less than half of the exotic species richness and cover compared to plots (n = 45) in washes and lowland depressions that collect water intermittently. Plots dominated by trees had significantly greater native and exotic species richness compared to plots dominated by shrubs. For the 97 plots combined, 33% of the variance in exotic species richness could be explained by a positive relationship with total plant cover, and negative relationships with the cover of cryptobiotic crusts and bare ground. There are several reasons for concern: (1) Exotic plant species are invading hot spots of native plant diversity and rare/unique habitats. (2) The foliar cover of exotic species was greatest in habitats that had been invaded by several exotic species.(3) Continued disturbance of fragile cryptobiotic crusts by livestock, people, and vehicles may facilitate the further invasion of exotic plant species. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

7.
8.
When landscapes are heavily impacted by biological invasion, local populations of native plant species may no longer be adapted to altered environmental conditions. In these cases, it is useful to investigate alternative sources of germplasm, such as cultivated varieties, for planting at restoration sites. This study compared cultivated and wild (local) varieties of the native perennial bunchgrass, Poa secunda J. Presl, grown with and without the exotic, invasive Bromus tectorum L. in a greenhouse setting. While P. secunda cultivars emerged and grew more rapidly than wild seed sources, this advantage declined in the presence of B. tectorum and cultivated germplasm did not outperform wild accessions in the presence of an invasive species. Given the novel genetic background of cultivars and their potential to alter patterns of dominance in native plant communities, we recommend the use of local or regional wild seed sources when possible to conserve regional patterns of genetic diversity and adaptation. Use of multiple seed sources may increase the potential for capturing vigorous genotypes in the restoration seed mix. In cases where sites are heavily impacted by exotic, invasive species, other control measures will be necessary to improve establishment of native species in grassland restoration programs.  相似文献   

9.
10.
Forest restoration uses active management to re-establish natural forest habitat after disturbance. However, competition from early successional species, often aggressively invasive exotic plant species, can inhibit tree establishment and forest regeneration. Ideally, restoration ecologists can plant native tree species that not only establish and grow rapidly, but also suppress exotic competitors. Allelopathy may be a key mechanism by which some native trees could reduce the abundance and impact of exotic species. Allelopathy is a recognized tool for weed management in agriculture and agroforestry, but few studies have considered how allelopathic interactions may aid restoration. Here we introduce the “Homeland Security” hypothesis, which posits that some naïve exotic species may be particularly sensitive to allelochemicals produced by native species, providing a tool to reduce the growth and impacts of invasive exotic species on reforestation. This article explores how exploiting allelopathy in native species could improve restoration success and the re-establishment of natural successional dynamics. We review the evidence for allelopathy in agroforestry systems, and consider its relevance for reforestation. We then illustrate the potential for this approach with a case study of tropical forest restoration in Panama. C4 grasses heavily invade deforested areas in the Panama Canal watershed, especially Saccharum spontaneum L. We measured the effect of leaf litter from 17 potential restoration tree species on the growth of invasive C4 grasses. We found that leaf litter from legume trees had a greater inhibitory effect on performance of S. spontaneum than did litter from non-legume trees. However, allelopathic effects varied greatly among species within tree functional groups. Further evaluation of intra- and inter-specific interactions will help to improve our selection of restoration species.  相似文献   

11.
Although invasion of exotic ambrosia beetles (fungus feeders) and bark beetles (phloem feeders) (Coleoptera: Curculionidae: Scolytinae) is considered a major threat to forest health worldwide, no studies have quantitatively investigated the anthropogenic and environmental factors shaping the biogeographical patterns of invasion by these insects across large spatial scales. The primary aim of this study was to assess the relative importance of international trade and several environmental variables of the recipient region on species richness of established exotic Scolytinae. As a reference, we also evaluated the relationships between the same environmental variables and species richness of native Scolytinae. Using an information-theoretic framework for model selection and hierarchical partitioning, we evaluated the relative importance of the potential drivers of species richness of native and exotic Scolytinae in 20 European countries and the 48 contiguous continental US states. Analyses were conducted separately for ambrosia and bark beetle species. Value of imports was a strong predictor of the number of exotic Scolytinae species in both regions. In addition, in the USA, warmer and wetter climate was positively linked to increased numbers of both native and exotic ambrosia beetles. Forest heterogeneity and climatic heterogeneity and secondarily forest area were key drivers in explaining patterns of species richness for native bark beetles but not for exotic species in both regions. Our findings suggest that if current infestation levels continue on imported plants and wood packaging material, increasing international trade will likely lead to more establishments of exotic Scolytinae with concomitant negative effects on forest health in both Europe and the USA. Compared to Europe the risk of invasion appears higher in the USA, especially for ambrosia beetles in the southeastern USA where the climate appears highly suitable for exotic establishment.  相似文献   

12.
A cost‐effective approach in plant restorations could be to increase sowing density for species known to be challenging to establish, while reducing sowing density for species that easily colonize on their own. Sowing need not occur evenly across the site for rapidly dispersing species. We explored these issues using a prairie restoration experiment on a high‐school campus with three treatments: plots sown only to grasses (G plots), to grasses and forbs (GF1), and to grasses and forbs with forbs sown at twice the density (GF2). In year 2, GF1 and GF2 plots had higher diversity than G plots, as expected, but GF2 treatments did not have twice the sown forb cover. However, high forb sowing density increased forb richness, probably by reducing stochastic factors in establishment. Cover of nonsown species was highest in G plots and lowest in GF2 plots, suggesting suppressive effects of native forbs on weedy species. Colonization of G plots by two sown forbs (Coreopsis tinctoria and Rudbeckia hirta) was apparent after 2.5 years, providing evidence that these species are self‐sustaining. Colonization was greater in edges than in the central areas of G plots. Through construction of establishment kernels, we infer that the mean establishment distance was shorter for R. hirta (6.7 m) compared to C. tinctoria (21.1 m). Our results lead us to advocate for restoration practices that consider not only seed sowing but also subsequent dispersal of sown species. Furthermore, we conclude that restoration research is particularly amenable for outdoor education and university‐high school collaborations.  相似文献   

13.
Exotic species have become increasingly significant management problems in parks and reserves and frequently complicate restoration projects. At the same time there may be circumstances in which their removal may have unforeseen negative consequences or their use in restoration is desirable. We review the types of effects exotic species may have that are important during restoration and suggest research that could increase our ability to set realistic management goals. Their control and use may be controversial; therefore we advocate consideration of exotic species in the greater context of community structure and succession and emphasize areas where ecological research could bring insight to management dilemmas surrounding exotic species and restoration. For example, an understanding of the potential transience of exotics in a site and the role particular exotics might play in changing processes that influence the course of succession is essential to setting removal priorities and realistic management goals. Likewise, a greater understanding of the ecological role of introduced species might help to reduce controversy surrounding their purposeful use in restoration. Here we link generalizations emerging from the invasion ecology literature with practical restoration concerns, including circumstances when it is practical to use exotic species in restoration.  相似文献   

14.
Habitat disturbance, particularly of human origin, promotes the invasion of exotic plants, which in turn might foster the invasion of alien-interacting animals. Here we assess whether the invasion of exotic plants – mostly mediated by habitat disturbance – facilitates the invasion of exotic flower visitors in temperate forests of the southern Andes, Argentina. We recorded visit frequencies and the identity of visitors to the flowers of 15 native and 15 exotic plant species occurring in different highly disturbed and less disturbed habitats. We identified three alien flower visitors, the hymenopterans Apis mellifera, Bombus ruderatus, and Vespula germanica. We found significantly more visitation by exotic insects in disturbed habitats. This pattern was explained, at least in part, by the association between alien flower visitors and flowers of exotic plants, which occurred more frequently in disturbed habitats. However, this general pattern masked different responses between the two main alien flower visitors. Apis mellifera exploited almost exclusively the flowers of a subset of herbaceous exotic plants that thrive under disturbance, whereas B. ruderatus visited equally flowers of both exotic and native plants in both disturbed and undisturbed habitats. We did not find any strong evidence that flowers of exotic plants were more generalist than those of native plants, or that exotic flower visitors were more generalist than their native counterparts. Our results suggest that alien plant species could facilitate the invasion of at least some exotic flower visitors to disturbed habitats. Because flowering plants as well as flower visitors benefit from this mutualism, this association may enhance, through a positive feedback, successful establishment of both exotic partners.  相似文献   

15.
The invasion of European perennial grasses represents a new threat to the native coastal prairie of northern California. Many coastal prairie sites also experience anthropogenic nitrogen (N) deposition or increased N availability as a result of invasion by N-fixing shrubs. We tested the hypothesis that greater seedling competitive ability and greater responsiveness to high N availability of exotic perennial grasses facilitates their invasion in coastal prairie. We evaluated pairwise competitive responses and effects, and the occurrence of asymmetrical competition, among three common native perennial grasses (Agrostis oregonensis, Festuca rubra, and Nassella pulchra) and three exotic perennial grasses (Holcus lanatus, Phalaris aquatica, and Festuca arundinacea), at two levels of soil N. We also compared the root and shoot biomass and response to fertilization of singly-grown plants, so we could evaluate how performance in competition related to innate plant traits. Competitive effects and responses were negatively correlated and in general varied continuously across native and exotic species. Two exceptions were the exotic species Holcus, which had large effects on neighbors and small responses to them, and competed asymmetrically with all other species in the experiment, and the native grass Nassella, which had strong responses to but little effect on neighbors, and was out-competed by all but one other species in the experiment. High allocation to roots and high early relative growth rate appear to explain Holcus’s competitive dominance, but its shoot biomass when grown alone was not significantly greater than those of the species it out-competed. Competitive dynamics were unaffected by fertilization. Therefore, we conclude that seedling competitive ability alone does not explain the increasing dominance of exotic perennial grasses in California coastal prairie. Furthermore, since native and exotic species responded individualistically, grouping species as ‘natives’ and ‘exotics’ obscured underlying variation within the two categories. Finally, elevated soil N does not appear to influence competition among the native and exotic perennial grasses studied, so reducing soil N pools may not be a critical step for the restoration of California coastal prairie.  相似文献   

16.
Understanding processes that underlie ecological resistance to weed invasion is critical for sustainable restoration of invaded plant communities. Experimental studies have demonstrated that invasive nitrophilic annuals can be controlled by addition of carbon to reduce soil nitrate concentrations, sometimes leading to enhanced establishment of native plants. However, effects of carbon supplements on soil nitrate are temporary, and the longer-term value of carbon supplementation as a restoration tool is dependent on the resistance of the re-established ecosystem to repeat invasion. We investigated whether re-established swards of the tussock grass Themeda australis (R.Br.) Stapf (a natural understorey dominant in mesic grassy woodlands of SE Australia) could suppress soil nitrate concentrations, and through this or other means, could impart ongoing resistance to exotic invasion in restored woodlands. In a remnant invaded by exotic annuals, we applied three plot treatments (carbon supplements, annual spring burns and untreated control) and two seed treatments (± Themeda seed) in a replicated, factorial design. Within 3 years, successful establishment of Themeda swards on burnt and carbon-supplemented plots was associated with a reduction in soil nitrate to levels comparable with non-invaded, Themeda-dominated reference sites in the region (<3 mg/kg), and significantly reduced exotic cover compared with unseeded plots. By contrast, on plots not seeded with Themeda, soil nitrate increased after cessation of carbon addition and exotic cover returned to levels comparable with untreated control plots, despite a high cover of other native perennial grasses. Few persistent effects of carbon supplements or spring burning on soil nutrients were evident 9–19 months after cessation of these treatments. Results suggest that Themeda is a keystone species that regulates nitrate cycling, thereby imparting ecological resistance to invasion by nitrophilic annuals.  相似文献   

17.
Abstract How interactions between exotic species affect invasion impact is a fundamental issue on both theoretical and applied grounds. Exotics can facilitate establishment and invasion of other exotics (invasional meltdown) or they can restrict them by re‐establishing natural population control (as predicted by the enemy‐release hypothesis). We studied forest invasion on an Argentinean island where 43 species of Pinaceae, including 60% of the world's recorded invasive Pinaceae, were introduced c. 1920 but where few species are colonizing pristine areas. In this area two species of Palearctic deer, natural enemies of most Pinaceae, were introduced 80 years ago. Expecting deer to help to control the exotics, we conducted a cafeteria experiment to assess deer preferences among the two dominant native species (a conifer, Austrocedrus chilensis, and a broadleaf, Nothofagus dombeyi) and two widely introduced exotic tree species (Pseudotsuga menziesii and Pinus ponderosa). Deer browsed much more intensively on native species than on exotic conifers, in terms of number of individuals attacked and degree of browsing. Deer preference for natives could potentially facilitate invasion by exotic pines. However, we hypothesize that the low rates of invasion currently observed can result at least partly from high densities of exotic deer, which, despite their preference for natives, can prevent establishment of both native and exotic trees. Other factors, not mutually exclusive, could produce the observed pattern. Our results underscore the difficulty of predicting how one introduced species will effect impact of another one.  相似文献   

18.
Restoration of plant communities can be hindered by the legacy of previously established invaders, despite their physical removal from the community. Current evidence, mainly built on short‐term greenhouse experiments, suggests that Sericea lespedeza (Lespedeza cuneata) invasion not only suppresses native plant species, but also alters soil conditions in host communities. As a result, L. cuneata may create a soil legacy that impedes plant community restoration. We examined the response of a Kansas grassland following L. cuneata removal to determine if historical L. cuneata abundance affected (1) plant community composition and (2) the establishment of additional native species. To address these questions, L. cuneata seeds were sown into 300 plots at a wide range of densities under different combinations of simulated disturbance and soil fertilization. After a three‐year establishment period, L. cuneata was removed from the community, and 13 native forb species were sown into all plots. Over 4 years, we found little evidence for a soil legacy effect that influenced community response post‐removal. Although there was a detectable relationship between community composition and L. cuneata, the variation explained by this relationship was very low. Similarly, the establishment of sown native species was unrelated to the historical abundance of L. cuneata. These results indicate that, regardless of initial density, L. cuneata does not impede plant community recovery in this system if effectively controlled within the first 3 years of invasion, and legacy effects inferred from greenhouse experiments may not translate to impacts on the plant community in the field.  相似文献   

19.
While several recent studies have described changes in microbial communities associated with exotic plant invasion, how arbuscular mycorrhizal fungi (AMF) communities respond to exotic plant invasion is not well known, despite the salient role of this group in plant interactions. Here, we use molecular methods (terminal restriction fragment length polymorphism analyses based on the large subunit of the rRNA gene) to examine AMF community structure in sites dominated by the invasive mycorrhizal forb, Centaurea maculosa Lam. (spotted knapweed), and in adjacent native grassland sites. Our results indicate that significant AMF community alteration occurs following C. maculosa invasion. Moreover, a significant reduction in the number of restriction fragment sizes was found for samples collected in C. maculosa-dominated areas, suggesting reduced AMF diversity. Extraradical hyphal lengths exhibited a significant, on average 24%, reduction in C. maculosa-versus native grass-dominated sites. As both AMF community composition and abundance were altered by C.maculosa invasion, these data are strongly suggestive of potential impacts on AMF-mediated ecosystem processes. Given that the composition of AMF communities has the potential to differentially influence different plant species, our results may have important implications for site restoration after weed invasion.  相似文献   

20.
In highly invaded ecosystems, restoration of native plant communities is dependent upon reducing exotic species relative to native species. Even so, in monitoring, the native–exotic species richness ratio has been shown to be scale‐dependent. Measurement at small spatial scales (<1 m2) can reveal a negative native–exotic richness relationship, where niche occupation may prevent invasion. Conversely, at larger scales, a positive correlation may exist, where environmental heterogeneity and equally favorable conditions may drive native–exotic relationships. Here, we compare slopes of native–exotic relationships across spatial scales in a prairie undergoing active restoration. The observed native–exotic richness ratios varied considerably over scales ranging from 1 to 1,000 m2, emphasizing the importance of choosing a measurement scale that is most pertinent to the treatment and ecological mechanism used to evaluate restoration success. Our native–exotic richness slopes were positive over all scales, but lower than would be expected in a random community assembly, suggesting the influence of niche‐based competition. Correspondingly, our native–exotic cover slope was more negative than a null model; however, areas of frequent fire treatments showed a significant deviation from null only for richness, indicating that burning may enhance native–exotic competitive dynamics for number of species but not cover. The negative native–exotic cover relationships appear to be driven in this system mainly by exotic graminoids, across burn treatments and native functional groups, supporting the concept that frequent burning can alter the dominant competitive mechanism from coverage of these exotic grasses to an improved environment for germination and dispersal of more native species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号