首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Climate change is recognized as a major threat to biodiversity. Multidisciplinary approaches that combine population genetics and species distribution modelling to assess these threats and recommend conservation actions are critical but rare. Combined, these methods provide independent verification and a more compelling case for developing conservation actions. This study integrates these data streams together with field assessments and spatial analyses to develop future genetic resource management recommendations. The study species was Callistemon teretifolius (Needle Bottlebrush), a shrub species endemic to the Mount Lofty and Flinders Ranges, South Australia, and potentially vulnerable to climate change. Chloroplast microsatellite and Amplified Fragment Length Polymorphism data were combined with species distribution modelling (MaxEnt), spatial analysis and field assessment to evaluate climate change vulnerability. Two major genetic groups were identified (Mount Lofty and Flinders Ranges). Populations in the Flinders Ranges, especially the Southern Flinders Ranges exhibited the highest genetic diversity, indicating a possible genetic refugium. Lower genetic diversity to the south in the Mount Lofty Ranges and north in the Gammon Ranges may be due to post‐glacial expansion into these areas from the Flinders Ranges or loss of alleles. Low levels of contemporary gene flow were identified, which suggests Callistemon teretifolius may have a limited capacity to respond to climate change through migration. Range restrictions were predicted for all future climates, especially in the north. It is likely that C. teretifolius will be adversely affected by climate change, due to limited gene flow, predicted range restriction and loss of suitable habitat. The Southern Flinders Ranges should be a priority for conservation because it contains the highest number of individuals and genetic diversity. We recommend monitoring and adaptive management involving restoration in the Southern Flinders Ranges, potentially incorporating genetic translocations from other areas to capture diversity, to assist C. teretifolius to adapt to climate change.  相似文献   

2.
Empirical and mechanistic models have both been used to assess the potential impacts of climate change on species distributions, and each modeling approach has its strengths and weaknesses. Here, we demonstrate an approach to projecting climate‐driven changes in species distributions that draws on both empirical and mechanistic models. We combined projections from a dynamic global vegetation model (DGVM) that simulates the distributions of biomes based on basic plant functional types with projections from empirical climatic niche models for six tree species in northwestern North America. These integrated model outputs incorporate important biological processes, such as competition, physiological responses of plants to changes in atmospheric CO2 concentrations, and fire, as well as what are likely to be species‐specific climatic constraints. We compared the integrated projections to projections from the empirical climatic niche models alone. Overall, our integrated model outputs projected a greater climate‐driven loss of potentially suitable environmental space than did the empirical climatic niche model outputs alone for the majority of modeled species. Our results also show that refining species distributions with DGVM outputs had large effects on the geographic locations of suitable habitat. We demonstrate one approach to integrating the outputs of mechanistic and empirical niche models to produce bioclimatic projections. But perhaps more importantly, our study reveals the potential for empirical climatic niche models to over‐predict suitable environmental space under future climatic conditions.  相似文献   

3.
4.
5.
Bioclimatic models are the primary tools for simulating the impact of climate change on species distributions. Part of the uncertainty in the output of these models results from uncertainty in projections of future climates. To account for this, studies often simulate species responses to climates predicted by more than one climate model and/or emission scenario. One area of uncertainty, however, has remained unexplored: internal climate model variability. By running a single climate model multiple times, but each time perturbing the initial state of the model slightly, different but equally valid realizations of climate will be produced. In this paper, we identify how ongoing improvements in climate models can be used to provide guidance for impacts studies. In doing so we provide the first assessment of the extent to which this internal climate model variability generates uncertainty in projections of future species distributions, compared with variability between climate models. We obtained data on 13 realizations from three climate models (three from CSIRO Mark2 v3.0, four from GISS AOM, and six from MIROC v3.2) for two time periods: current (1985–1995) and future (2025–2035). Initially, we compared the simulated values for each climate variable (P, Tmax, Tmin, and Tmean) for the current period to observed climate data. This showed that climates simulated by realizations from the same climate model were more similar to each other than to realizations from other models. However, when projected into the future, these realizations followed different trajectories and the values of climate variables differed considerably within and among climate models. These had pronounced effects on the projected distributions of nine Australian butterfly species when modelled using the BIOCLIM component of DIVA-GIS. Our results show that internal climate model variability can lead to substantial differences in the extent to which the future distributions of species are projected to change. These can be greater than differences resulting from between-climate model variability. Further, different conclusions regarding the vulnerability of species to climate change can be reached due to internal model variability. Clearly, several climate models, each represented by multiple realizations, are required if we are to adequately capture the range of uncertainty associated with projecting species distributions in the future.  相似文献   

6.
To identify areas on the landscape that may contribute to a robust network of conservation areas, we modeled the probabilities of occurrence of several en route migratory shorebirds and wintering waterfowl in the southern Great Plains of North America, including responses to changing climate. We predominantly used data from the eB ird citizen‐science project to model probabilities of occurrence relative to land‐use patterns, spatial distribution of wetlands, and climate. We projected models to potential future climate conditions using five representative general circulation models of the Coupled Model Intercomparison Project 5 (CMIP 5). We used Random Forests to model probabilities of occurrence and compared the time periods 1981–2010 (hindcast) and 2041–2070 (forecast) in “model space.” Projected changes in shorebird probabilities of occurrence varied with species‐specific general distribution pattern, migration distance, and spatial extent. Species using the western and northern portion of the study area exhibited the greatest likelihoods of decline, whereas species with more easterly occurrences, mostly long‐distance migrants, had the greatest projected increases in probability of occurrence. At an ecoregional extent, differences in probabilities of shorebird occurrence ranged from ?0.015 to 0.045 when averaged across climate models, with the largest increases occurring early in migration. Spatial shifts are predicted for several shorebird species. Probabilities of occurrence of wintering Mallards and Northern Pintail are predicted to increase by 0.046 and 0.061, respectively, with northward shifts projected for both species. When incorporated into partner land management decision tools, results at ecoregional extents can be used to identify wetland complexes with the greatest potential to support birds in the nonbreeding season under a wide range of future climate scenarios.  相似文献   

7.
8.
Increasing evidence shows that anthropogenic climate change is affecting biodiversity. Reducing or stabilizing greenhouse gas emissions may slow global warming, but past emissions will continue to contribute to further unavoidable warming for more than a century. With obvious signs of difficulties in achieving effective mitigation worldwide in the short term at least, sound scientific predictions of future impacts on biodiversity will be required to guide conservation planning and adaptation. This is especially true in Mediterranean type ecosystems that are projected to be among the most significantly affected by anthropogenic climate change, and show the highest levels of confidence in rainfall projections. Multiple methods are available for projecting the consequences of climate change on the main unit of interest – the species – with each method having strengths and weaknesses. Species distribution models (SDMs) are increasingly applied for forecasting climate change impacts on species geographic ranges. Aggregation of models for different species allows inferences of impacts on biodiversity, though excluding the effects of species interactions. The modelling approach is based on several further assumptions and projections and should be treated cautiously. In the absence of comparable approaches that address large numbers of species, SDMs remain valuable in estimating the vulnerability of species. In this review we discuss the application of SDMs in predicting the impacts of climate change on biodiversity with special reference to the species‐rich South West Australian Floristic Region and South African Cape Floristic Region. We discuss the advantages and challenges in applying SDMs in biodiverse regions with high levels of endemicity, and how a similar biogeographical history in both regions may assist us in understanding their vulnerability to climate change. We suggest how the process of predicting the impacts of climate change on biodiversity with SDMs can be improved and emphasize the role of field monitoring and experiments in validating the predictions of SDMs.  相似文献   

9.
10.
11.
The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.  相似文献   

12.
Species distribution modelling has been widely applied in order to assess the potential impacts of climate change on biodiversity. Many methodological decisions, taken during the modelling process and forecasts, may, however, lead to a large variability in the assessment of future impacts. Using measures of species range change and turnover, the potential impacts of climate change on French stream fish species and assemblages were evaluated. Our main focus was to quantify the uncertainty in the projections of these impacts arising from four sources of uncertainty: initial datasets (Data), statistical methods [species distribution models (SDM)], general circulation models (GCM), and gas emission scenarios (GES). Several modalities of the aforementioned uncertainty sources were combined in an ensemble forecasting framework resulting in 8400 different projections. The variance explained by each source was then extracted from this whole ensemble of projections. Overall, SDM contributed to the largest variation in projections, followed by GCM, whose contribution increased over time equalling almost the proportion of variance explained by SDM in 2080. Data and GES had little influence on the variability in projections. Future projections of range change were more consistent for species with a large geographical extent (i.e., distribution along latitudinal or stream gradients) or with restricted environmental requirements (i.e., small thermal or elevation ranges). Variability in projections of turnover was spatially structured at the scale of France, indicating that certain particular geographical areas should be considered with care when projecting the potential impacts of climate change. The results of this study, therefore, emphasized that particular attention should be paid to the use of predictions ensembles resulting from the application of several statistical methods and climate models. Moreover, forecasted impacts of climate change should always be provided with an assessment of their uncertainty, so that management and conservation decisions can be taken in the full knowledge of their reliability.  相似文献   

13.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   

14.
中国植物分布模拟研究现状   总被引:4,自引:0,他引:4       下载免费PDF全文
在过去的20年里, 物种分布模型已广泛应用于动植物地理分布的模拟研究。该文以植物物种分布模拟为例, 利用中国知网、维普网以及Web of Science文献数据库的检索与统计, 分析了2000-2018年间, 中国研究人员利用各种物种分布模型对植物物种分布模拟研究的发文量、模拟模型、物种类型、数据来源、研究目的等信息。最终共收集到366篇有效文献, 分析表明2011年以来中国的物种分布模型应用发展迅速, 且以最近5年最为迅猛, 在生态学、中草药业、农业和林业等行业部门应用广泛。在使用的33种模型中, 应用最广的为最大熵模型(MaxEnt)。有一半研究的环境数据仅包含气候数据, 另一半研究不仅包含气候数据还包括地形与土壤等数据; 环境及物种数据的来源多样, 国际及本土数据库均得到使用。模拟涉及有明确清单的562个植物种, 既有木本植物(52.7%), 也有草本植物(41.8%), 其中中草药、果树、园林植物、农作物等占比较高。研究目的主要集中在过去、现在和未来气候变化对植物种分布的影响及预测, 以及物种分布评估与生物多样性评价(包括入侵植物风险评估)两大方面。预测物种潜在分布范围与气候变化影响等基础研究, 与模拟物种适生区与推广种植等应用研究并重, 物种分布模型在生态学与农业、林业和中草药业等多学科、多行业开展多种应用, 多物种、多模型和多来源数据共同参与模拟与比较, 开发新的机理性物种分布模型, 拓展新的物种分布模拟应用领域, 是今后研究的重点发展方向。  相似文献   

15.
We have learned much about the impacts of warming on the productivity and distribution of marine organisms, but less about the impact of warming combined with other environmental stressors, including oxygen depletion. Also, the combined impact of multiple environmental stressors requires evaluation at the scales most relevant to resource managers. We use the Gulf of St. Lawrence, Canada, characterized by a large permanently hypoxic zone, as a case study. Species distribution models were used to predict the impact of multiple scenarios of warming and oxygen depletion on the local density of three commercially and ecologically important species. Substantial changes are projected within 20–40 years. A eurythermal depleted species already limited to shallow, oxygen‐rich refuge habitat (Atlantic cod) may be relatively uninfluenced by oxygen depletion but increase in density within refuge areas with warming. A more stenothermal, deep‐dwelling species (Greenland halibut) is projected to lose ~55% of its high‐density areas under the combined impacts of warming and oxygen depletion. Another deep‐dwelling, more eurythermal species (Northern shrimp) would lose ~4% of its high‐density areas due to oxygen depletion alone, but these impacts may be buffered by warming, which may increase density by 8% in less hypoxic areas, but decrease density by ~20% in the warmest parts of the region. Due to local climate variability and extreme events, and that our models cannot project changes in species sensitivity to hypoxia with warming, our results should be considered conservative. We present an approach to effectively evaluate the individual and cumulative impacts of multiple environmental stressors on a species‐by‐species basis at the scales most relevant to managers. Our study may provide a basis for work in other low‐oxygen regions and should contribute to a growing literature base in climate science, which will continue to be of support for resource managers as climate change accelerates.  相似文献   

16.
Aim We consider three questions. (1) How different are the predicted distribution maps when climate‐only and climate‐plus‐terrain models are developed from high‐resolution data? (2) What are the implications of differences between the models when predicting future distributions under climate change scenarios, particularly for climate‐only models at coarse resolution? (3) Does the use of high‐resolution data and climate‐plus‐terrain models predict an increase in the number of local refugia? Location South‐eastern New South Wales, Australia. Methods We developed two species distribution models for Eucalyptus fastigata under current climate conditions using generalized additive modelling. One used only climate variables as predictors (mean annual temperature, mean annual rainfall, mean summer rainfall); the other used both climate and landscape (June daily radiation, topographic position, lithology, nutrients) variables as predictors. Predictions of the distribution under current climate and climate change were then made for both models at a pixel resolution of 100 m. Results The model using climate and landscape variables as predictors explained a significantly greater proportion of the deviance than the climate‐only model. Inclusion of landscape variables resulted in the prediction of much larger areas of existing optimal habitat. An overlay of predicted future climate on the current climate space indicated that extrapolation of the statistical models was not occurring and models were therefore more robust. Under climate change, landscape‐defined refugia persisted in areas where the climate‐only model predicted major declines. In areas where expansion was predicted, the increase in optimal habitat was always greater with landscape predictors. Recognition of extensive optimal habitat conditions and potential refugia was dependent on the use of high‐resolution landscape data. Main conclusions Using only climate variables as predictors for assessing species responses to climate change ignores the accepted conceptual model of plant species distribution. Explicit statements justifying the selection of predictors based on ecological principles are needed. Models using only climate variables overestimate range reduction under climate change and fail to predict potential refugia. Fine‐scale‐resolution data are required to capture important climate/landscape interactions. Extrapolation of statistical models to regions in climate space outside the region where they were fitted is risky.  相似文献   

17.
Climate envelope models (CEMs) have been used to predict the distribution of species under current, past, and future climatic conditions by inferring a species' environmental requirements from localities where it is currently known to occur. CEMs can be evaluated for their ability to predict current species distributions but it is unclear whether models that are successful in predicting current distributions are equally successful in predicting distributions under different climates (i.e. different regions or time periods). We evaluated the ability of CEMs to predict species distributions under different climates by comparing their predictions with those obtained with a mechanistic model (MM). In an MM the distribution of a species is modeled based on knowledge of a species' physiology. The potential distributions of 100 plant species were modeled with an MM for current conditions, a past climate reconstruction (21 000 years before present) and a future climate projection (double preindustrial CO2 conditions). Point localities extracted from the currently suitable area according to the MM were used to predict current, future, and past distributions with four CEMs covering a broad range of statistical approaches: Bioclim (percentile distributions), Domain (distance metric), GAM (general additive modeling), and Maxent (maximum entropy). Domain performed very poorly, strongly underestimating range sizes for past or future conditions. Maxent and GAM performed as well under current climates as under past and future climates. Bioclim slightly underestimated range sizes but the predicted ranges overlapped more with the ranges predicted with the MM than those predicted with GAM did. Ranges predicted with Maxent overlapped most with those produced with the MMs, but compared with the ranges predicted with GAM they were more variable and sometimes much too large. Our results suggest that some CEMs can indeed be used to predict species distributions under climate change, but individual modeling approaches should be validated for this purpose, and model choice could be made dependent on the purpose of a particular study.  相似文献   

18.
Background and Aims A worldwide increase in tree decline and mortality has been linked to climate change and, where these represent foundation species, this can have important implications for ecosystem functions. This study tests a combined approach of phylogeographic analysis and species distribution modelling to provide a climate change context for an observed decline in crown health and an increase in mortality in Eucalyptus wandoo, an endemic tree of south-western Australia.Methods Phylogeographic analyses were undertaken using restriction fragment length polymorphism analysis of chloroplast DNA in 26 populations across the species distribution. Parsimony analysis of haplotype relationships was conducted, a haplotype network was prepared, and haplotype and nucleotide diversity were calculated. Species distribution modelling was undertaken using Maxent models based on extant species occurrences and projected to climate models of the last glacial maximum (LGM).Key Results A structured pattern of diversity was identified, with the presence of two groups that followed a climatic gradient from mesic to semi-arid regions. Most populations were represented by a single haplotype, but many haplotypes were shared among populations, with some having widespread distributions. A putative refugial area with high haplotype diversity was identified at the centre of the species distribution. Species distribution modelling showed high climatic suitability at the LGM and high climatic stability in the central region where higher genetic diversity was found, and low suitability elsewhere, consistent with a pattern of range contraction.Conclusions Combination of phylogeography and paleo-distribution modelling can provide an evolutionary context for climate-driven tree decline, as both can be used to cross-validate evidence for refugia and contraction under harsh climatic conditions. This approach identified a central refugial area in the test species E. wandoo, with more recent expansion into peripheral areas from where it had contracted at the LGM. This signature of contraction from lower rainfall areas is consistent with current observations of decline on the semi-arid margin of the range, and indicates low capacity to tolerate forecast climatic change. Identification of a paleo-historical context for current tree decline enables conservation interventions to focus on maintaining genetic diversity, which provides the evolutionary potential for adaptation to climate change.  相似文献   

19.
Aim The dimensions of species vulnerability to climate change are complex, and this impedes efforts to provide clear advice for conservation planning. In this study, we used a formal framework to assess species vulnerability to climate change quantifying exposure, sensitivity and adaptive capacity and then used this information to target areas for reducing vulnerability at a regional scale. Location The 6500‐km2 Mount Lofty Ranges region in South Australia. Methods We quantified the vulnerability of 171 plant species in a fragmented yet biologically important agro‐ecological landscape, typical of many temperate zones globally. We specified exposure, using three climate change scenarios; sensitivity, as the adverse impact of climate change on species’ spatial distribution; and adaptive capacity, as the ability of species to migrate calculated using dispersal kernels. Priority areas for reducing vulnerability were then identified by incorporating these various components into a single priority index. Results Climate change had a variable impact on species distributions. Those species whose range decreased or shifted geographically were attributed higher sensitivity than those species that increased geographic range or remained unchanged. The ability to adapt to range changes in response to shifting climates varies both spatially and between species. Areas of highest priority for reducing vulnerability were found at higher altitudes and lower latitudes with increasing severity of climate change. Main conclusions Our study demonstrates the use of a single spatially explicit index that identifies areas in the landscape for targeting specific conservation and restoration actions to reduce species vulnerability to climate change. Our index can be transferred to other regions around the world in which climate change poses an increasing threat to native species.  相似文献   

20.
Aim Predictive species distribution modelling is a useful tool for extracting the maximum amount of information from biological collections and floristic inventories. However, in many tropical regions records are only available from a small number of sites. This can limit the application of predictive modelling, particularly in the case of rare and endangered species. We aim to address this problem by developing a methodology for defining and mapping species pools associated with climatic variables in order to investigate potential species turnover and regional species loss under climate change scenarios combined with anthropogenic disturbance. Location The study covered an area of 6800 km2 in the highlands of Chiapas, southern Mexico. Methods We derived climatically associated species pools from floristic inventory data using multivariate analysis combined with spatially explicit discriminant analysis. We then produced predictive maps of the distribution of tree species pools using data derived from 451 inventory plots. After validating the predictive power of potential distributions against an independent historical data set consisting of 3105 botanical collections, we investigated potential changes in the distribution of tree species resulting from forest disturbance and climate change. Results Two species pools, associated with moist and cool climatic conditions, were identified as being particularly threatened by both climate change and ongoing anthropogenic disturbance. A change in climate consistent with low‐emission scenarios of general circulation models was shown to be sufficient to cause major changes in equilibrium forest composition within 50 years. The same species pools were also found to be suffering the fastest current rates of deforestation and internal forest disturbance. Disturbance and deforestation, in combination with climate change, threaten the regional distributions of five tree species listed as endangered by the IUCN. These include the endemic species Magnolia sharpii Miranda and Wimmeria montana Lundell. Eleven vulnerable species and 34 species requiring late successional conditions for their regeneration could also be threatened. Main conclusions Climatically associated species pools can be derived from floristic inventory data available for tropical regions using methods based on multivariate analysis even when data limitations prevent effective application of individual species modelling. Potential consequences of climate change and anthropogenic disturbance on the species diversity of montane tropical forests in our study region are clearly demonstrated by the method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号