首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Summary We have established an efficient Agrobacterium-mediated transformation procedure for Arabidopsis thaliana genotype C24 using the chimeric bialaphos resistance gene (bar) coding for phosphinothricin acetyltransferase (PAT). Hypocotyl explants from young seedlings cocultivated with agrobacteria carrying a bar gene were selected on shoot-inducing media containing different concentrations of phosphinothricin (PPT) which is an active component of bialaphos. We found that 20 mg/l of PPT completely inhibited the control explants from growing whereas the explants transformed with the bar gene gave rise to multiple shoots resistant to PPT after 3 weeks under the same selection conditions. The transformation system could also be applied to root explants. Resulting plantlets could produce viable seeds in vitro within 3 months after preparation of the explants. The stable inheritance of the resistance trait, the integration and expression of the bar gene in the progeny were confirmed by genetic tests, Southern analysis and PAT enzyme assay, respectively. In addition, the mature plants in soil showed tolerance to the herbicide Basta.Abbreviations bar bialaphos resistance gene - CIM callus-inducing medium - DTNB 5,5-dithiobis(2-nitrobenzoic acid) - GM germination medium - HPT hygromycin phosphotransferase - MS Murashige and Skoog salts - NPTII neomycin phosphotransferase II - PAT phosphinothricin acetyltransferase - PPT phosphinothricin - SIM shoot-inducing medium  相似文献   

2.
Summary The generation of transgenic Cucumis sativus cv. Greenlong plants resistant to phosphinothricin (PPT) was obtained using Agrobacterium tumefaciens-mediated gene transfer. The protocol relied on the regeneration of shoots from cotyledon explants. Transformed shoots were obtained on Murashige and Skoog medium supplemented with 4.4 μM 6-benzylaminopurine 3.8 μM abscisic acid, 108.5 μM adenine sulfate, and 2 mg l−1 phosphinothricin. Cotyledons were inoculated with the strain EHA105 harboring the neomycin phosphotransferase II (npt II), and phosphinothricin resistance (bar) genes conferring resistance to kanamycin and PPT. Transformants were selected by using increasing concentrations of PPT (2–6 mg l−1). Elongation and rooting of putative transformants were performed on PPT-containing (2 mg l−1) medium with 1.4 μM gibberellic acid and 4.9 μM indolebutyric acid, respectively. Putative transformants were confirmed for transgene insertion through PCR and Southern analysis. Expression of the bar gene in transformed plants was demonstrated using a leaf painting test with the herbicide Basta. Pre-culture of explants followed by pricking, addition of 50 μM acetosyringone during infection, and selection using PPT rather than kanamycin were found to enhance transformation frequency as evidenced by transient β-glucuronidase assay. Out of 431 co-cultivated explants, 7.2% produced shoots that rooted and grew on PPT, and five different plants (1.1%) were demonstrated to be transgenic following Southern hybridization.  相似文献   

3.
Summary Suspension cells of Oryza sativa L. (rice) were transformed, by microprojectile bombardment, with plasmids carrying the coding region of the Streptomyces hygroscopicus phosphinothricin acetyl transferase (PAT) gene (bar) under the control of either the 5 region of the rice actin 1 gene (Act1) or the cauliflower mosaic virus (CaMV) 35S promoter. Subsequently regenerated plants display detectable PAT activity and are resistant to BASTATM, a phosphinothricin (PPT)-based herbicide. DNA gel blot analyses showed that PPT resistant rice plants contain a bar-hybridizing restriction fragment of the expected size. This report shows that expression of the bar gene in transgenic rice plants confers resistance to PPT-based herbicide by suppressing an increase of ammonia in plants after spraying with the herbicide.  相似文献   

4.
Most investigations on genetic transformations of sunflower have used the neomycin transferase (nptII) gene as the selectable marker. We previously reported a PPT-based selection system for sunflower transformation that uses the bialaphos resistance (bar) gene as the selectable marker and 20 mg/l of phosphinothricin (PPT) as the selective agent. Sunflower (Helianthus annuus L.) variety Skorospeliy 87 was genetically transformed via Agrobacterium tumefaciens strain EHA 105 harbouring the binary plasmid vector pBAR. Two-day-old explants from mature embryos competent for direct shooting were used. Southern blot and ELISA experiments confirmed the stability of expression in two generations of transgenic plants. Transformed plants transferred to soil in the greenhouse exhibited resistance to the herbicide Basta? at 3 l/ha.  相似文献   

5.
Summary A rapid transformation and regeneration system has been developed forM. truncatula cv Jemalong (barrel medic) by which it is possible to obtain transgenic plants within 2.5 months. The procedure involvesAgrobacterium-mediated transformation of cotyledon explants coupled with the regeneration of transformed plants via direct organogenesis. To develop the procedure,M. truncatula explants were transformed with the binary plasmid pSLJ525 which carries thebar gene. Thebar gene encodes phosphinothricin acetyl transferase, and transformed plants were selected on media containing phosphinothricin (Ignite, AgrEvo). Transformed plants show phosphinothricin acetyl transferase activity and Southern blot analysis indicates that they carry thebar gene integrated into their genomes. The resistance to phosphinothricin is stable and is inherited by the R1 progeny as a single dominant Mendelian trait. The transgenic plants are highly resistant to the broad spectrum herbicide, Ignite and therefore may also have commercial applications.  相似文献   

6.
Morphologically normal and fertile transgenic plants of mungbean with two transgenes, bar and α-amylase inhibitor, have been developed for the first time. Cotyledonary node explants were transformed by cocultivation with Agrobacterium tumefaciens strain EHA105 harboring a binary vector pKSB that carried bialaphos resistance (bar) gene and Phaseolus vulgaris α-amylase inhibitor-1 (αAI-1) gene. Green transformed shoots were regenerated and rooted on medium containing phosphinothricin (PPT). Preculture and wounding of the explants, presence of acetosyringone and PPT-based selection of transformants played significant role in enhancing transformation frequency. Presence and expression of the bar gene in primary transformants was evidenced by PCR-Southern analysis and PPT leaf paint assay, respectively. Integration of the Phaseolus vulgaris α-amylase inhibitor gene was confirmed by Southern blot analysis. PCR analysis revealed inheritance of both the transgenes in most of the T1 lines. Tolerance to herbicide was evidenced from seed germination test and chlorophenol red assay in T1 plants. Transgenic plants could be recovered after 8–10 weeks of cocultivation with Agrobacterium. An overall transformation frequency of 1.51% was achieved.  相似文献   

7.
Herbicide-resistant sweet potato plants were produced through biolistics of embryogenic calli derived from shoot apical meristems. Plant materials were bombarded with the vectors containing the β-glucuronidase gene (gusA) and the herbicide-resistant gene (bar). Selection was carried out using phosphinothricin (PPT). Transformants were screened by the histochemical GUS and Chlorophenol Red assays. PCR and Southern-blot analyses indicated the presence of introduced bar gene in the genomic DNA of the transgenic plants. When sprayed with Basta, the transgenic sweet potato plants was tolerant to the herbicide. Hence, we report successful transformation of the bar gene conferring herbicide resistance to sweet potato.  相似文献   

8.
Phosphinothricin (PPT) is a potent inhibitor of glutamine synthetase in plants and is used as a non-selective herbicide. The bar gene which confers resistance in Streptomyces hygroscopicus to bialaphos, a tripeptide containing PPT, encodes a phosphinothricin acetyltransferase (PAT) (see accompanying paper). The bar gene was placed under control of the 35S promoter of the cauliflower mosaic virus and transferred to plant cells using Agrobacterium-mediated transformation. PAT was used as a selectable marker in protoplast co-cultivation. The chimeric bar gene was expressed in tobacco, potato and tomato plants. Transgenic plants showed complete resistance towards high doses of the commercial formulations of phosphinothricin and bialaphos. These data present a successful approach to obtain herbicide-resistant plants by detoxification of the herbicide.  相似文献   

9.
Efficient Agrobacterium tumefaciens-mediated transformation and a higher recovery of transformed plants of cucumber cv. Poinsett76 were achieved via direct organogenesis from cotyledon explants. Stable transformants were obtained by inoculating explants with A. tumefaciens strains EHA105 or LBA4404, both harboring the binary vector pME508, which contains the neomycin phosphotransferase II (nptII) and phosphinothricin resistance genes (bar) conferring resistance to kanamycin and PPT, respectively, as selectable markers and the sgfp-tyg gene for the green fluorescent protein (GFP) as a visual marker driven by the constitutive CaMV35S promoter in the presence of acetosyringone (50 μM). Transformed shoots were obtained on MS Murashige and Skoog (Plant Physiol. 15: 473–497, 1962) medium supplemented with 1 mg L−1 benzyladenine (BA), 20 mg L−1 l-glutamine and 2 mg L−1 phosphinothricin (PPT) or 100 mg L−1 kanamycin. The regenerated shoots were examined in vivo using a hand-held long wave UV lamp for GFP expression. The GFP screening helped identify escapes and chimeric shoots at regular intervals to increase the growth of transformed shoots on cotyledon explants. Elongation and rooting of putative transformants were achieved on PPT (2 mg L−1) containing MS media with 0.5 mg L−1 gibberellic acid (GA3) and 0.6 mg L−1 indole butyric acid (IBA), respectively. PCR and Southern analyses confirmed the integration of the sgfp gene into the genome of T0 and the progenies. T1 segregation of transgenic progeny exhibited Mendelian inheritance of the transgene. The use of EHA105 resulted in 21% transformation efficiency compared to 8.5% when LBA4404 was used. This higher rate was greatly facilitated by PPT selection coupled with effective screening of transformants for GFP expression, thus making the protocol highly useful for the recovery of a higher number of transgenic cucumber plants.  相似文献   

10.
The B subunit of Escherichia coli heat-labile enterotoxin (LTB) has been transformed to plants for use as an edible vaccine. We have developed a simple and reliable Agrobacterium-mediated transformation method to express synthetic LTB gene in N. tabacum using a phosphinothricin acetyltransferase (bar) gene as a selectable marker. The synthetic LTB gene adapted to the coding sequence of tobacco plants was cloned to a plant expression vector under the control of the ubiquitin promoter and transformed to tobacco by Agrobacterium-mediated transformation. Transgenic plants were selected in the medium supplemented with 5 mg l-1 phosphinothricin (PPT). The amount of LTB protein detected in the transgenic tobacco was approximately 3.3% of the total soluble protein, approximately 300-fold higher than in the plants generated using the native LTB gene under the control of the CaMV 35S promoter. The transgenic plants that were transferred to a greenhouse had harvested seeds that proved to be resistant to herbicide. Thus, the described protocol could provide a useful tool for the transformation of tobacco plants.  相似文献   

11.
Transformation of oat and inheritance of bar gene expression   总被引:2,自引:0,他引:2  
Fertile transgenic plants of oat (Avena sativa L. var. Melys) were produced following microprojectile bombardment of primary embryogenic calli from immature embryos with two plasmids containing the bar gene or the β-glucuronidase (uidA) gene, after selection with glufosinate ammonium. Eleven plants were regenerated from phosphinothricin resistant callus, with three of the eleven plants containing either intact or rearranged copies. No plants co-transformed with the non-selected uidA gene were detected. Stable transmission and expression of the bar gene in the T1 inbred progenies occurred in a Mendelian manner in one line, which contained an intact bar gene, and in all six T2 lines tested from this transformant. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Despite the significant advantages of using herbicide resistance for selection of genetically engineered plants, alfalfa transformation has relied primarily on selection for antibiotic resistance. In the few studies reporting the use of resistance to the herbicide phosphinothricin (PPT), transformation efficiencies were low. The present investigation describes a PPT-based selection system for alfalfa transformation that uses the phosphinothricin acetyl-transferase (pat) gene as a selectable marker and 5.0 mg l−1 of bialaphos as the selective agent. The method achieves transformation efficiencies, measured as the percentage of explants giving rise to one or more transformed plantlets, greater than 50%. These plantlets accumulated detectable amounts of PAT at levels varying from 2 to 1367 pg μg−1 total protein. Transformed plants transferred to soil in the greenhouse were phenotypically normal and exhibited resistance to bialaphos leaf painting at 5 g l−1 and applications of PPT equivalent to field-level use (0.5 kg ha−1).  相似文献   

13.
The non‐toxic compound N‐acetyl‐L‐phosphinothricin (N‐Ac‐L‐PPT) is used in a so‐called deacetylation system to induce male sterility in transgenic plants by tapetum specific deacetylation to the herbicide L‐phosphinothricin (L‐PPT). A procedure was developed to produce pure racemic and L‐isomeric N‐Ac‐PPT containing less than 30 ppm residual PPT. Experiments applied to wild type tobacco and PPT‐resistant tobacco showed that the maximal tolerated N‐Ac‐PPT concentration would be less than 45 mM of the L‐isomer. Otherwise unspecific deacetylation by several acylases, as well as by environmental conditions like higher temperatures or pHs beyond neutrality, increased the residual L‐PPT content to toxic concentrations. In contrast, N‐acetyl‐L‐phosphinothricyl‐alanyl‐alanine (N‐Ac‐L‐PPTT), a substance also occurring during the biosynthesis of phosphinothricyl‐alanyl‐alanine (PPTT) by some Streptomyces species, was tolerated up to 274 mM by wild type tobacco plants. However, the ArgE deacatylase from Escherichia coli originally used in the deacetylation system, as well as some other acylases, showed no activity towards N‐Ac‐L‐PPTT.  相似文献   

14.
Transgenic herbicide-resistant sweet potato plants [Ipomoea batatas (L.) Lam.] were produced through Agrobacterium-mediated transformation system. Embryogenic calli derived from shoot apical meristems were infected with Agrobacterium tumefaciens strain EHA105 harboring the pCAMBIA3301 vector containing the bar gene encoding phosphinothricin N-acetyltransferase (PAT) and the gusA gene encoding β-glucuronidase (GUS). The PPT-resistant calli and plants were selected with 5 and 2.5 mg l−1 PPT, respectively. Soil-grown plants were obtained 28–36 weeks after Agrobacterium-mediated transformation. Genetic transformation of the regenerated plants growing under selection was demonstrated by PCR, and Southern blot analysis revealed that one to three copies of the transgene were integrated into the plant genome of each transgenic plant. Expression of the bar gene in transgenic plants was confirmed by RT-PCR and application of herbicide. Transgenic plants sprayed with Basta containing 900 mg l−1 of glufosinate ammonium remained green and healthy. The transformation frequency was 2.8% determined by herbicide application which was high when compared to our previous biolistic method. In addition, possible problems with multiple copies of transgene were also discussed. We therefore report here a successful and reliable Agrobacterium-mediated transformation of the bar gene conferring herbicide-resistance and this method may be useful for routine transformation and has the potential to develop new varieties of sweet potato with several important genes for value-added traits such as enhanced tolerance to the herbicide Basta.  相似文献   

15.
Transgenic herbicide tolerant Acacia sinuata plants were produced by transformation with the bar gene conferring phosphinothricin resistance. Precultured hypocotyl explants were infected with Agrobacterium tumefaciens strain EHA105 in the presence of 100 μM acetosyringone and shoots regenerated on MS (Murashige and Skoog, 1962, Physiol Plant 15:473–497) medium with 13.3 μM benzylaminopurine, 2.6 μM indole-3-acetic acid, 1 g l−1 activated charcoal, 1.5 mg l−1 phosphinothricin, and 300 mg l−1 cefotaxime. Phosphinothricin at 1.5 mg l−1 was used for the selection. Shoots surviving selection on medium with phosphinothricin expressed GUS. Following Southern hybridization, eight independent shoots regenerated of 500 cocultivated explants were demonstrated to be transgenic, which represented transformation frequency of 1.6%. The transgenics carried one to four copies of the transgene. Transgenic shoots were propagated as microcuttings in MS medium with 6.6 μM 6-benzylaminopurine and 1.5 mg l−1 phosphinothricin. Shoots elongated and rooted in MS medium with gibberellic acid and indole-3-butyric acid, respectively both supplemented with 1.5 mg l−1 phosphinothricin. Micropropagation of transgenic plants by microcuttings proved to be a simple means to bulk up the material. Several transgenic plants were found to be resistant to leaf painting with the herbicide Basta.  相似文献   

16.
 Transgenic plants of cassava (Manihot esculenta) resistant to the herbicide Basta were obtained through Agrobacterium-mediated transformation. The plants also expressed the uidA gene and two were positive for PCR- and/or Southern-based detection of the nptII gene. Somatic-embryo-derived cotyledons were used as source of explants. A non-disarmed Agrobacterium strain (CIAT 1182) was used to transfer the genes of interest into cassava cultivar MPer183. Greenhouse tests of resistance to Basta (Hoechst) showed three plant lines with different levels of tolerance to the herbicide. Based on Southern tests of transgenesis, the transformation efficiency was 1%. The results constitute the first report of the bar gene conferring herbicide resistance to cassava plants. Received: 9 January 1999 / Revision received: 10 May 1999 / Accepted: 15 June 1999  相似文献   

17.
Transformed plants of the commercially important Thai pineapple(Ananas comosus‘Phuket’) were produced followingmicroprojectile-mediated delivery of the plasmid AHC25, carryingthe ß-glucuronidase (gus) reporter gene and the bialaphosresistance (bar) gene for herbicide tolerance, into leaves ofmicropropagated shoots. Transformed plants were regeneratedfrom bombarded leaf bases on Murashige and Skoog-based mediumcontaining 0.5 mg l-12,4-dichlorophenoxyacetic acid, 2.0 mgl-16-benzylamino purine and 0.5 mg l-1phosphinothricin. Integrationand expression of thebar gene in regenerated plants was confirmedby Southern analysis and RT-PCR, respectively. Regenerated plantswere assessed in vitro and under glasshouse conditions for theirtolerance to the commercial herbicide BastaTM, containing glufosinateammonium as the active component. Plants sprayed with BastaTMcontainingconcentrations of glufosinate ammonium up to 1400 mg l-1remainedhealthy and retained their pigmentation. The generation of herbicide-tolerantpineapple will facilitate more efficient weed control in thiswidely cultivated tropical crop. Copyright 2001 Annals of BotanyCompany bar gene, Biolistics, herbicide tolerance, pineapple, phosphinothricin (PPT)  相似文献   

18.
We have used the bar gene in combination with the herbicide Basta to select transformed rice (Oryza sativa L. cv. Radon) protoplasts for the production of herbicide-resistant rice plants. Protoplasts, obtained from regenerable suspension cultures established from immature embryo callus, were transformed using PEG-mediated DNA uptake. Transformed calli could be selected 2–4 weeks after placing the protoplast-derived calli on medium containing the selective agent, phosphinothricin (PPT), the active component of Basta. Calli resistant to PPT were capable of regenerating plants. Phosphinothricin acetyltransferase (PAT) assays confirmed the expression of the bar gene in plants obtained from PPT-resistant calli. The only exceptions were two plants obtained from the same callus that had multiple copies of the bar gene integrated into their genomes. The transgenic status of the plants was varified by Southern blot analysis. In our system, where the transformation was done via the protoplast method, there were very few escapes. The efficiency of co-transformation with a reporter gene gusA, was 30%. The To plants of Radon were self-fertile. Both the bar and gusA genes were transmitted to progeny as confirmed by Southern analysis. Both genes were expressed in T1 and T2 progenies. Enzyme analyses on T1 progeny plants also showed a gene dose response reflecting their homozygous and heterozygous status. The leaves of To plants and that of the progeny having the bar gene were resistant to application of Basta. Thus, the bar gene has proven to be a useful selectable and screenable marker for the transformation of rice plants and for the production of herbicide-resistant plants.  相似文献   

19.
Bialaphos selection of stable transformants from maize cell culture   总被引:15,自引:0,他引:15  
Summary Stable transformed Black Mexican Sweet (BMS) maize callus was recovered from suspension culture cells bombarded with plasmid DNA that conferred resistance to the herbicide bialaphos. Suspension culture cells were bombarded with a mixture of two plasmids. One plasmid contained a selectable marker gene, bar, which encoded phosphinothricin acetyl transferase (PAT), and the other plasmid encoded a screenable marker for -glucuronidase (GUS). Bombarded cells were selected on medium containing the herbicide bialaphos, which is cleaved in plant cells to yield phosphinothricin (PPT), an inhibitor of glutamine synthetase. The bialaphos-resistant callus contained the bar gene and expressed PAT as assayed by PPT inactivation. Transformants that expressed high levels of PAT grew more rapidly on increasing concentrations of bialaphos than transformants expressing low levels of PAT. Fifty percent of the bialaphos-resistant transformants tested (8 of 16) expressed the nonselected gene encoding GUS.  相似文献   

20.
To increase expression level of cholera toxin B subunit (CTB) in lettuce plants, synthetic CTB (sCTB) gene based on the optimized codon usage was fused with an endoplasmic reticulum retention signal, KDEL. The sCTB gene was introduced into a plant expression vector and transformed to lettuce plants using Agrobacterium-mediated transformation system. As a selection marker, a bialaphos resistance (bar) gene that encodes phosphinothricin acetyltransferase (PAT), conferring tolerance to the herbicide phosphinothricin (PPT), was used. PCR amplification of genomic DNA confirmed the presence of the sCTB gene in the transgenic lettuce plants. Expressions of mRNA and protein of sCTB were observed by Northern and Western blot analyses, respectively. The sCTB synthesized in the transgenic lettuce showed strong affinity for GM1-ganglioside suggesting that the sCTB conserved the antigenic sites for binding and proper folding of pentameric CTB structure. The expression level of CTB was relatively high, reaching total soluble protein (TSP) levels of 0.24% in transgenic lettuce.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号