首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

2.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

3.
A synthesis of l-ristosamine from l-rhamnal is described, involving the sequence of reactions: methoxymercuration, tosylation, azide displacement, and reduction, which gave methyl α-l-ristosaminide (10). Acid hydrolysis then afforded l-ristosamine hydrochloride. Trifluoroacetylation of the hydrochloride of 10 followed by saponification and oxidation with ruthenium tetraoxide gave methyl 2,3,6-tri-deoxy-3-trifluoroacetamido-α-l-erythro-hexopyranosid-4-ulose (17). Borohydride reduction of 17 gave a separable, 1:1 mixture of methyl 2,3,6-trideoxy-3-trifluoroacetamido-α-l-ribo- and α-l-xylo-hexopyranoside.  相似文献   

4.
Methyl 4,6-O-benzylidene-2-deoxy-α-d-erythro-hexopyranosid-3-ulose reacted with potassium cyanide under equilibrating conditions to give, initially, methyl 4,6-O-benzylidene-3-C-cyano-2-deoxy-α-d-ribo-hexopyranoside (7), which, because it reverted slowly to the thermodynamically stable d-arabino isomer, could be crystallised directly from the reaction mixture. The mesylate derived from the kinetic product 7 could be converted by published procedures into methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-d-arabino-hexopyranoside, which was transformed into methyl N-acetyl-α-d-vancosaminide on inversion of the configuration at C-4. A related approach employing methyl 2,6-dideoxy-4-O-methoxymethyl-α-l-erythro-hexopyranosid-3-ulose gave the kinetic cyanohydrin and thence, via the spiro-aziridine 27, methyl 3-acetamido-2,3,6-trideoxy-3-C-methyl-α-l-arabino-hexopyranoside, a known precursor of methyl N-acetyl-α-l-vancosaminide.  相似文献   

5.
Benzoylation of L-rhamnono-1,5-lactone (1) with an excess of benzoyl chloride and pyridine for 16 h afforded 2,4-O-benzoyl-3,6-dideoxy-L-erythro-hex-2-enono-1,5-lactone (2). Catalytic hydrogenation of 2 was stereoselective and gave crystalline 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexono-1,5-lactone (3). Reduction of the lactone 3 with disiamylborane afforded 2,4-di-O-benzoyl-3,6-dideoxy-L-arabino-hexopyranose (4) which, on debenzoylation, gave 3,6-dideoxy-L-arabino-hexose (ascarylose) (7) in good overall yield. The sugar was identified as the corresponding alditol (ascarylitol) and by convertion into methyl 3,6-dideoxy-α-L-arabino-hexopyranoside (methyl ascaryloside, 6).  相似文献   

6.
Addition of methylmagnesium iodide to methyl 2,3,6-trideoxy-3-trifluoro-acetamido-α-l-threo-hexopyranosid-4-ulose (3) gave methyl 2,3,6-trideoxy-4-C-methyl-3-trifluoroacetamido-α-l-lyxo-hexopyranoside (4) and its l-arabino analogue, depending upon the reaction temperature and the solvent. The corresponding 4-O-methyl derivatives were obtained by treatment of 4 and 5 with diazomethane in the presence of boron trifluoride etherate. Treatment of 4 with thionyl chloride, followed by an alkaline work-up, gave methyl, 2,3,4,6-tetradeoxy-4-C-methylene-3-trifluoro-acetamido-α-l-threo-hexopyranoside (8), which was stereoselectively reduced to methyl 2,3,4,6-tetradeoxy-4-C-methyl-3-trifluoroacetamido-α-l-arabino-hexopyranoside. Epoxidation of 8 with 3-chloroperoxybenzoic acid gave the corresponding 4,41-anhydro-4-C-hydroxymethyl-l-lyxo derivative (10), which was also prepared by treatment of 3 with diazomethane. Azidolysis of 10, followed by catalytic hydrogenation and N-trifluoroacetylation, gave methyl 2,3,6-trideoxy-3-trifuloroacetamido-4-C-trifluoroacetamidomethyl-α-l-lyxo-hexopyranoside.  相似文献   

7.
Methyl 2,6-dideoxy-α-L-arabino-hexopyranoside (6) was prepared from L-rhamnose in five steps. Hydrolysis of6 with 50% aqueous acetic acid gave 2,6-dideoxy-L-arabino-hexopyranose. Treatment of 3,4-di-O-acetyl-L-rhamnal with acetic acid in the presence of acetic anhydride and 2% sulfuric acid afforded 1,2,3-tri-O-acetyl-2,6-dideoxy-L-arabino-hexopyranose in 65% yield. Selective benzoylation and subsequent mesylation of 6 afforded methyl 3-O-benzoyl-2,6-dideoxy-4-O-mesyl-α-L-arabino-hexopyranoside, which was treated with sodium benzoate and sodium azide in hexamethylphosphoric triamide to give the corresponding 3,4-dibenzoyl 9 and 4-azido 11 analogs. Hydrogenation and N-acetylation of 11 afforded the 4-acetamido derivative 12. Deprotection of 9 and 12 gave 2,6-dideoxy-L-lyxo-hexopyranose and 4-acetamido-2,4,6-trideoxy-L-lyxo-hexopyranose, which were characterized as their peracetates. The free and corresponding peracetylated derivatives were assayed for their ability to inhibit the growth of P388 leukemia cells in culture. Although the free sugars did not inhibit the replication of these tumor cells under the conditions employed, their peracetylated derivatives demonstrated significant activity.  相似文献   

8.
Acid-catalysed condensation of methyl β-d-glycero-l-manno-heptopyranoside with cyclohexanone yielded an approximately 3:1 mixture of the 2,3:6,7- and 2,3:4,7-di-O-cyclohexylideneheptosides (1 and 2), which could be separated either as their benzoates (3 and 4) or as their methyl ethers (5 and 6). The latter compounds afforded the 4- and 6-methyl ethers (7 and 8) of d-glycero-l-manno-heptitol.  相似文献   

9.
A convenient preparative route involving eleven steps starting from D-glucose is described for the synthesis of D-ristosamine (15) hydrochloride. Methyl 2-deoxy-β-D-arabino-hexopyranoside, prepared from 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-arabino-hex- 1-enitol, was benzylidenated, and the product mesylated to give methyl 4,6-O-benzylidene-2-deoxy-3-O-methylsulfonyl-β-D-arabino-hexopyranoside. Azidolysis of this compound and subsequent opening of the 1,3-dioxane ring with N-bromosuccinimide gave methyl 3-azido-4-O-benzoyl-6-bromo-2,3,6-trideoxy-βD-ribo-hexopyranoside. Simultaneous reduction of the azido and bromo groups gave a mixture that was benzoylated to give methyl N,O-dibenzoyl-β-D-ristosaminide and then hydrolyzed to 15 hydrochloride (3-amino-2,3,6-trideoxy-D-ribo-hexopyranose hydrochloride).  相似文献   

10.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

11.
Deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-α-L-talofuranoside (6) with sodium nitrite in 90% acetic acid at ≈0° gave methyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (8a) and methyl 6-deoxy-2,3-O-isopropylidene-β-D-allofuranoside (9a) (combined yield, 12.3%), the corresponding 5-acetates 8b (2.9%) and 9b (26.4%), and the unsaturated sugar methyl 5,6-dideoxy-2,3-O-isopropylidene-β-D-ribo-hex-5-enofuranoside (10) (43.5%). Similar deamination of methyl 5-amino-5,6-dideoxy-2,3-O-isopropylidene-β-D-allofuranoside (7) gave 8a and 9a (combined yield, 20.4%), 8b (12.5%), 9b (25.8%), 10 (7.7%), and the rearranged products 6-deoxy-2,3-O-isopropylidene-5-O-methyl-L-talofuranose (13a, 17.5%) and the corresponding 1-acetate 13b (14.1%). A synthesis of 13a was accomplished by successive methylation and debenzylation of the conveniently prepared benzyl 6-deoxy-2,3-O-isopropylidene-α-L-talofuranoside (15b). Differences between the two sets of deamination products can be rationalized by assuming that the carbonium-ion intermediate reacts in the initial conformation assumed, before significant interconversion to other conformations occurs.  相似文献   

12.
Three different approaches starting from 1,2-O-isopropylidene-α-d-glucofuranose were tested for the synthesis of daunosamine hydrochloride (24), the sugar constituent of the antitumor antibiotics daunomycin and adriamycin. The third route, affording 24 in ~5% overall yield in 11 steps, constitutes a useful, preparative synthesis, 3,5,6-Tri-O-benzoyl-1,2-O-isopropylidene-α-d-glucofuranose was converted via methyl 2,3-anhydro-β-d-mannofuranoside into methyl 2,3:5,6-dianhydro-α-l-gulofuranoside, the terminal oxirane ring of which was split selectively on reduction with borohydride, to afford methyl 2,3-anhydro-6-deoxy-α-l-gulofuranoside (31). Compound 31 was converted into methyl 2,3-anhydro-5-O-benzyl-6-deoxy-α-l-gulofuranoside, which was selectively reduced at C-2 on treatment with lithium aluminum hydride, affording methyl 5-O-benzyl-2,6-dideoxy-α-l-xylo-hexofuranoside. Subsequent mesylation, and replacement of the mesoloxy group by azide, with inversion, afforded methyl 3-azido-5-O-benzyl-2,6-dideoxy-α-l-lyxo-hexofuranoside, which could be converted into either 24 or methyl 3-acetamido-5-O-acetyl-2,3,6-trideoxy-α-l-lyxo-hexofuranoside, which can be used as a starting material for the synthesis of daunomycin analogs.  相似文献   

13.
Treatment of methyl β-d-ribofuranoside with acetone gave methyl 2,3-O-isopropylidene-β-d-ribofuranoside (1, 90%), whereas methyl α-d-ribofuranoside gave a mixture (30%) of 1 and methyl 2,3-O-isopropylidene-α-d-ribofuranoside (1a). On oxidation, 1 gave methyl 2,3-O-isopropylidene-β-d-ribo-pentodialdo-1,4-furanoside (2), whereas no similar product was obtained on oxidation of 1a. Ethynylmagnesium bromide reacted with 2 in dry tetrahydrofuran to give a 1:1 mixture (95%) of methyl 6,7-dideoxy-2,3-O-isopropylidene-β-d-allo- (3) and -α-l-talo-hept-6-ynofuranoside (4). Ozonolysis of 3 and 4 in dichloromethane gave the corresponding d-allo- and l-talo-uronic acids, characterized as their methyl esters (5 and 6) and 5-O-formyl methyl esters (5a and 6a). Ozonolysis in methanol gave a mixture of the free uronic acid and the methyl ester, and only a small proportion of the 5-O-formyl methyl ester. Malonic acid reacted with 2 to give methyl 5,6-dideoxy-2,3-O-isopropylidene-β-d-ribo-trans-hept-5-enofuranosiduronic acid (7).  相似文献   

14.
Reduction of 1,6-anhydro-3,4-dideoxy-β-D-glycero-hex-3-enopyranos-2-ulose (levoglucosenone) with lithium aluminium hydride afforded principally 1,6-anhydro-3,4-dideoxy-β-D-threo-hex-3-enopyranose (3), which was converted into 3,4-dihydro-2(S)-hydroxymethyl-2H-pyran (8) following acid-catalysed methanolysis and reductive rearrangement of the resulting α-glycoside 4 with lithium aluminium hydride. 1,6-Anhydro-3,4-dideoxy-2-O-toluene-p-sulphonyl-β-D-threo-hexopyranose, prepared from 3, reacted slowly with sodium azide in hot dimethyl sulphoxide to give 1,6-anhydro-2-azido-2,3,4-trideoxy-β-D-erythro-hexopyranose, which was transformed into a mixture of methyl 2-acetamido-6-O-acetyl-2,3,4-trideoxy-α-D-erythro-hexopyranoside (10) and the corresponding β anomer following acid-catalysed methanolysis, catalytic reduction, and acetylation. Acid treatment of methyl 4,6-O-benzylidene-3-deoxy-α-D-erythro-hexopyranosid-2-ulose yielded the enone 15, which was readily transformed into methyl 6-O-acetyl-3,4-dideoxy-α-D-glycero-hexopyranosid-2-ulose (19). Procedures for the conversions of DL-8, 10, and 19 into methyl 2,6-diacetamido-2,3,4,6-tetradeoxy-α-D-erythro-hexopyranoside (methyl N,N′-di-acetyl-α-purpurosaminide C) have already been described.  相似文献   

15.
N-Acetylepidaunosamine (3-acetamido-2,3,6-trideoxy-d-ribo-hexopyranose) was converted into the diethyl dithioacetal and this was cyclized with HgCi2, HgO, and MeOH, to give methyl 3-acetamido-2,3,6-trideoxy-α- and -β-d-ribo-hexofuranoside (4 and 5). These anomers were acetylated or (p-nitrobenzoyl)ated, and the esters were subjected to acetolysis, to afford 3-acetamido-1,5-di-O-acetyl-2,3,6-trideoxy-d-ribo-hexofuranose and 3-acetamido-1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-d-ribo-hexofuranose, respectively. Alternatively, compounds 4 and 5 were hydrolyzed to the free bases with barium hydroxide, and these were converted into the trifluoroacetamido derivatives which, on (p-nitrobenzoyl)ation and acetolysis, afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-d-ribo-hexofuranose. To prepare the corresponding daunosamine derivative, 2,3,6-trideoxy-3-(trifluoroacetamido)-l-lyxo-hexopyranose was converted into the diethyl dithioacetal, and this was cyclized in the same way, to afford methyl 2,3,6-trideoxy-3-(trifluoroacetamido)-α- and -β-l-lyxo-hexofuranoside. On (p-nitrobenzoyl)ation and acetolysis, both afforded 1-O-acetyl-2,3,6-trideoxy-5-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexofuranose.  相似文献   

16.
Methyl 4,6-O-benzylidene-2-deoxy-3-C-methyl-α-d-arabino-hexopyranoside (4) was prepared from methyl 4,6-O-benzylidene-2,3-dideoxy-3-C-methylene-α-d-erythro-hexopyranoside (1b) and from methyl 4,6-O-benzylidetic-3 C-methyl-α-d-gluco-hexopyranoside (6a) by two different methods. Synthesis of d-evermicose3 (10 (2,6-dideoxy-3-C-methyl-d-arabino-hexose) was then achieved in four steps from 4.  相似文献   

17.
Derivatives (the 3-acetamido-4-benzoate 12, the 3-acetamido-4-acetate 13, and the N-acetyl derivative 14) of the methyl glycoside of the title sugar were prepared in a sequence of high-yielding steps from methyl 3-azido-4,6-O-benzylidene-2,3-di-deoxy-α-d-arabino-hexopyranoside (4). N-Bromosuccinimide converted 4 into the crystalline 4-O-benzoyl-6-bromide 5, which was treated with silver fluoride to afford the 5,6-unsaturated glycoside 6. Catalytic hydrogenation of 6 led, essentially, to a 7:1 mixture of 12 and its 5-epimeric d-arabino isomer 7. Alternatively, 6 was debenzoylated to 10, and the latter treated with lithium aluminum hydride to give crystalline methyl 3-amino-2,3,6-trideoxy-α-d-threo-hex-5-enopyranoside (11). Reduction of 11 (as its salt) by hydrogen, with subsequent N-acetylation, furnished the methyl β-l-xylo-glycoside 13 almost exclusively, with net inversion at C-5. Compound 13 was readily converted into the crystalline target compound 14. When dehydrobromination by silver fluoride was attempted with the 3-acetamido analog (2) of 5, a 3,6-anhydro product (1) was obtained, instead of the expected 5,6-alkene 3.  相似文献   

18.
Treatment of 2,3,6-trideoxy-1,4-di-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-l-lyxo-hexopyranose (1) with benzyl 2,3-dideoxy-d-glycero-pentopyranoside and p-toluenesulfonic acid gave a mixture of benzyl 2,3,6-trideoxy-4-O-p-nitrobenzoyl-3- (trifluoroacetamido)-l-lyxo-hexopyranoside (49%) and benzyl 2,3-dideoxy-4-O-[2,3,6-trideoxy-4-O-(p-nitrobenzoyl)-3-(trifluoroacetamido)-α-l-lyxo-hexopyranosyl]-d-glycero-pentopyranoside (4, 20 %). The structure of the disaccharide 4 was confirmed by a detailed, mass-spectrometric analysis in three modes, namely, negative- and positive-ion, chemical ionization, and electron impact. Similar treatment of the bis(p-nitrobenzoate) 1 with ethyl 2,3-dideoxy-d-glycero-pentopyranoside gave the ethyl glycoside and the desired disaccharide, showing that the transglycosylation is not restricted to benzyl glycosides. Removal of the p-nitrobenzoyl and the benzyl groups from 4 gave the disaccharide 2,3-dideoxy-4-O-(2,3,6-trideoxy-3-trifluoroacetamido-α-l-lyxo-hexopyranosyl)-d-glycero-pentopyranose.  相似文献   

19.
Oxidation of 1,3,4,6-tetra-O-benzoyl-α- and β-D-glucopyranose gave the tetra-O-benzoyl-α- and -β-D-arabino-hexopyranosuloses ( and β), from which benzoic acid was readily eliminated to give the anomeric tri-O-benzoyl-4-deoxy-D-glycero-hex-3-enopyranosuloses ( and β). The anomeric 1-O-acetyl-tri-O-benzoyl-D-arabino-hexopyranosuloses ( and β) were obtained as very unstable syrups which readily lost benzoic acid. Treatment of tetra-O-benzoyl-2-O-benzyl-D-glucopyranose (1) with hydrogen bromide gave 3,4,6-tri-O-benzoyl-α-D-glucopyranosyl bromide (5) in one step.  相似文献   

20.
2,6-Anhydro-d-glycero-l-manno-heptose (1) is converted by the cyanohydrin reaction into crystalline d-threo-l-talo-octononitrile (3), which shows mutarotation in water. The equilibrium mixture, as measured by 13C-n.m.r. spectroscopy, contains about equal amounts of 3 and its epimer, d-threo-l-galacto-octononitrile. On evaporation of the aqueous mixture, pure, crystalline 3 is again obtained. Labelling experiments in 3H2O proved that epimerization proceeds through reversible deprotonation. Stabilization of 3 in the solid state is explained by intramolecular hydrogen-bonding. In pyridine, rapid isomerization of 3 occurs. When acetylation of 3 is conducted in this solvent, the yield of 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-talo-octono-nitrile (4) depends strongly on the conditions of acetylation. Acetylation after equilibration produces an equimolar mixture of 4 and its isomer 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octononitrile. Structural assignment for both was achieved by 360-Mhz, 1H- and 13C-n.m.r. spectroscopy. Reduction of 4 in pyridine-acetic acid-water in the presence of N,N-diphenylethylenediamine yields a 1:2.36 mixture of 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-talo-octose N,N-diphenylimidazolidine (6) and 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octose N,N-diphenylimidazolidine (8). Compounds 6 and 8 could be separated and obtained as crystalline solids, and their structure proved by 1H- and 13C-n.m.r. spectroscopy. Hydrolysis of 6 and 8 gave 2,4,5,6,8-penta-O-acetyl-3,7-anhydro-d-threo-l-galacto-octose and -d-threo-l-talo-octose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号