首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Klebsiella pneumoniae is an important cause of community‐acquired and nosocomial pneumonia. Subversion of inflammation is essential for pathogen survival during infection. Evidence indicates that K. pneumoniae infections are characterized by lacking an early inflammatory response although the molecular bases are currently unknown. Here we unveil a novel strategy employed by a pathogen to counteract the activation of inflammatory responses. K. pneumoniae attenuates pro‐inflammatory mediators‐induced IL‐8 secretion. Klebsiella antagonizes the activation of NF‐κB via the deubiquitinase CYLD and blocks the phosphorylation of mitogen‐activated protein kinases (MAPKs) via the MAPK phosphatase MKP‐1. Our studies demonstrate that K. pneumoniae has evolved the capacity to manipulate host systems dedicated to control the immune balance. To exert this anti‐inflammatory effect, Klebsiella engages NOD1. In NOD1 knock‐down cells, Klebsiella neither induces the expression of CYLD and MKP‐1 nor blocks the activation of NF‐κB and MAPKs. Klebsiella inhibits Rac1 activation; and inhibition of Rac1 activity triggers a NOD1‐mediated CYLD and MKP‐1 expression which in turn attenuates IL‐1β‐induced IL‐8 secretion. A capsule (CPS) mutant does not attenuate the inflammatory response. However, purified CPS neither reduces IL‐1β‐induced IL‐8 secretion nor induces the expression of CYLD and MKP‐1 thereby indicating that CPS is necessary but not sufficient to attenuate inflammation.  相似文献   

2.
We have recently described the response of human brain pericytes to lipopolysaccharide (LPS) through toll‐like receptor 4 (TLR4). However, Gram‐negative pathogen‐associated molecular patterns include not only LPS but also peptidoglycan (PGN). Given that the presence of co‐purified PGN in the LPS preparation previously used could not be ruled out, we decided to analyse the expression of the intracellular PGN receptors NOD1 and NOD2 in HBP and compare the responses to their cognate agonists and ultrapure LPS. Our findings show for the first time that NOD1 is expressed in pericytes, whereas NOD2 expression is barely detectable. The NOD1 agonist C12‐iE‐DAP induced IL6 and IL8 gene expression by pericytes as well as release of cytokines into culture supernatant. Moreover, we demonstrated the synergistic effects of NOD1 and TLR4 agonists on the induction of IL8. Using NOD1 silencing in HBP, we showed a requirement for C12‐iE‐DAP‐dependent signalling. Finally, we could discriminate NOD1 and TLR4 pathways in pericytes by pharmacological targeting of RIPK2, a kinase involved in NOD1 but not in TLR4 signalling cascade. p38 MAPK and NF‐κB appear to be downstream mediators in the NOD1 pathway. In summary, these results indicate that pericytes can sense Gram‐negative bacterial products by both NOD1 and TLR4 receptors, acting through distinct pathways. This provides new insight about how brain pericytes participate in the inflammatory response and may have implications for disease management.  相似文献   

3.
Chlamydia pneumoniae is an obligate intracellular Gram‐negative bacterium with a unique biphasic developmental cycle that can cause persistent infections. In humans, Chlamydia causes airway infection and has been implicated in chronic inflammatory diseases, such as asthma and atherosclerosis. In addition, recent studies demonstrated that patients with severe periodontitis can harbor C. pneumoniae, which can increase the risk for a host inflammatory response with weighty clinical sequelae. Previous studies have established that periodontal pathogenic bacteria (i.e. Gram‐negative bacteria) can induce the synthesis and release of cytokines and other inflammatory mediators in human gingival fibroblasts. HGF are resident cells of the periodontium that respond to receptor stimulation by producing a variety of substances including cytokines and growth factors. Our results demonstrate that after 48 hr of incubation with viable C. pneumoniae HGF showed a proliferative response, as seen by both colorimetric MTT assay and direct cell count (30% and 35%, respectively). In addition, HGF incubated with viable or UV light‐inactivated C. pneumoniae organisms showed an increase in the levels of IL‐6 and IL‐10, but not IL‐4; on the contrary, HGF infected with heat‐killed bacteria did not show a significant production of any of the cytokines considered. In conclusion, the present study suggests that C. pneumoniae may modulate the expression of IL‐6 and IL‐10 by human gingival fibroblasts. Further studies are warranted to clarify the molecular mechanisms of C. pneumoniae in the regulation of cytokine expression by host cells and to elaborate the relevant clinical implications.  相似文献   

4.
5.
Patients suffering from diabetes mellitus (DM) are at a severe risk of atherothrombosis. Early growth response (Egr)‐1 is well characterized as a central mediator in vascular pathophysiology. We tested whether valsartan independent of Ang II type 1 receptor (AT1R) can reduce tissue factor (TF) and toll‐like receptor (TLR)‐2 and ‐4 by regulating Egr‐1 in THP‐1 cells and aorta in streptozotocin‐induced diabetic mice. High glucose (HG, 15 mM) increased expressions of Egr‐1, TF, TLR‐2 and ‐4 which were significantly reduced by valsartan. HG increased Egr‐1 expression by activation of PKC and ERK1/2 in THP‐1 cells. Valsartan increased AMPK phosphorylation in a concentration and time‐dependent manner via activation of LKB1. Valsartan inhibited Egr‐1 without activation of PKC or ERK1/2. The reduced expression of Egr‐1 by valsartan was reversed by either silencing Egr‐1, or compound C, or DN‐AMPK‐transfected cells. Valsartan inhibited binding of NF‐κB and Egr‐1 to TF promoter in HG condition. Furthermore, valsartan reduced inflammatory cytokine (TNF‐α, IL‐6 and IL‐1β) production and NF‐κB activity in HG‐activated THP‐1 cells. Interestingly, these effects of valsartan were not affected by either silencing AT1R in THP‐1 cells or CHO cells, which were devoid of AT1R. Importantly, administration of valsartan (20 mg/kg, i.p) for 8 weeks significantly reduced plasma TF activity, expression of Egr‐1, TLR‐2, ‐4 and TF in thoracic aorta and improved glucose tolerance of streptozotocin‐induced diabetic mice. Taken together, we concluded that valsartan may reduce atherothrombosis in diabetic conditions through AMPK/Egr‐1 regulation.  相似文献   

6.

Background

Intracellular pathogens have developed elaborate strategies for silent infection of preferred host cells. Chlamydia pneumoniae is a common pathogen in acute infections of the respiratory tract (e.g. pneumonia) and associated with chronic lung sequelae in adults and children. Within the lung, alveolar macrophages and polymorph nuclear neutrophils (PMN) are the first line of defense against bacteria, but also preferred host phagocytes of chlamydiae.

Methodology/Principal Findings

We could show that C. pneumoniae easily infect and hide inside neutrophil granulocytes until these cells become apoptotic and are subsequently taken up by macrophages. C. pneumoniae infection of macrophages via apoptotic PMN results in enhanced replicative activity of chlamydiae when compared to direct infection of macrophages, which results in persistence of the pathogen. Inhibition of the apoptotic recognition of C. pneumoniae infected PMN using PS- masking Annexin A5 significantly lowered the transmission of chlamydial infection to macrophages. Transfer of apoptotic C. pneumoniae infected PMN to macrophages resulted in an increased TGF-ß production, whereas direct infection of macrophages with chlamydiae was characterized by an enhanced TNF-α response.

Conclusions/Significance

Taken together, our data suggest that C. pneumoniae uses neutrophil granulocytes to be silently taken up by long-lived macrophages, which allows for efficient propagation and immune protection within the human host.  相似文献   

7.
8.
Streptococcus pneumoniae is an important pathogen of pneumonia in human. Human alveolar epithelium acts as an effective barrier and is an active participant in host defense against invasion of bacterial by production of various mediators. Sirtuin 1 (SIRT1), the prototypic class III histone deacetylase, is involved in the molecular control of lifespans and immune responses. This study aimed at examining the role of SIRT1 in mediating S. pneumoniae-induced human β-defensin-2 (hBD2) and interleukin-8(IL-8) expression in the alveolar epithelial cell line A549 and the underlying mechanisms involved. A549 cells were infected with S. pneumoniae for indicated times. Exposure of A549 cells to S. pneumoniae increased the expressions of SIRT1 protein, hBD2 and IL-8 mRNA, and protein. The SIRT1 activator resveratrol enhanced S. pneumoniae-induced gene expression of hBD2 but decreased IL-8 mRNA levels. Blockade of SIRT1 activity by the SIRT1 inhibitors nicotinamide reduced S. pneumoniae-induced hBD2 mRNA expression but increased its stimulatory effects on IL-8 mRNA. S. pneumoniae-induced activation of extracellular signal-regulated kinase (ERK) and p38 mitogen-activated protein kinase (MAPK). SIRT1 expression was attenuated by selective inhibitors of ERK and p38 MAPK. The hBD2 mRNA production was decreased by pretreatment with p38 MAPK inhibitor but not with ERK inhibitor, whereas the IL-8 mRNA expression was controlled by phosphorylation of ERK. These results suggest that SIRT1 mediates the induction of hBD2 and IL-8 gene expression levels in A549 cell by S. pneumoniae. SIRT1 may play a key role in host immune and defense response in A549.  相似文献   

9.
10.
11.
Mucins are high molecular weight proteins that make up the major components of mucus. Hypersecretion of mucus is a feature of several chronic inflammatory airway diseases. MUC8 is an important component of airway mucus, and its gene expression is upregulated in nasal polyp epithelium. Little is known about the molecular mechanisms of MUC8 gene expression. We first observed overexpression of activator protein‐2alpha (AP2α) in human nasal polyp epithelium. We hypothesized that AP2α overexpression in nasal polyp epithelium correlates closely with MUC8 gene expression. We demonstrated that phorbol 12‐myristate 13‐acetate (PMA) treatment of the airway epithelial cell line NCI‐H292 increases MUC8 gene and AP2α expression. In this study, we sought to determine which signal pathway is involved in PMA‐induced MUC8 gene expression. The results show that the protein kinase C and mitogen‐activating protein/ERK kinase (MAPK) pathways modulate MUC8 gene expression. PD98059 or ERK1/2 siRNA and RO‐31‐8220 or PKC siRNA significantly suppress AP2α as well as MUC8 gene expression in PMA‐treated cells. To verify the role of AP2α, we specifically knocked down AP2α expression with siRNA. A significant AP2α knock‐down inhibited PMA‐induced MUC8 gene expression. While dominant negative AP2α decreased PMA‐induced MUC8 gene expression, overexpressing wildtype AP2α increased MUC8 gene expression. Furthermore, using lentiviral vectors for RNA interference in human nasal polyp epithelial cells, we confirmed an essential role for AP2α in MUC8 gene expression. From these results, we concluded that PMA induces MUC8 gene expression through a mechanism involving PKC, ERK1/2, and AP2α activation in human airway epithelial cells. J. Cell. Biochem. 110: 1386–1398, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
13.
This study tested the hypothesis that melatonin (Mel) therapy preserved the brain architectural and functional integrity against ischaemic stroke (IS) dependently through suppressing the inflammatory/oxidative stress downstream signalling pathways. Adult male B6 (n = 6 per each B6 group) and TLR4 knockout (ie TLR4?/?) (n = 6 per each TLR4?/? group) mice were categorized into sham control (SCB6), SCTLR4?/?, ISB6, ISTLR4?/?, ISB6 + Mel (i.p. daily administration) and ISTLR4?/? + Mel (i.p. daily administration). By day 28 after IS, the protein expressions of inflammatory (HMBG1/TLR2/TLR4/MAL/MyD88/RAM TRIF/TRAF6/IKK‐α/p‐NF‐κB/nuclear‐NF‐κB/nuclear‐IRF‐3&7/IL‐1β/IL‐6/TNF‐α/IFN‐γ) and oxidative stress (NOX‐1/NOX‐2/ASK1/p‐MKK4&7/p‐JNK/p‐c‐JUN) downstream pathways as well as mitochondrial‐damaged markers (cytosolic cytochrome C/cyclophilin D/SRP1/autophagy) were highest in group ISB6, lowest in groups SCB6 and SCTLR4?/?, lower in group ISTLR4?/? + Mel than in groups ISTLR4?/? and ISB6 + Mel and lower in group ISB6 + Mel than in group ISTLR4?/? (all P < .0001). The brain infarct volume, brain infarct area and the number of inflammatory cells in brain (CD14/F4‐88) and in circulation (MPO+//Ly6C+/CD11b+//Ly6G+/CD11b+) exhibited an identical pattern, whereas the neurological function displayed an opposite pattern of inflammatory protein expression among the six groups (all P < .0001). In conclusion, TLR inflammatory and oxidative stress signallings played crucial roles for brain damage and impaired neurological function after IS that were significantly reversed by Mel therapy.  相似文献   

14.
Vibrio parahaemolyticus is the most common cause of bacterial, seafood‐related illness in the USA. Currently, there is a dearth of published reports regarding immunity to infection with this pathogen. Here, production of both pro‐ and anti‐inflammatory cytokines by V. parahaemolyticus‐infected RAW 264.7 murine macrophages was studied. It was determined that this infection results in increased concentrations of IL‐1α, IL‐6, TNF‐α and IL‐10. Additionally, decreases in cell surface TLR2 and TLR4 and increases in T‐cell co‐stimulatory molecules CD40 and CD86 were discovered. The data presented here begin to identify the immune variables required to eliminate V. parahaemolyticus from infected host tissues.  相似文献   

15.
16.
The aim of this study was to investigate the pathogenesis of Mycoplasma pneumoniae (MP) infection and its association with cardiac and hepatic damage. Between March 2013 and March 2014, 59 children with MP pneumonia (MPP) and 30 healthy children were enrolled. Serum titers of TLR4, T cell immunoglobulin and mucin‐domain (TIM) 3, IL‐10, TNF‐α, and IFN‐γ were measured both in children with MPP and healthy children. Additionally, MP‐specific antibody titer and creatine kinase‐MB (CK‐MB), and alanine transaminase (ALT) titers were measured in patients with MPP. There were significant differences between the MPP patients and healthy controls in titers of TIM1 (P < 0.01), TLR2 (P = 0.028), TLR4 (P = 0.019), IL‐10 (P < 0.01), TNF‐α (P < 0.01) and IFN‐γ (P < 0.01); however, no significant difference was found in TIM3 titers (P = 0.8181). TIM1 was correlated with CK‐MB (P = 0.025), whereas both TIM1 and TLR2 titers were correlated with MP‐specific antibody titers (P < 0.001; P = 0.003, respectively). Additionally, there were correlations between ALT, TIM3, and TLR2 titers (P = 0.025; P = 0.037, respectively). The titers of TIM1 were significantly higher in patients with cardiac damage (P = 0.007) than in those without it, whereas the titers of TLR2 were significantly higher in patients with hepatic damage (P = 0.026) than in those without it. TLR2, TLR4 and TIM1 may be involved in the process of MP infection. Additionally, TLR2, TLR4, TIM1 and TIM3 may play particular roles in the pathogenesis of MPP‐associated cardiac and hepatic damage.  相似文献   

17.
18.
The antimicrobial peptide LL-37 is known to have a potent LPS-neutralizing activity in monocytes and macrophages. Recently, LL-37 in gingival crevicular fluids is suggested to be the major protective factor preventing infection of periodontogenic pathogens. In this study, we tried to address the effect of LL-37 on proinflammatory responses of human gingival fibroblasts (HGFs) stimulated with Toll-like receptor (TLR)-stimulant microbial compounds. LL-37 potently suppressed LPS-induced gene expression of IL6, IL8 and CXCL10 and intracellular signaling events, degradation of IRAK-1 and IκBα and phosphorylation of p38 MAPK and IRF3, indicating that the LPS-neutralizing activity is also exerted in HGFs. LL-37 also suppressed the expression of IL6, IL8 and CXCL10 induced by the TLR3 ligand poly(I:C). LL-37 modestly attenuated the expression of IL6 and IL8 induced by the TLR2/TLR1 ligand Pam3CSK4, but did not affect the expression induced by the TLR2/TLR6 ligand MALP-2. Interestingly, LL-37 rather upregulated the expression of IL6, IL8 and CXCL10 induced by another TLR2/TLR6 ligand FSL-1. Thus, the regulatory effect of LL-37 is differently exerted towards proinflammatory responses of HGFs induced by different microbial stimuli, which may lead to unbalanced proinflammatory responses of the gingival tissue to infection of oral microbes.  相似文献   

19.
20.
Infection of the bovine endometrium with Gram-negative bacteria commonly causes uterine disease. Toll-like receptor 4 (TLR4) on cells of the immune system bind Gram-negative bacterial lipopolysaccharide (LPS), stimulating the secretion of the proinflammatory cytokines interleukin 1B (IL1B) and IL6, and the chemokine IL8. Because the endometrium is the first barrier to infection of the uterus, the signaling cascade triggered by LPS and the subsequent expression of inflammatory mediators were investigated in endometrial epithelial and stromal cells, and the key pathways identified using short interfering RNA (siRNA) and biochemical inhibitors. Treatment of endometrial cells with ultrapure LPS stimulated an inflammatory response characterized by increased IL1B, IL6, and IL8 mRNA expression, and IL6 protein accumulation in epithelial cells, and by increased IL1B and IL8 mRNA expression, and IL6 and IL8 protein accumulation in stromal cells. Treatment of endometrial cells with LPS also induced the degradation of IKB and the nuclear translocation of NFKB, as well as rapid phosphorylation of mitogen-activated protein kinase 3/1 (MAPK3/1) and MAPK14. Knockdown of TLR4 or its signaling adaptor molecule, myeloid differentiation factor 88 (MYD88), using siRNA reduced the inflammatory response to LPS in epithelial and stromal cells. Biochemical inhibition of MAPK3/1, but not JNK or MAPK14, reduced LPS-induced IL1B, IL6, and IL8 expression in endometrial cells. In conclusion, epithelial and stromal cells have an intrinsic role in innate immune surveillance in the endometrium, and in the case of LPS this recognition occurs via TLR4- and MYD88-dependent cell signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号