首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

2.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

3.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

4.
l-Alanylglycyl-l-alanylglycyl-l-alanylglycyl-l-serylglycine and its pentachlorophenyl ester methanesulphonate have been synthesized as monomers for the preparation of silk fibroin model polypeptide. The former octapeptide was polymerized with diphenylphosphorylazide (DPPA) and triethylamine in DMSO or in HMPA—pyridine, and the latter octapeptide pentachlorophenylester was polymerized by adding triethylamine in DMSO to give poly(l-alanylglycyl-l-alanylglycyl-l-alanylglycyl-l-serylglycine). This sequential polypeptide gave a similar i.r. pattern to the crystalline part of Bombyx mori silk fibroin, which indicated antiparallel β-conformation. Dialysis of the solution of this polymer in 60%, aqueous LiBr against water gave mainly the polymer of α-form. O.r.d. measurements suggest that this polypeptide exists as a random structure in dichloroacetic acid on in 60% aqueous LiBr.  相似文献   

5.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

6.
The title glycosides were synthesised from d-glucose, via the common intermediate methyl 2-acetamido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-α-d-ribo-hexopyranoside.  相似文献   

7.
The nitrone 4 (4,5-dideoxy-4-hydroxylamino-3,4-O-isopropylidene-l-lyxofuranose) was synthesised from d-ribose and used as key intermediate for the preparation of fucosidase inhibitors. We describe two transformations of 4. Hydrolysis with aqueous sulfur dioxide gave the known potent nanomolar inhibitor 4-amino-4,5-dideoxy-l-lyxofuranose (3). 1,3-Dipolar cycloaddition with enol ethers led to the related 1,2,5,6-tetradeoxy-2,5-imino-l-altroheptonic ester 2a, acid 2b and the corresponding heptitol 2c. The new iminosugars have been evaluated for their inhibitory activity against α-l-fucosidase from bovine kidney. The alcohol 2c turned out to be a potent inhibitor in the same range as the amino-sugar 3 (Ki = 8 vs 10 nM).  相似文献   

8.
1,6-Diamino-2,5-anhydro-1,6-dideoxy-l-iditol (31) and its derivatives were synthesized, starting from 2,4-O-benzylidene-1,6-di-O-tosyl-d-glucitol. The 1,6-bis-(acetamido)-l-talo epoxide was readily hydrolyzed to the corresponding l-iditol derivative under anchimeric assistance of the 1-acetamido group. On treatment with formaldehyde-formic acid, diamine 31 gave a tricyclic, 1,4:3,6-bis(N,O-methylene) derivative which was stable under acidic conditions but, according to 13C-n.m.r. spectroscopy, was readily hydrolyzed to an equilibrium mixture in neutral, aqueous solution. The corresponding 1,6-bis(dimethylamino) derivative could be obtained by reducing this equilibrium mixture with borohydride. The different, quaternary salts obtained on methylation of the corresponding 1,6-bis(dimethylamino) derivatives with methyl iodide (aiming at the structure of epi-allo-muscarine) showed no muscarine-like, biological activity.  相似文献   

9.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

10.
11.
Treatment of benzyl 2-acetamido-3-O-benzyl-2,6-dideoxy-4-O-(methylsulfonyl)-α-D-glucopyranoside (1) with sodium azide in hexamethylphosphoric triamide gave the 4-azido-α-D-galacto derivative (2), which was converted into benzyl 2,4-di-acetamido-3-O-benzyl-2,3,6-trideoxy-α-D-galactopyranoside (3) by hydrogenation and subsequent acetylation. Hydrogenolysis of 3 at atmospheric pressure afforded benzyl 2,4-diacetamido-2,4,6-tridcoxy-α-D-galactopyranoside (4), which was acetylated to give the 3-O-acetyl derivative (5). The n.m.r. spectrum of 5 was in agreement with the assigned structure and different from that of benzyl 2,4-di-acetamido-3-O-acetyl-α-D-glucopyranoside (9), which was prepared from the known benzyl 2,4-diacetamido-3-O-benzyl-2,4,6-trideoxy-α-D-glucopyranoside. Catalytic hydrogenolysis of 4 gave 2,4-diacetamido-2,4,6-trideoxy-D-galactose (6).  相似文献   

12.
Observation of random copolypeptides of γ-benzyl-l-glutamate with l-phenylalanine, l-valine and l-alanine was carried out in an electron microscope with samples cast from dilute solution. The relationship between the morphology and the molecular conformation in solution was studied with mixed solvents composed of chloroform and trifluoroacetic acid; these show a preference for α-helix and random coil, respectively. From the solutions in which molecules take α-helical conformation, fibrous films of nematic structure were formed. From random coil solutions discrete precipitates with folded molecules such as lamellar single crystals, piles of lamellae and structureless particles were formed. A copolypeptide containing l-valine in sufficiently large quantity to form β-structure also showed a variation in morphology with solvent, from films to discrete precipitates. It is suggested that the change in stiffness of the molecules contributes to the morphological variation.  相似文献   

13.
Methyl 2,6-dideoxy-α-L-arabino-hexopyranoside (6) was prepared from L-rhamnose in five steps. Hydrolysis of6 with 50% aqueous acetic acid gave 2,6-dideoxy-L-arabino-hexopyranose. Treatment of 3,4-di-O-acetyl-L-rhamnal with acetic acid in the presence of acetic anhydride and 2% sulfuric acid afforded 1,2,3-tri-O-acetyl-2,6-dideoxy-L-arabino-hexopyranose in 65% yield. Selective benzoylation and subsequent mesylation of 6 afforded methyl 3-O-benzoyl-2,6-dideoxy-4-O-mesyl-α-L-arabino-hexopyranoside, which was treated with sodium benzoate and sodium azide in hexamethylphosphoric triamide to give the corresponding 3,4-dibenzoyl 9 and 4-azido 11 analogs. Hydrogenation and N-acetylation of 11 afforded the 4-acetamido derivative 12. Deprotection of 9 and 12 gave 2,6-dideoxy-L-lyxo-hexopyranose and 4-acetamido-2,4,6-trideoxy-L-lyxo-hexopyranose, which were characterized as their peracetates. The free and corresponding peracetylated derivatives were assayed for their ability to inhibit the growth of P388 leukemia cells in culture. Although the free sugars did not inhibit the replication of these tumor cells under the conditions employed, their peracetylated derivatives demonstrated significant activity.  相似文献   

14.
This study investigated the anti-inflammatory effects of novel pseudotripeptides (GPE 13) as potential candidates to counteract neuroinflammation processes in Alzheimer’s disease.GPE 13 pseudotripeptides are synthetic derivatives of Gly-l-Pro-l-Glu (GPE), the N-terminal tripeptide of IGF-1, obtained through the introduction of isosteres of the amidic bond (aminomethylene unit) to increase the metabolic stability of the native tripeptide. The results showed that all synthetic derivatives possessed higher half-lives (t1/2?>?4?h) than GPE (t1/2?=?30?min) in human plasma and had good water solubility. The biological results demonstrated that GPE 13 had protective properties in several experimental models of treated THP-1 cells. Notably, the novel pseudotripeptides influenced inflammatory cytokine expression (IL-1β, IL-18, and TNF-α) in Aβ25–35-, PMA-, and LPS-treated THP-1 cells. In PMA-differentiated THP-1 macrophages, both GPE 1 and GPE 3 reduced the expression levels of all selected cyto-chemokines, even though GPE 3 showed the best neuroprotective properties.  相似文献   

15.
Fusion or β-l-fucopyranose tetraacetate with phosphoric acid for 1 min at 50° gives a 9:1 anomeric mixture of the α-and β-pyranosyl phosphates. Longer fusion times give the α-anomer exclusively. The l-fucofuranose tetraacetates were synthesized for the first time by acetolysis or methyl-2,3,5-tri-O-acetyl-β-l-fucofuranoside. Fusion or the furanose tetraacetates with phosphoric acid gave a mixture or the fucofuranosyl phosphates in which the β-anomer predominated (β/α = 2.4). Anomeric pairs in the fucofuranose series appear to be distinguishable by the chemical shift of the C-6 methyl protons, as already shown by Sinclair and Sleeter in the pyranose series.  相似文献   

16.
We have developed a new fluorescence assay for dipeptidylpeptidase IV using a tripeptide, l-prolyl-l-prolyl-l-alanine, which might be one of the potential natural substrates. The principle of the assay is based on the measurement of fluorescent adduct between alanine liberated from the tripeptide by enzymatic hydrolosis and o-phthaldialdehyde in the presence of 2-mercaptoethanol in aqueous alkaline medium. This new assay is sensitive enough to measure the enzyme activity in as little as 0.01 μl of human serum and in crevicular fluid obtained from human gingival sulcus. The Km value for the tripeptide was 1.7 · 10?5 M which is less than one-tenth of that obtained with other chromogenic or fluorogenic substrates. The interference by serum was overcome by simply incorporating the same amount of serum in the standards.  相似文献   

17.
Cyclic dipeptide cyclo(l- or d-Glu-l-His) carrying an anionic site and a nucleophilic site has been synthesized and used as a catalyst for the solvolysis of cationic esters in aqueous alcohols. In the solvolysis of 3-acyloxy-N-trimethylanilinium iodide (S+n, n = 2 and 10) and Cl?H3N+(CH2)11COOPh(NO2), no efficient nucleophilic catalysis was observed. On the other hand, in the solvolysis of Gly-OPh(NO2)·HCl, Val-OPh(NO2)·HCl and Leu-OPh(NO2)·HCl a very efficient general base-type catalysis by cyclo(l-Glu-l-His) was observed. In particular, with the latter two substrates the catalysis by cyclo(l-Glul-His) was more efficient than that by imidazole, although the catalysis was not enantiomer-selective. The diastereomeric cyclic dipeptide cyclo(d-Glu-l-His) was almost inactive under the same conditions. Confomation of cyclo(l- or d-Glu-l-His) in aqueous solution was investigated and the structure/catalysis relationship is discussed.  相似文献   

18.
The uptake of l-DOPA (l-3,4-dihydroxyphenylalanine) was studied in normal human red blood cells in vitro using l-[3-14C]DOPA. Uptake was slow, tending towards a distribution ratio close to unity with a half-time to equilibrium of one hour. Uptake was not Na+-dependent. Concentration dependence studies showed both saturable and non-saturable components of uptake, and inhibition studies using l-leucine and l-tryptophan suggest that the L and T systems of red cell amino acid uptake are involved. A powerful inhibitor of both systems, 3,4-dihydroxy-2-methylpropriophenone (U-0521), is described. It is concluded that uptake is by carrier-mediated facilitated diffusion via the L and T systems for which l-DOPA has low affinity.  相似文献   

19.
y-l-Glutamyl-l-pipecolic acid has been isolated from seeds of Gleditsia caspica (L.) Desf. Proof of its structure was obtained by chromatographic and spectroscopic examination of the natural product and its hydrolytic products. The new compound is the first example of a naturally occurring γ-glutamyl imino acid.  相似文献   

20.
The 3,4-O- and 1,2:3,4-di-O-isopropylidene derivatives (7 and 8) of l-dendroketose [4-C-(hydroxymethyl)-l-glycero-pentulose] (1) have been synthesized stereo-specifically from 4-C-(hydroxymethyl)-1,2:3,4-di-O-isopropylidene-l-erythro-pentitol (2).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号