首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
p53, p63 and p73--solos, alliances and feuds among family members   总被引:7,自引:0,他引:7  
p53 controls crucial stress responses that play a major role in preventing malignant transformation. Hence, inactivation of p53 is the single most common genetic defect in human cancer. With the recent discovery of two close structural homologs, p63 en p73, we are getting a broader view of a fascinating gene family that links developmental biology with tumor biology. While unique roles are apparent for each of these genes, intimate biochemical cross-talk among family members suggests a functional network that might influence many different aspects of individual gene action. The most interesting part of this family network derives from the fact that the p63 and p73 genes are based on the "two-genes-in-one" idea, encoding both agonist and antagonist in the same open reading frame. In this review, we attempt to present an overview of the current status of this fast moving field.  相似文献   

2.
3.
Control of the G1/S-phase transition as well as angiogenic switch are two of the most studied mechanisms in cancer. The current study examined the correlation between the immunohistochemical expression of pRb2/p130, VEGF, EZH2, p53, p16, p21waf-1, p27, and PCNA in Barrett's esophagus (BE). Overall, p53 showed a much higher expression in BE patients (up to 50%) than in controls (1-10%) (P < 0.005). Also p21 showed a downregulation in BE when compared to normal esophagus (70% of cells vs. 65%), but the difference did not show any statistical significance (P = 0.45). pRb2/p130 was detected in 80% of cells in normal controls, but showed positive in only 20% of cells in BE biopsies. Additionally, Rb2/p130 expression was inversely correlated to that of VEGF, EZH2, and PCNA (P < 0.0001, P = 0.0032, P < 0.001, respectively). p27 stained more intensely and in a widespread manner (70%) cells in normal esophageal tissues but about only 30% in BE samples (P < 0.001). Lastly, in accordance with other reports, we also found p16 expressed by immunohistochemistry at high levels in normal controls and at low levels in BE (P < 0.001). In conclusion, p16, p21, p27, and p53 staining confirmed previously published data. Interestingly, pRb2/p130 expression was found significantly decreased in metaplastic epithelium compared to normal controls and showed significant inverse correlation with the expression of other markers, such as VEGF, EZH2, and PCNA. These data, taken together, indicate that these molecular events occurring in Barrett's metaplasia (BM) may represent one of the many steps taking place during esophageal malignant progression such as impairment of cell-cycle control, altered differentiation, and unbalanced angiogenesis.  相似文献   

4.
A new family of proteins (annexins) that bind to membranes at micromolar free Ca2+ has been recognized. Its members include an EGF-receptor kinase substrate (p35), a retroviral tyrosine kinase substrate (p36), the liver protein endonexin (p32) and an electric ray protein, calelectrin. Each protein contains four sequence repeats with a further 2-fold internal homology. Using the predicted secondary structure and pattern of conserved hydrophobic residues in each repeat, we have built a three-dimensional model that is largely isostructural with the known molecular conformation of bovine intestinal calcium-binding protein. The final (energy-refined) model had a core formed from the conserved hydrophobic residues. It differed from ICaBP principally in the length of the two Ca2+-binding loops with only one loop being able to bind. The model suggests a mechanism for interaction of these new Ca2+-binding proteins with phospholipid bilayers.  相似文献   

5.
Cytokinesis in Saccharomyces cerevisiae occurs by the concerted action of the actomyosin system and septum formation. Here we report on the roles of HOF1, BNI1, and BNR1 in cytokinesis, focusing on Hof1p. Deletion of HOF1 causes a temperature-sensitive defect in septum formation. A Hof1p ring forms on the mother side of the bud neck in G2/M, followed by the formation of a daughter-side ring. Around telophase, Hof1p is phosphorylated and the double rings merge into a single ring that contracts slightly and may colocalize with the actomyosin structure. Upon septum formation, Hof1p splits into two rings, disappearing upon cell separation. Hof1p localization is dependent on septins but not Myo1p. Synthetic lethality suggests that Bni1p and Myo1p belong to one functional pathway, whereas Hof1p and Bnr1p belong to another. These results suggest that Hof1p may function as an adapter linking the primary septum synthesis machinery to the actomyosin system. The formation of the actomyosin ring is not affected by bni1Delta, hof1Delta, or bnr1Delta. However, Myo1p contraction is affected by bni1Delta but not by hof1Delta or bnr1Delta. In bni1Delta cells that lack the actomyosin contraction, septum formation is often slow and asymmetric, suggesting that actomyosin contraction may provide directionality for efficient septum formation.  相似文献   

6.
The small GTPase Ran/Gsp1p plays an essential role in nuclear trafficking of macromolecules, as Ran/Gsp1p regulates many transport processes across the nuclear pore complex (NPC). To determine the role of nucleoporins in the generation of the nucleocytoplasmic Gsp1p concentration gradient, mutations in various nucleoporin genes were analyzed in the yeast Saccharomyces cerevisiae. We show that the nucleoporins Nup133p, Rat2p/Nup120p, Nup85p, Nic96p, and the enzyme acetyl-CoA carboxylase (MTR7) control the distribution and cellular concentration of Gsp1p. At the restrictive temperature the reporter protein GFP-Gsp1p, which is too large to diffuse across the nuclear envelope, fails to concentrate in nuclei of nup133delta, rat2-1, nup85delta, nic96deltaC, and mtr7-1 cells, demonstrating that GFP-Gsp1p nuclear import is deficient. In addition, the concentration of Gsp1p is severely reduced in mutants nup133Delta and mtr7-1 under these conditions. We have now identified the molecular mechanisms that contribute to the dissipation of the Gsp1p concentration gradient in these mutants. Loss of the Gsp1p gradient in nup133delta and rat2-1 can be explained by reduced binding of the Gsp1p nuclear carrier Ntf2p to NPCs. Likewise, nup85delta cells that mislocalize GFP-Gsp1p at the permissive as well as non-permissive temperature have a diminished association of Ntf2p-GFP with nuclear envelopes under both conditions. Moreover, under restrictive conditions Prp20p, the guanine nucleotide exchange factor for Gsp1p, mislocalizes to the cytoplasm in nup85delta, nic96deltaC, and mtr7-1 cells, thereby contributing to a collapse of the Gsp1p gradient. Taken together, components of the NPC subcomplex containing Rat2p/Nup120p, Nup133p, and Nup85p, in addition to proteins Nic96p and Mtr7p, are shown to be crucial for the formation of a nucleocytoplasmic Gsp1p gradient.  相似文献   

7.
A telomere YAC clone containing the most distal 115 kb of chromosome arm 4p has been previously isolated. This clone is of particular interest as it spans a potential candidate region for the Huntington disease gene. The YAC was subcloned into a phage vector, and a high-resolution restriction map extending to within 13 kb of the telomere was constructed. In situ hybridization of the YAC to human metaphase spreads gives a peak of hybridization on 4pter but also an increase in the number of signals close to several other telomeres. Where possible, these results were investigated further by the hybridization of probes from the YAC to somatic cell hybrids containing single human chromosomes. This analysis indicates that the most telomeric 60 kb of chromosome arm 4p is homologous to telomeric regions on 13p, 15p, 21p, and 22p. The extent of this homology makes it less likely that the mutation for Huntington's disease is located within the telomere YAC clone.  相似文献   

8.
HIV-1 Gag protein precursor p55, and its processed products, p17, p24, and p15 were overproduced in Escherichia coli and purified to near homogeneity. To study the antigenic properties and the potentiality as the diagnostic and prognostic reagents, varying amounts of the purified Gag proteins were dotted onto the polyvinylidene difluoride membrane and reacted with 40 sera of HIV-1-infected individuals (35 AC, 1 ARC, and 4 AIDS patients) and 10 sera of normal healthy donors. p55 reacted with 40 (100%) sera of HIV-1 carriers, while p17, p24, and p15 reacted with 37 (92.5%), 35 (87.5%) and 34 (85%) of the 40 sera of HIV-1 carriers, respectively. On the whole, the reaction of p55 was especially strong and that of p15 was the weakest. p55 showed the strongest reaction among the four Gag proteins with all specimens, and it showed a positive reaction with a carrier serum with which none of the processed Gag proteins showed a positive reaction. Therefore, p55 is the most useful antigen among the four Gag proteins for detection of the Gag antibodies and may even be one of the most useful antigens for the diagnosis of HIV-1 infection.  相似文献   

9.
The Saccharomyces cerevisiae proteins Sec34p and Sec35p are components of a large cytosolic complex involved in protein transport through the secretory pathway. Characterization of a new secretion mutant led us to identify SEC36, which encodes a new component of this complex. Sec36p binds to Sec34p and Sec35p, and mutation of SEC36 disrupts the complex, as determined by gel filtration. Missense mutations of SEC36 are lethal with mutations in COPI subunits, indicating a functional connection between the Sec34p/sec35p complex and the COPI vesicle coat. Affinity purification of proteins that bind to Sec35p-myc allowed identification of two additional proteins in the complex. We call these two conserved proteins Sec37p and Sec38p. Disruption of either SEC37 or SEC38 affects the size of the complex that contains Sec34p and Sec35p. We also examined COD4, COD5, and DOR1, three genes recently reported to encode proteins that bind to Sec35p. Each of the eight genes that encode components of the Sec34p/sec35p complex was tested for its contribution to cell growth, protein transport, and the integrity of the complex. These tests indicate two general types of subunits: Sec34p, Sec35p, Sec36p, and Sec38p seem to form the essential core of a complex to which Sec37p, Cod4p, Cod5p, and Dor1p seem to be peripherally attached.  相似文献   

10.
Structure, function and regulation of p63 and p73   总被引:12,自引:0,他引:12  
  相似文献   

11.
12.
The yeast Saccharomyces cerevisiae contains three types of N(alpha)-terminal acetyltransferases, NatA, NatB, and NatC, with each having a different catalytic subunit, Ard1p, Nat3p, and Mak3p, respectively, and each acetylating different sets of proteins with different N(alpha)-terminal regions. We show that the NatC N(alpha)-terminal acetyltransferases contains Mak10p and Mak31p subunits, in addition to Mak3p, and that all three subunits are associated with each other to form the active complex. Genetic deletion of any one of the three subunits results in identical abnormal phenotypes, including the lack of acetylation of a NatC substrate in vivo, diminished growth at 37 degrees C on media containing nonfermentable carbon sources, and the lack of maintenance or assembly of the L-A dsRNA viral particle.  相似文献   

13.

Background  

Cyclins regulate the cell cycle in association with cyclin dependent kinases (CDKs). CDKs are under inhibitory control of cyclin dependent kinase inhibitors (CDKIs).  相似文献   

14.
Six new members of the yeast p24 family have been identified and characterized. These six genes, named ERP1-ERP6 (for Emp24p- and Erv25p-related proteins) are not essential, but deletion of ERP1 or ERP2 causes defects in the transport of Gas1p, in the retention of BiP, and deletion of ERP1 results in the suppression of a temperature-sensitive mutation in SEC13 encoding a COPII vesicle coat protein. These phenotypes are similar to those caused by deletion of EMP24 or ERV25, two previously identified genes that encode related p24 proteins. Genetic and biochemical studies demonstrate that Erp1p and Erp2p function in a heteromeric complex with Emp24p and Erv25p.  相似文献   

15.
ASPP1 and ASPP2 are activators of p53-dependent apoptosis, whereas iASPP is an inhibitor of p53. Binding assays showed differential binding for C-terminal domains of iASPP and ASPP2 to the core domains of p53 family members p53, p63, and p73. We also determined a high-resolution crystal structure for the C terminus of iASPP, comprised of four ankyrin repeats and an SH3 domain. The crystal lattice revealed an interaction between eight sequential residues in one iASPP molecule and the p53-binding site of a neighboring molecule. ITC confirmed that a peptide corresponding to the crystallographic interaction shows specific binding to iASPP. The contributions of ankyrin repeat residues, in addition to those of the SH3 domain, generate distinctive architecture at the p53-binding site suitable for inhibition by small molecules. These results suggest that the binding properties of iASPP render it a target for antitumor therapeutics and provide a peptide-based template for compound design.  相似文献   

16.
17.
Telomeres are the physical ends of eukaryotic chromosomes. They are important for maintaining the integrity of chromosomes and this function is mediated through a number of protein factors. In Saccharomyces cerevisiae, Cdc13p binds to telomeres and affects telomere maintenance, telomere position effects and cell cycle progression through G2/M phase. We identified four genes encoding Pol1p, Sir4p, Zds2p and Imp4p that interact with amino acids 1–252 of Cdc13p using a yeast two-hybrid screening system. Interactions of these four proteins with Cdc13p were through direct protein–protein interactions as judged by in vitro pull-down assays. Direct protein–protein interactions were also observed between Pol1p–Imp4p, Pol1p–Sir4p and Sir4p–Zds2p, whereas no interaction was detected between Imp4p–Sir4p and Zds2p–Imp4p, suggesting that protein interactions were specific in the complex. Pol1p was shown to interact with Cdc13p. Here we show that Zds2p and Imp4p also form a stable complex with Cdc13p in yeast cells, because Zds2p and Imp4p co-immunoprecipitate with Cdc13p, whereas Sir4p does not. The function of the N-terminal 1–252 region of Cdc13p was also analyzed. Expressing Cdc13(252–924)p, which lacks amino acids 1–252 of Cdc13p, causes defects in progressive cell growth and eventually arrested in the G2/M phase of the cell cycle. These growth defects were not caused by progressive shortening of telomeres because telomeres in these cells were long. Point mutants in the amino acids 1–252 region of Cdc13p that reduced the interaction between Cdc13p and its binding proteins resulted in varying level of defects in cell growth and telomeres. These results indicate that the interactions between Cdc13(1–252)p and its binding proteins are important for the function of Cdc13p in telomere regulation and cell growth. Together, our results provide evidence for the formation of a Cdc13p-mediated telosome complex through its N-terminal region that is involved in telomere maintenance, telomere length regulation and cell growth control.  相似文献   

18.
19.

Purpose

The purpose of this study is to clarify the prognostic significance of expression of Jab1, p16, p21, p62, Ki67 and Skp2 in soft tissue sarcomas (STS). Optimised treatment of STS requires better identification of high risk patients who will benefit from adjuvant therapy. The prognostic significance of Jab1, p16, p21, p62, Ki67 and Skp2 in STS has not been sufficiently investigated.

Experimental Design

Tissue microarrays from 193 STS patients were constructed from duplicate cores of viable and representative neoplastic tumor areas. Immunohistochemistry was used to evaluate the expression of Jab1, p16, p21, p62, Ki67 and Skp2.

Results

In univariate analyses, high tumor expression of Ki67 (P = 0.007) and Skp2 (P = 0.050) correlated with shorter disease-specific survival (DSS). In subgroup analysis, a correlation between Skp2 and DSS was seen in patients with malignancy grade 1 or 2 (P = 0.027), tumor size >5 cm (P = 0.018), no radiotherapy given (P = 0.029) and no chemotherapy given (P = 0.017). No such relationship was apparent for Jab1, p16, p21 and p62; but p62 showed a positive correlation to malignancy grade (P = 0.019). Ki67 was strongly positively correlated to malignancy grade (P = 0.001). In multivariate analyses, Skp2 was an independent negative prognostic factor for DSS in women (P = 0.009) and in patients without administered chemotherapy or radiotherapy (P = 0.026).

Conclusions

Increased expression of Skp2 in patients with soft tissue sarcomas is an independent negative prognostic factor for disease-specific survival in women and in patients not administered chemotherapy or radiotherapy. Besides, further studies are warranted to explore if adjuvant chemotherapy or radiotherapy improve the poor prognosis of STS with high Skp2 expression.  相似文献   

20.
BACKGROUND: p51 (p73L/p63/p40/KET), a recently isolated novel p53 homologue, binds to p53-responsive elements to upregulate some p53 target genes and has been suggested to share partially overlapping functions with p53. p51 may be a promising candidate target molecule for anti-cancer therapy. METHODS: In this study, we adenovirally transduced p51A cDNA into human lung, gastric and pancreatic cancer cells and analyzed the intracellular function of p51 in anti-oncogenesis in vitro and in vivo. RESULTS: Overexpression of p51A revealed an anti-proliferative effect in vitro in all the cancer cells examined in this study. The anchorage-dependent and -independent cell growth of EBC1 cells carrying mutations in both p51 and p53 was suppressed and significant apoptosis following adenoviral transduction with p51 and/or p53 was seen. This growth suppression was cooperatively enhanced by the combined infection with adenoviral vectors encoding both p51 and p53. Furthermore, p51 activated several, but not all, p53-inducible genes, indicating that the mechanisms controlling p51- and p53-mediated tumor suppression differed. CONCLUSIONS: Our observations indicate that, although p51 exhibited reduced anti-oncogenetic effects compared with p53, it cooperatively enhanced the anti-tumor effects of p53. Our results suggest that p51 functions as a tumor suppressor in human cancer cells in vitro and in vivo and may be useful as a potential tool for cancer gene therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号