首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
2.
3.
In this study we place seed size vs. seed number trade-offs in the context of plant dispersal ability. The objective was to suggest explanations for the evolution of different seed dispersal mechanisms, in particular fleshy fruits, wind dispersal and the maintenance of unassisted dispersal. We suggest that selection for improved dispersal may act either by increasing the intercept of a dispersal curve (log seed number vs. distance) or by flattening the slope of the curve. 'Improved dispersal' is defined as a marginal increase in the number of recruits sited at some (arbitrary) distance away from the parent plant. Increasing the intercept of the dispersal curve, i.e. producing more seeds, is associated with a reduction in seed size, which in turn affects the recruitment ability, provided that this ability is related to seed size. If recruitment is related to seed size there will be a recruitment cost of evolving increased seed production. On the other hand, a flattening of the slope by evolving dispersal attributes is likely to be associated with a fecundity cost. An exception is wind dispersal where smaller (and hence more numerous) seeds may lead to more efficient dispersal. We derive two main predictions: If recruitment is strongly related to seed size, selection for improved dispersal acts on the slope of the dispersal curve, i.e. by favouring evolution of dispersal attributes on seeds or fruits. If, on the other hand, recruitment is only weakly related to seed size (or not related, or negatively related), selection for improved dispersal favours increased seed production. Despite its simplicity, the model suggests explanations for (i) why so many plant species lack special seed dispersal attributes, (ii) differences in dispersal spectra among plant communities, and (iii) adaptive radiation in seed size and dispersal attributes during angiosperm evolution. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Ecological explanations for the success and persistence of invasive species vastly outnumber evolutionary hypotheses, yet evolution is a fundamental process in the success of any species. The Evolution of Increased Competitive Ability (EICA) hypothesis (Blossey and Nötzold 1995) proposes that evolutionary change in response to release from coevolved herbivores is responsible for the success of many invasive plant species. Studies that evaluate this hypothesis have used different approaches to test whether invasive populations allocate fewer resources to defense and more to growth and competitive ability than do source populations, with mixed results. We conducted a meta‐analysis of experimental tests of evolutionary change in the context of EICA. In contrast to previous reviews, there was no support across invasive species for EICA's predictions regarding defense or competitive ability, although invasive populations were more productive than conspecific native populations under noncompetitive conditions. We found broad support for genetically based changes in defense and competitive plant traits after introduction into new ranges, but not in the manner suggested by EICA. This review suggests that evolution occurs as a result of plant introduction and population expansion in invasive plant species, and may contribute to the invasiveness and persistence of some introduced species.  相似文献   

5.
Invasive species stand accused of a familiar litany of offences, including displacing native species, disrupting ecological processes and causing billions of dollars in ecological damage (Cox 1999 ). Despite these transgressions, invasive species have at least one redeeming virtue – they offer us an unparalleled opportunity to investigate colonization and responses of populations to novel conditions in the invaded habitat (Elton 1958 ; Sakai et al. 2001 ). Invasive species are by definition colonists that have arrived and thrived in a new location. How they are able to thrive is of great interest, especially considering a paradox of invasion (Sax & Brown 2000 ): if many populations are locally adapted (Leimu & Fischer 2008 ), how could species introduced into new locations become so successful? One possibility is that populations adjust to the new conditions through plasticity – increasing production of allelopathic compounds (novel weapons), or taking advantage of new prey, for example. Alternatively, evolution could play a role, with the populations adapting to the novel conditions of the new habitat. There is increasing evidence, based on phenotypic data, for rapid adaptive evolution in invasive species (Franks et al. 2012 ; Colautti & Barrett 2013 ; Sultan et al. 2013 ). Prior studies have also demonstrated genetic changes in introduced populations using neutral markers, which generally do not provide information on adaptation. Thus, the genetic basis of adaptive evolution in invasive species has largely remained unknown. In this issue of Molecular Ecology, Vandepitte et al. ( 2014 ) provide some of the first evidence in invasive populations for molecular genetic changes directly linked to adaptation.  相似文献   

6.
Why the fruits are retained on dead upright herbaceous plants and how this relates to seed dispersal and timing of germination remain unclear. Stems of the annual Euclidium syriacum (Brassicaceae) with infructescences bearing indehiscent silicles remain upright after plants die in the spring. We investigated the effect of anatomical structures of stem and pedicle and delayed silicle dehiscence on seed dispersal phenology of this species. For comparison, sections were made of the stem of the annual Goldbachia laevigata (Brassicaceae), which has stems that fall over when plants die. Compared to G. laevigata, the stem of E. syriacum has vascular bundles that are closer together, a thicker xylem and phloem, more fibers, a thicker perimedullary zone and a smaller pith diameter:stem diameter ratio. The thickened pedicle did not form an abcission layer. By late October, 5–20% of seeds were dispersed, depending on the position of infructescences on the plant. Snow covered the plants in late autumn and when it melted in mid-April many of the plants had fallen over, with a high number of seeds germinating in attached silicles; seedlings became rooted in soil. After snowmelt, 14–15% of the silicles on the remaining upright plants contained seeds; all seeds were dispersed by early July. The anatomical structures of the stem and pedicle plus the delayed dehiscence of silicles explain the presence of an aerial seed bank in E. syriacum and delay of germination of many of seeds until spring. Further, pieces of upright plants are broken off and dispersed by wind, which helps to explain the wide distribution of E. syriacum in the cold desert.  相似文献   

7.
啮齿动物对秦岭松栎混交林建群种种子扩散格局的影响   总被引:1,自引:0,他引:1  
森林群落中的啮齿动物对林木种子存在着一定的取食偏好性,这种偏好性会使啮齿动物形成不同的捕食和贮藏策略,从而导致林木种子形成不同的扩散格局。以秦岭中段松栎混交林建群种锐齿槲栎、油松、华山松为研究对象,采用塑料标签标记种子方法,研究啮齿动物对种子传播和扩散格局的影响。结果表明:(1)种子特征是影响啮齿动物对其进行扩散的重要因子,油松种子以其质量小、种皮薄等特点吸引啮齿动物大量捕食,其原地取食率达到83.33%,显著高于华山松和锐齿槲栎种子。(2)锐齿槲栎和华山松种子大部分被搬运一定距离后再被取食和埋藏,其中,扩散距离在1 m以内、1—3 m和5—8 m的锐齿槲栎种子分别占59.12%、18.23%和13.26%,最远扩散距离达12 m处;华山松种子扩散距离主要介于在1—3 m(37.85%)和3—5 m(23.73%),在距离5—8 m(13.56%)、8—10 m(11.86%)和大于10 m(11.30%)区间也有一定的分布,最大扩散距离为12 m。(3)啮齿动物倾向于将锐齿槲栎种子搬运至松林内取食,而将华山松种子搬运至栎林内埋藏,说明不同林分类型及其环境因素对林木种子扩散后的分布格局具有重要影响。(4)3种类型种子被啮齿动物捕食的比例以油松最大(96.90%),锐齿槲栎次之(73.57%),华山松最小(50%);次年调查时,未被捕食的种子大部分已经被取食,仅有极少数锐齿槲栎种子萌发成幼苗(1.67%)。啮齿动物的捕食和贮藏行为对林木种子扩散及其成功更新都至关重要。  相似文献   

8.
Aim We studied how the abundance of the highly invasive fruit‐bearing tree Miconia calvescens DC. influences seed dispersal networks and the foraging patterns of three avian frugivores. Location Tahiti and Moorea, French Polynesia. Methods Our study was conducted at six sites which vary in the abundance of M. calvescens. We used dietary data from three frugivores (two introduced, one endemic) to determine whether patterns of fruit consumption are related to invasive tree abundance. We constructed seed dispersal networks for each island to evaluate how patterns of interaction between frugivores and plants shift at highly invaded sites. Results Two frugivores increased consumption of M. calvescens fruit at highly invaded sites and decreased consumption of other dietary items. The endemic fruit dove, Ptilinopus purpuratus, consumed more native fruit than either of the two introduced frugivores (the red‐vented bulbul, Pycnonotus cafer, and the silvereye, Zosterops lateralis), and introduced frugivores showed a low potential to act as dispersers of native plants. Network patterns on the highly invaded island of Tahiti were dominated by introduced plants and birds, which were responsible for the majority of plant–frugivore interactions. Main conclusions Shifts in the diet of introduced birds, coupled with reduced populations of endemic frugivores, caused differences in properties of the seed dispersal network on the island of Tahiti compared to the less invaded island of Moorea. These results demonstrate that the presence of invasive fruit‐bearing plants and introduced frugivores can alter seed dispersal networks, and that the patterns of alteration depend both on the frugivore community and on the relative abundance of available fruit.  相似文献   

9.
宋楠  李新蓉  狄林楠 《生态学报》2019,39(7):2462-2469
裸果木(Gymnocarpos przewalskii)是亚洲中部荒漠区少有的第三纪孑遗物种,由于气候变化及人为干扰,其自然种群分布范围不断缩小。种子扩散作为植物生活史过程中的重要阶段,不仅对物种生存及其多样性至关重要,还影响物种分布范围和局部丰度。2015年和2016年分别在新疆哈密地区,采用布设种子收集器的方法,对其自然种群种子扩散的时空动态进行了定点连续观测。结果表明:该物种于当年6月上旬开始扩散,2015年略早于2016年。每年种子扩散持续时间约两个月,扩散趋势为单峰曲线,且呈集中大量扩散的模式,扩散高峰期与当年初次月降水高峰期吻合;在顺风的正南和东南方向上,种子扩散密度大且距离远;种子扩散主要集中在母株冠幅下,随着距母株距离的增加,种子扩散密度减少,二者间存在极显著的负相关性(P0.01),由于裸果木枝条繁多,对风力强度起到了一定的阻碍作用,可能是造成种子集中扩散在母株下的原因。裸果木种子扩散受外界环境(降水、风向)和自身因素等方面的影响,当种子在大量降水前完成扩散,将有利于种子在适宜的微生境萌发,是对多风、干旱的恶劣生境的一种长期适应。  相似文献   

10.
Angola is one of the most neglected African countries in terms of botanical research, in respect of both native and naturalized species. We conducted a rapid assessment of invasive plant species in western Angola during August 2014. In thirteen primary vegetation types, we recorded populations of 44 naturalized plant species, nineteen of which are conclusively invasive (spreading far from introduction sites). Dense invasive populations of Chromolaena odorata, Inga vera and Opuntia stricta pose the greatest environmental and economic threats. Some species with known taxonomic and/or biogeographic uncertainties (e.g. Chromolaena odorata and Ageratina adenophora) or which lacked key characteristics for identification such as flowers during our survey (e.g. Eucalyptus spp.) were subjected to DNA barcoding for comparisons with available genetic data from other studies. This approach allowed us to confirm the identity of taxonomically challenging taxa such as Inga vera, Opuntia stricta and Prosopis chilensis, to conclusively differentiate Chromolaena odorata from Ageratina adenophora, and identify the subspecific identity of Acacia saligna. Canonical correspondence analysis was used to assess the presence and abundance of invasive plant species with respect to the major abiotic factors and vegetation types. Three fairly distinct groups of species emerge from this analysis: (i) species of dry lowland habitats (Calotropis gigantea, Leucaena leucocephala and Opuntia stricta); (ii) species of relatively wet habitats at mid elevations (Ageratum conyzoides, Bidens pilosa, Cardiospermum grandiflorum, Chromolaena odorata, Solanum mauritianum and Tithonia diversifolia); and (iii) upland species (Ageratina adenophora, Galinsoga parviflora and Tagetes minuta). Several invasive species that are widespread in other tropical and subtropical African countries are currently either missing (e.g. many Australian Acacia species, Azolla filiculoides, Broussonetia papyrifera, Clidemia hirta, Parthenium hysterophorus, Rubus rosaefolius, Salvinia molesta), have only very localized populations in Angola (e.g. Lantana camara, Prosopis chilensis) or exist only as planted individuals (e.g. Acacia mearnsii and A. saligna subsp. saligna).  相似文献   

11.
12.
13.
Parthenium hysterophorus L. (Asteraceae) utilises multiple mechanisms to facilitate its dispersal. It has been speculated that the cypsela, the propagule of this species, can be dispersed by water under varying environmental conditions. Four experiments were conducted to test this hypothesis, using simulated shaking and immersion to test floating ability and viability of the propagule in water. The influence of the acidity of the immersion medium on cypsela viability was also examined. Our results revealed that the freshly harvested cypselae could float on river water for at least 20 days, although around 80% sank within a week if moderate or severe turbulence was applied. Sinkage was observed to be more rapid in naked seeds (within a day) than in cypsela (within a week). On still water surfaces, germination occurred within a week but extended to 1.5 weeks under turbulent conditions due to sinkage. In river water, initial germination of floating cypselae was greater (70%) under illuminated conditions as compared to dark conditions (20%). The viability of immersed cypselae was found to remain high in distilled water for 45 days, when immersion was in cool conditions (10 or 15°C). However, in moderate (20 and 24°C) or warm (25 and 30°C) conditions, the rate of viability loss increased, and at 34°C, around 50% of the cypselae died after 20 days of immersion. Similar trends for cypselae longevity were observed in studies using river and pond water; viability loss was faster, especially in pond water. In summary, a proportion of cypselae will float in turbulent water and could be carried significant distances in river systems. Immersed cypselae can remain viable for weeks and can germinate on contact with soil. Water bodies or floods are therefore considered as important pathways in parthenium weed dispersal; hence, post‐flood monitoring is strongly recommended to minimise its spread.  相似文献   

14.
森林采伐对尖峰岭海南特有种子植物多样性的影响   总被引:2,自引:0,他引:2  
特有种子植物是热带森林植物区系的一个重要组成部分,且很容易受到人为干扰的影响,但是森林采伐对特有种子植物的影响少有报道。本文基于164个25m×25m植被公里网格样地数据,分析了海南岛尖峰岭地区海南特有种子植物(以下简称特有种子植物)的组成结构、样地内特有种子植物物种数与总物种数之间的关系;并从种-面积曲线、累积种-个体关系和物种多度分布3个方面比较了原始林、径级择伐林和皆伐林样地中特有种子植物的物种多样性变化规律。结果显示:尖峰岭地区特有种子植物种类丰富,共有158种,占全岛(397种)的40%;其中木本特有种子植物达98种(藤本除外),在164个样地内共记录到胸径≥1.0cm的52种,占整个尖峰岭地区的53%,以樟科、壳斗科、茜草科种类为主。样地内特有种子植物的物种数与总物种数成正相关关系。采伐后特别是径级择伐后特有种子植物物种数略微增加,但增加的种类大多仅在1-2个样地中出现;而且种群也比较小,表现为较稀有且不稳定的种群结构特征,在后续的更新中消失的可能性较大。但是,采伐后一些特有种子植物仍具有中等大小的种群,例如毛荔枝(Nephelium topengii)、海南紫荆木(Madhucaha inanensis)和尖峰岭锥(Castanopsis jianfenglingen-sis)等。  相似文献   

15.
Aim How species traits and environmental conditions affect biogeographical dynamics is poorly understood. Here we test whether estimates of a species’ evolutionary age, colonization and persistence ability can explain its current ‘range filling’ (the ratio between realized and potential range size). Location Fynbos biome (Cape Floristic Region, South Africa). Methods For 37 species of woody plants (Proteaceae), we estimate range filling using atlas data and distribution models, evolutionary age using molecular phylogenies, and persistence ability using estimates of individual longevity (which determines the probability of extinction of local populations). Colonization ability is estimated from validated process‐based seed dispersal models, the arrangement of potential habitat, and data on local abundance. To relate interspecific variation in range filling to evolutionary age, colonization and persistence ability, we use two complementary model types: phenomenological linear models and the process‐based metapopulation model of Levins. Results Linear model analyses show that range filling increases with a species’ colonization and persistence ability but is not affected by species age. Moreover, colonization ability is a better predictor of range filling than its component variables (local abundance and dispersal ability). The phylogenetically independent interaction between colonization and persistence ability is significant (P < 0.05) for 97% of 180 alternative phylogenies. While the selected linear model explains 42% of the variance in arcsine transformed range filling, the Levins model performs more poorly. It overestimates range filling for realistic parameter values and produces unrealistic parameter estimates when fitted statistically. Main conclusions Colonization and local extinction seem to shape Proteaceae range dynamics on ecological rather than macroevolutionary time‐scales. Our results suggest that the positive abundance–range size relationship in this group is due primarily to the effect of abundance on colonization. In summary, this study contributes to a process‐based understanding of range dynamics and highlights the importance of colonization for the future survival of Fynbos Proteaceae.  相似文献   

16.
  • Endozoochory is one of the main drivers shaping temperate grassland communities by maintaining plant populations of its constituents and enabling plants to colonize new habitats. Successful endozoochorous dispersal implies that seeds not only get consumed and survive the digestive tract but are also able to develop into viable seedlings in a dung environment.
  • We experimentally assessed the germination probability and timing of 15 annual and perennial temperate European grassland species in cattle and horse dung and in different climatic conditions (greenhouse and outdoor conditions).
  • Interspecific variation in germinability and germination timing are found, while life strategy had only an effect on germination timing. We found adverse effects of both cattle and horse dung on the germination characteristics of all tested grassland species, but the effects of cattle dung were more pronounced. In comparison with the control treatment, fewer seeds emerged in dung and more time was needed to germinate. Also, germination metrics clearly differed between the artificial greenhouse and outdoor conditions, with generally a lower germinability in outdoor conditions.
  • According to our results, a large cost seems to be associated with endozoochorous dispersal in this stage of the life cycle, as seed dispersal effectiveness strongly depends on the quality of the deposition site with a lowered survival and germination probability when seeds are deposited in dung.
  相似文献   

17.
The dispersal ability of plants is a major factor driving ecological responses to global change. In wind‐dispersed plant species, non‐random seed release in relation to wind speeds has been identified as a major determinant of dispersal distances. However, little information is available about the costs and benefits of non‐random abscission and the consequences of timing for dispersal distances. We asked: 1) to what extent is non‐random abscission able to promote long‐distance dispersal and what is the effect of potentially increased pre‐dispersal risk costs? 2) Which meteorological factors and respective timescales are important for maximizing dispersal? These questions were addressed by combining a mechanistic modelling approach and field data collection for herbaceous wind‐dispersed species. Model optimization with a dynamic dispersal approach using measured hourly wind speed showed that plants can increase long‐distance dispersal by developing a hard wind speed threshold below which no seeds are released. At the same time, increased risk costs limit the possibilities for dispersal distance gain and reduce the optimum level of the wind speed threshold, in our case (under representative Dutch meteorological conditions) to a threshold of 5–6 m s–1. The frequency and predictability (auto‐correlation in time) of pre‐dispersal seed‐loss had a major impact on optimal non‐random abscission functions and resulting dispersal distances. We observed a similar, but more gradual, bias towards higher wind speeds in six out of seven wind‐dispersed species under natural conditions. This confirmed that non‐random abscission exists in many species and that, under local Dutch meteorological conditions, abscission was biased towards winds exceeding 5–6 m s–1. We conclude that timing of seed release can vastly enhance dispersal distances in wind‐dispersed species, but increased risk costs may greatly limit the benefits of selecting wind conditions for long‐distance dispersal, leading to moderate seed abscission thresholds, depending on local meteorological conditions and disturbances.  相似文献   

18.
Pinpointing processes that structure the geographical distribution of genetic diversity of marine species and lead to speciation is challenging because of the lack of obvious dispersal barriers and the likelihood of substantial (passive) dispersal in oceans. In addition, cryptic radiations with sympatric distributions abound in marine species, challenging the allopatric speciation mechanism. Here, we present a phylogeographical study of the marine nematode species complex Rhabditis ( Pellioditis ) marina to investigate processes shaping genetic structure and speciation. Rhabditis ( P .) marina lives on decaying macroalgae in the intertidal, and may therefore disperse over considerable distances. Rhabditis ( P .) marina consists of several cryptic species sympatrically distributed at a local scale. Genetic variation in the COI gene was screened in 1362 specimens from 45 locations around the world. Two nuclear DNA genes (ITS and D2D3) were sequenced to infer phylogenetic species. We found evidence for ten sympatrically distributed cryptic species, seven of which show a strong genetic structuring. A historical signature showed evidence for restricted gene flow with occasional long-distance dispersal and range expansions pre-dating the last glacial maximum. Our data also point to a genetic break around the British Isles and a contact zone in the Southern Bight of the North Sea. We provide evidence for the transoceanic distribution of at least one cryptic species (PmIII) and discuss the dispersal capacity of marine nematodes. The allopatric distribution of some intraspecific phylogroups and of closely related cryptic species points to the potential for allopatric speciation in R. ( P .) marina .  相似文献   

19.
Many plant species grow taller and have higher reproductive capacity where they are nonindigenous invaders than where they are native components of the flora. Traditionally, it has been accepted that this is a plastic response to a benign environment, though recently this assumption has been challenged and a genetic basis for increased plant size has been invoked. We tested the hypothesis that the increased size of certain weed species is genetically, rather than environmentally, based. A common environment growth experiment revealed no significant differences in the size of Carduus nutans , Digitalis purpurea , Echium vulgare or Senecio jacobaea sampled from alien (Australia and New Zealand) or native (Britain and continental Europe) habitats. We conclude that post-invasion genetic changes associated with increased size may be unusual and that the phenomenon, where it occurs, generally reflects a plastic response to a novel environment.  相似文献   

20.
MethodsThe phylogenetic analysis included 72 taxa sampled from across the Brassiceae and included both nuclear and chloroplast markers. Dispersal-related fruit characters were scored and climate information for each taxon was retrieved from a database. Correlations between fruit traits, seed characters, habitat, range and climate were determined, together with trait-dependent diversification rates.ConclusionsThis study provides evidence that the evolution of increased dispersal ability and larger seed size, which may increase establishment ability, can also influence macro-evolutionary processes, possibly by increasing the propensity for long-distance dispersal. In particular, it may increase speciation and consequent diversification rates by increasing the likelihood of geographic and thereby reproductive isolation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号