首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-α-L-talofuranoside (6) with sodium nitrite in 90% acetic acid at ≈0° gave methyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (8a) and methyl 6-deoxy-2,3-O-isopropylidene-β-D-allofuranoside (9a) (combined yield, 12.3%), the corresponding 5-acetates 8b (2.9%) and 9b (26.4%), and the unsaturated sugar methyl 5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-enofuranoside (10) (43.5%). Similar deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-β-D-allofuranoside (7) gave 8a and 9a (combined yield, 20.4%), 8b (12.5%), 9b (25.8%), 10 (7.7%), and the rearranged products 6-deoxy-2,3-O-isopropylidene-5-O-methyl-L-talofuranose (13a, 17.5%) and the corresponding 1-acetate 13b (14.1%). A synthesis of 13a was accomplished by successive methylation and debenzylation of the conveniently prepared benzyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (15b). Differences between the two sets of deamination products can be rationalized by assuming that the carbonium-ion intermediate reacts in the initial conformation assumed, before significant interconversion to other conformations occurs.  相似文献   

2.
6-Deoxy-2,3,5-tri-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosyl bromide (6 and 11) have been synthesized from methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (1). Treatment of 1 with methyl Grignard reagent, followed by (p-nitrobenzoyl)ation, afforded two 5-epimers, methyl 6-deoxy-2,3-O-isopropylidene-5-O-(p-nitrobenzoyl)-β-d-allo- and -α-l-talo-furanosides (3 and 8) which were fractionally recrystallized. The l-talo isomer (8) separated first, and was treated with acid to remove the isopropylidene group, the product (p-nitrobenzoyl)ated, and the ester reacted with hydrogen bromide in acetic acid, to afford crystalline compound 11. The mother liquor from the fractional recrystallization was treated with acid, whereby methyl 6-deoxy-5-O-p-nitrobenzoyl)-d-allofuranoside was isolated. It was (p-nitrobenzoyl)ated, and the ester treated with hydrogen bromide in acetic acid, to afford crystalline bromide 6.  相似文献   

3.
Adenosine-5′-carboxaldehyde (1a) was treated with nitromethane under alkaline conditions, to give the two stereoisomeric 5′-C-(nitromethyl) derivatives (2 and 3) of adenosine. Catalytic hydrogenation of 2 gave 9-(6-amino-6-deoxy-β-D-allofuranosyl)adenine (4), which, on treatment with nitrous acid, yielded 9-(β-D-allofuranosyl)hypoxanthine (6). Similar treatment of 3 gave the α-L-talo nucleosides 5 and 7. Reaction of 2′,3′-O-p-anisylidene adenosine-5′-carboxaldehyde (1b) with ethoxycarbonylmethylene-triphenylphosphorane afforded 9-(ethyl 5,6-dideoxy-β-D- ribo-hept-5-enofuranosyluronate)adenine (8), which was hydrolyzed to the corresponding uronic acid (9). Catalytic hydrogenation of 8 gave 9-(ethyl 5,6-dideoxy-β-D-ribo-heptofuranosyluronate)adenine (10). Reduction of 8 with lithium aluminum hydride yielded two new analogs of adenosine: 9-(5,6-dideoxy-β-D-ribo-heptofuranosyl)adenine (12) and 9-(5,6-dideoxy-β-D-ribo-hept-5-enofuranosyl)adenine (13).  相似文献   

4.
Various 1-nitroalkanes reacted with methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside to yield methyl 6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-β-d-ribofuranosides in 64–79% yield. Similarly, nitromethane and 1-nitropentane reacted with N6-benzoyl-2′,3′-O-isopropylideneadenosine-5′-aldehyde, to yield the corresponding 9-[6-alkyl-6-deoxy-2,3-O-isopropylidene-6-nitro-α-l-talo(β-d-allo)furanosyl]-N6-benzoyladenines in 74 and 44% yield, respectively. The potential utility of this nitroalkane addition for the synthesis of nucleosides having a C-5′C-6′ bond is discussed.  相似文献   

5.
Reinvestigation of the reaction of methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-α-d-lyxopyranoside (4) with azide ion has shown that methyl 4-deoxy-2,3-O-isopropylidene-β-l-erythro-pent-4-enopyranoside (8, ~51.5%) is formed, as well as the azido sugar 7 (~48.5%) of an SN2 displacement. The unsaturated sugar 8 was more conveniently prepared by heating the sulphonate 4 with 1,5-diazabicyclo-[5.4.0]undec-5-ene. An azide displacement on methyl 2,3-O-isopropylidene-4-O-toluene-p-sulphonyl-β-l-ribopyranoside (12) furnished methyl 4-azido-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (13, ~66%) and the unsaturated sugar 14 (~28.5%), which was also prepared by heating the sulphonate with 1,5-diazabicyclo[5.4.0]undec-5-ene. Deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-α-d-lyxopyranoside (5), prepared by reduction of 13, with sodium nitrite in 90% acetic acid at ~0°, yielded methyl 2,3-O-isopropylidene-α-d-lyxopyranoside (10a, 26.2%), methyl 2,3-O-isopropylidene-β-l-ribofuranoside (21a, 18.4%), and the corresponding acetates 10b (34.5%) and 21b (21.3%). These products are considered to arise by solvolysis of the bicyclic oxonium ion 29, formed as a consequence of participation by the ring-oxygen atom in the deamination reaction. Similar deamination of methyl 4-amino-4-deoxy-2,3-O-isopropylidene-β-l-ribopyranoside (6) afforded, exclusively, the products 10a (34.4%) and 10b (65.6%) of inverted configuration. Deamination of methyl 5-amino-5-deoxy-2,3-O-isopropylidene-β-d-ribofuranoside (20) gave 22ab, but no other products. An alternative synthesis of the amino sugars 5 and 6 is available by conversion of 10a into methyl 2,3-O-isopropylidene-β-l-erythro-pentopyranosid-4-ulose (11), followed by reduction of the derived oxime 15 with lithium aluminium hydride.  相似文献   

6.
Four aldohexoses were individually subjected to the reagent mixture and temperature cited in the title; in each case, the 2,2-dimethoxypropane was present in only a small molar excess and the p-toluenesulfonic acid was used in trace amounts. D-Mannose (1) afforded the known 2,3:5,6-di-O-isopropylidene-D-mannofuranose (2) in significantly higher yield than when the reaction was conducted at room temperature. The other three aldoses, however, gave products markedly different from those formed under the milder conditions. 2-Acetamido-2-deoxy-D-mannose (3) gave a mixture of products from which methyl 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-α-D-mannofuranoside (4), 2-acetamido-2-deoxy-2,3-N,O-isopropylidene-5,6-O-isopropylidene-D-mannofuranose (5a), and methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-α-D-mannofuranoside (6a) were isolated. 2-Acetamido-2-deoxy-D-galactose (11) gave compounds identified as methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-galactofuranoside (12a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-galactopyranoside (13a). 2-Acetamido-2-deoxy-D-glucose (16) afforded methyl 2-acetamido-2-deoxy-5,6-O-isopropylidene-β-D-glucofuranoside (17a) and methyl 2-acetamido-2-deoxy-4,6-O-isopropylidene-β-D-glucopyranoside (18a). Evidence in support of the structures assigned to these new derivatives is presented.  相似文献   

7.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

8.
Ethyl 6-O-benzyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranoside (2) was converted, in three steps and in 73% overall yield, into ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-ribo-hex-2-enopyranoside. This transformation involved silylation of 2 with (bromomethyl)chlorodimethylsilane and application of the Nishiyama-Stork radical cyclisation, followed by Tamao oxidation of the sila cycle. Ethyl 6-O-benzyl-2,3-dideoxy-α-d-threo-hex-2-enopyranoside and benzyl 2,6-di-O-benzyl-α-l-threo-hex-4-enopyranoside were similarly transformed into, respectively, ethyl 6-O-benzyl-2,3-dideoxy-3-C-(hydroxymethyl)-α-d-lyxo-hex-2-enopyranoside (50%), and benzyl 2,6-di-O-benzyl-4-deoxy-4-C-(hydroxymethyl)-β-d-galactopyranoside (71%).  相似文献   

9.
A 5-stage synthesis of the title compound (11), the first example of a secondary deoxyfluoroketose, is described. The synthesis comprised the following reaction sequence: D-fructose→1,2:4,5-di-O-isopropylidene-β-D-fructopyranose (4)→1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-fructopyranose (3)→ 3,4-anhydro-1,2-O-isopropylidene-β-D-ribo-hexulopyranose (9)→4-deoxy-fluoro-1,2-O-isopropylidene-β-D-xylo-hexulopyranose (11). Fluoride displacement at C-4 in 9 was effected with tetrabutyl-ammonium fluoride in methyl cyanide. Similar treatment of either 3 or 1,2:4,5-di-O-isopropylidene-3-O-tosyl-β-D-ribo-hexulopyranose (5) failed to yield a fluoro derivative. Compound 5 was prepared by the sequence 4→1,2:4,5-di-O-isopropylidene-β-D-erythro-hexo-2,3-diulopyranose (6)→1,2:4,5-di-O-isopropylidene-β-D-ribo-hexulopyranose (7)→5.  相似文献   

10.
Nucleophilic Michael-type additions to aldohexofuranoid 3-C-methylene derivatives, namely, 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-nitromethylene-α-d-ribo-hexofuranose and 3-C-[cyano(ethoxycarbonyl)methylene]-3-deoxy-1,2:5,6-di-O-isopropylidene-α-d-ribo-hexofuranose employing phase-transfer catalysis, afforded novel gem-di-C-substituted sugars. The conversion of 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl-α-d-allo-hexofuranose into a 3-C-hydroxymethyl-3-C-methyl derivative with titanium trichloride, and that of the nitromethyl groups of 3-deoxy-1,2:5,6-di-O-isopropylidene-3,3-di-C-nitromethyl-α-d-ribo-hexofuranose, and 3-deoxy-1,2:5,6-di-O-isopropylidene-3-C-methyl-3-C-nitromethyl- and -3-C-nitromethyl-α-d-allo-hexofuranose into cyano groups with phosphorus trichloride in pyridine is also described.  相似文献   

11.
3,5-Di-O-acetyl-6,7-dideoxy-1,2-O-isopropylidene-β-L-ido- and α-d-gluco-hept-6-ynofuranose were separately deacetonated, and the products acetylated, to give the 1,2,3,5-tetra-O-acetyl analogs (2 and 6). Fusion of compounds 2 and 6 with 2,6-dichloropurine under acid catalysis produced 2,6-dichloro-9-(2,3,5-tri-O-acetyl-6,7-dideoxy-α-L-ido-hept-6-ynofuranosyl)-9H-purine (3) and its β-d-gluco analog 7, respectively. Methanolic ammonia converted 3 in good yield into 2-chloro-9-(6,7-dideoxy-α-L-ido-hept-6-ynofuranosyl)-6-methoxy-9H-purine. Treatment of compound 3 with mesityl nitrile oxide gave a “double-headed nucleoside” analog. Upon treatment with phenyl azide, the d-gluco derivative 7 produced another “double-headed nucleoside”. Fusion of 2 and 6 with p-nitrophenol yielded the respective p-nitrophenyl glycosides. The stereochemistry and regiospecificity of the reactions were verified spectroscopically.  相似文献   

12.
Oxidative dimerization of 7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranoside (1) gave a high yield of the diyne 2, readily reduced by lithium aluminum hydride to the trans,trans-diene (4). The structures of 2 and 4 were established spectroscopically and by degradation of 4 to d-glycero-d-galacto-heptitol (perscitol). A mixture of the alkyne 1 and its 7-epimer 10 was readily oxidized by dimethyl sulfoxide-acetic anhydride to the 6-ketone 11, and the 8-alkene analog was similarly prepared from the alkenes derived from 1 and 10. Likewise, oxidation of 6,7-dideoxy-1,2-O-isopropylidene-α-d-gluco(and β-L-ido)-hept-6-enopyranose gave the corresponding 5-ketone. The acetylenic ketone 11 gave a crystalline oxime and (2,4-dinitrophenyl)hydrazone, the latter being accompanied by the product of attack of the reagent at the acetylene terminus (C-8). Previous work had shown that formyl-methylenetriphenylphosphorane did not convert 1,2:3,4-di-O-isopropylidene-6-aldehydo-α-d-galacto-hexodialdo-1,5-pyranose into the corresponding C8 unsaturated aldehyde, although the latter was obtainable via1 and 10 by an ethynylation-hydroboration sequence. The Wittig route with formylmethylenetriphenylphosphorane is shown to be satisfactory for obtaining C7 unsaturated aldehydes from 3-O-benzyl-1,2-O-isopropylidene-5-aldehydo-α-d-xylo-pentodialdo-1,4-furanose (22) and the 3-epimer of 22, respectively. These reactions provide convenient access to higher-carbon sugars and chiral dienes for synthesis of optically pure products of cyclo-addition reactions.  相似文献   

13.
《Carbohydrate research》1987,166(2):211-217
6-O-Benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-oct-7-ynopyranose reacted with tributyltin hydride to afford (Z-6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-8-(tributylstannyl)-l-glycero-α-d-galacto-oct-7-enopyranose, which was subsequently isomerized to the E-olefin 4. Replacement of the tributyltin moietey with lithium in 4 afforded the vinyl anion which reacted with 3-O-benzyl-1,2-O-isopropylidene-α-d-xylo-pentodialdo-1,4-furanose, furnishing 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto-heptopyranos-7-ylidene] -60-deoxy-1,2-O-isopropylidene-α-d-gluco- (6) and -β-l-ido-furanose (7) in yields of ∼70 or ∼87% (depending on the temperature of the reaction). The configurations of the new chiral centers in 6 and 7 were determined by their conversion into 3-O-benzyl-1,2-O-isopropylidene-α-d-gluco- and -β-l-ido-furanose, respectively. Oxidation of 6 and 7 gave the same enone, 3-O-benzyl-6-C-[(E)-6-O-benzyl-7-deoxy-1,2:3,4-di-O-isopropylidene-l-glycero-α-d-galacto- heoptopyranos-7-ylidene]-6-deoxy-1,2-O-isopropylidene-α-d-xylo-hexofuranos-5-ulose.  相似文献   

14.
The products (1) from the periodate oxidation of 1,2-O-isopropylidene-α-D-glucofuranose were converted by ethynylmagnesium bromide into a separable, 14:11 mixture of 6,7-dideoxy-1.2-O-isopropylidene-β-L-ido-hept-6-ynofuranose (2) and its α-D-gluco analog 3. These crystalline products were further characterized as their respective 3,5-diacetates (5 and 7) and 3,5-dibenzoates (4 and 6). Ozonolysis of 2 and 3 led to 1,2-O-isopropylidene-β-L-idofuranurono-6,3-lactone (8) and its α-D-gluco analog 9, respectively; similar ozonolysis of the dibenzoates 4 and 6, followed by treatment with diazomethane, gave methyl 3,5-di-O-benzoyl-1,2-O-isopropylidene-α-L-idofuranuronate (10) and its α-D-gluco analog 11, respectively. Diborane reduction of the ozonolysis products from 4 gave 1,2-O-isopropylidene-β-L-idofuranose (13) as its 3,5-dibenzoate (12), and a similar sequence was performed with 6. The propargylic alcohols 2 and 3 were reduced by lithium aluminum hydride, in high yield, to the allylic alcohol analogs 15 and 16, further characterized as their 3,5-dibenzoates 17 and 18; compounds 15 and 16 were also obtainable by vinylation of compounds 1. The two series of derivatives in this work, epimeric at C-5, were examined comparatively by polarimetry and p.m.r. spectroscopy.  相似文献   

15.
Methyl 4,6-O-benzylidene-2-deoxy-3-C-methyl-α-d-arabino-hexopyranoside (4) was prepared from methyl 4,6-O-benzylidene-2,3-dideoxy-3-C-methylene-α-d-erythro-hexopyranoside (1b) and from methyl 4,6-O-benzylidetic-3 C-methyl-α-d-gluco-hexopyranoside (6a) by two different methods. Synthesis of d-evermicose3 (10 (2,6-dideoxy-3-C-methyl-d-arabino-hexose) was then achieved in four steps from 4.  相似文献   

16.
5-Deoxy-1,2-O-isopropylidene-5-C-(methoxyphenylphosphinyl)-3-O-methyl-α-d-ribofuranose (4) was prepared from 1,2-O-isopropylidene-3-O-methyl-α-d-ribo-pentodialdo-1,4-furanose by an addition reaction with methyl phenylphosphinate, followed by deoxygenation of the terminal HOCHP group of the adduct by successive reaction with 1,1′-thiocarbonyldiimidazole and tributyltin hydride. Treatment of 4 with sodium dihydrobis(2-methoxyethoxy)aluminate, followed by deacetonation with mineral acid, and acetylation with acetic anhydride—pyridine, gave mainly the two title compounds, which were isolated by column chromatography on silica gel, and characterized by 90-MHz, 1H-n.m.r.-spectral analysis.  相似文献   

17.
The synthesis is described of 3-amino-2,3-dideoxy-l-arabino-hexose (10), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (17), methyl 3-amino-2,3-dideoxy-α-l-ribo-hexopyranoside (21), methyl 2,3-dideoxy-3-trifluoroacetamido-α-l-xylo-hexopyranoside (26), and certain derivatives from methyl 4,6-O-benzylidene-2-deoxy-α-l-arabino-hexopyranoside (3). Conversion of 2-deoxy-l-arabino-hexose into 3 by modified, standard procedures, and on a large scale, gave a 75% yield.  相似文献   

18.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

19.
Hydroxylation of trans-1,3,4-trideoxy-5,6-O-isopropylidene-3-C-methyl-d-glycero-hex-3-enulose with osmium tetraoxide gave a mixture of 1-deoxy-5,6-O-isopropylidene-3-C-methyl-d-arabino- and -d-xylo-hexulose that was partially resolved by acetonation to give 1-deoxy-2,3:4,5-di-O-isopropylidene-3-C-methyl-β-d-fructopyranose (4), 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-keto-d-fructose (5), and 1-deoxy-2,3:4,6-di-O-isopropylidene-3-C-methyl-α-d-sorbofuranose (6). Treatment of a mixture of 4 and 5 with sodium borohydride gave, after column chromatography, 4 and 1-deoxy-3,4:5,6-di-O-isopropylidene-3-C-methyl-d-manno- and -d-gluco-hexitol. Deuterated derivatives corresponding to 46 were obtained when isopropylidenation was carried out with acetone-d6. Deacetonation of 4 and 5 yielded 1-deoxy-3-C-methyl-d-fructose, and 6 similarly afforded 1-deoxy-3-C-methyl-d-sorbose.  相似文献   

20.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号