首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2-Acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl phosphate, pure according to thin-layer and gas—liquid chromatography, optical rotation, and treatment with alkaline phosphatase and 2-acetamido-2-deoxy-β-d-glucosidase, was prepared by treatment of 2-methyl-[4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-1,2-dideoxy-α-d-glucopyrano]-[2,1-d]-2-oxazoline with dibenzyl phosphate, followed by the removal of the benzyl groups by catalytic hydrogenolysis, and O-deacetylation. In contrast, a sample prepared by the phosphoric acid procedure was shown to consist mainly of the β anomer. 2-Acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-α-d-glucopyranosyl phosphate was treated wit P1-diphenyl P2-dolichyl pyrophosphate to give a fully acetylated pyrophosphoric diester, which was O-deacetylated to give P1-2-acetamido-4-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2-deoxy-α-d-glucopyranosyl P2-dolichyl pyrophosphate. This compound could be separated from the β anomer by t.l.c., and its behavior under dilute acid and alkaline conditions was investigated.  相似文献   

2.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

3.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

4.
Efficient syntheses are described of the branched d-mannopentaosides methyl 2,6-di-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)α-d-mannopyranoside and methyl 2,4-di-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α-d-mannopyranoside, starting from the glycosyl acceptors methyl 3,4-di-O-benzyl-α-d-mannopyranoside and methyl 3,6-di-O-benzyl-α-d-mannopyranoside, and employing the protected d-mannotriosides methyl 3,4-di-O-benzyl-2,6-di-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside, and methyl 3,6-di-O-benzyl-2,4-di-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

5.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

6.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

7.
The reaction of phenyl 2-acetamido-2-deoxy-4,6- O-(p-methoxybenzylidene)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide under halide ion-catalyzed conditions proceeded readily, to give phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (8). Mild treatment of 8 with acid, followed by hydrogenolysis, provided the disaccharide phenyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-β-d-glucopyranoside. Starting from 6-(trifluoroacetamido)hexyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranoside, the synthesis of 6-(trifluoroacetamido)hexyl 2-acetamido-2-deoxy-3-O-β-l-fucopyranosyl-β-d-glucopyranoside has been accomplished by a similar reaction-sequence. On acetolysis, methyl 2-acetamido-2-deoxy-3-O-α-l-fucopyranosyl-α-d-glucopyranoside gave 2-methyl-[4,6-di-O-acetyl-1,2-dideoxy-3-O-(2,3,4-tri-O-acetyl-α-l-fucopyranosyl)-α-d-glucopyrano]-[2, 1-d]-2-oxazoline as the major product.  相似文献   

8.
Condensation of 3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal with 2-methyl-(3,4,6-tri-O-acetyl- 1,2-dideoxy-α-D-glucopyrano)-[2′, 1′:4,5]-2-oxazoline in the presence of a catalytic amount of p-toluenesulfonic acid afforded crystalline 2-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4:5,6-di-O-isopropylidene-D-mannose dimethyl acetal (3) in 25% yield. Catalytic deacetylation of 3 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave 2-O-(2-acetamido-2-deoxy-α-D-glucopyranosyl)-D-mannose (4). Treatment of 3 with boiling 0.5% methanolic hydrogen chloride under reflux gave methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannopyranoside (5) and methyl 2-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-α-D-mannofuranoside (6). The inhibitory activities of 4, 5, and 6 against the hemagglutinating and mitogenic activities of Lens culinaris and Pisum sativum lectins and concanavalin A were assayed. From the results of these hapten inhibition studies, subtle differences of specificity between these D-mannose-specific lectins were confirmed.  相似文献   

9.
2-Methyl-(3,4,6-tri-O-benzoyl-1,2-dideoxy-α-d-galactopyrano)-[2′,1′:4,5]-2-oxazoline (7) was prepared from 1-propenyl 2-acetamido-3,4,6-tri-O-benzoyl-2- deoxy-β-d-galactopyranoside (6). The latter was prepared from allyl 2-acetamido-2-deoxy-β-d-glucopyranoside (1) through selective benzoylation at O-3 and O-6, conversion into the 4-p-bromobenzenesulfonate 4, inversion of configuration at C-4 to afford allyl 2-acetamido-3,4,6-tri-O-benzoyl-β-d-galactopyranoside (5), and subsequent isomerization with palladium-charcoal to give 6.  相似文献   

10.
Ammonium hydroxide treatment of 1,6:2,3-dianhydro-4-O-benzyl-β-D-mannopyranose, followed by acetylation, gave 2-acetamido-3-O-acetyl-1,6-anhydro-4-O-benzyl-2-deoxy-β-D-glucopyranose which was catalytically reduced to give 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose (6), the starting material for the synthesis of (1→4)-linked disaccharides bearing a 2-acetamido-2-deoxy-D-glucopyranose reducing residue. Selective benzylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose gave a mixture of the 3,4-di-O-benzyl derivative and the two mono-O-benzyl derivatives, the 4-O-benzyl being preponderant. The latter derivative was acetylated, to give a compound identical with that just described. For the purpose of comparison, 2-acetamido-4-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose has been prepared by selective acetylation of 2-acetamido-1,6-anhydro-2-deoxy-β-D-glucopyranose.Condensation between 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide and 6 gave, after acetolysis of the anhydro ring, the peracetylated derivative (17) of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose. A condensation of 6 with 3,4,6-tri-O-acetyl-2-deoxy-2-diphenoxyphosphorylamino-α-D-glucopyranosyl bromide likewise gave, after catalytic hydrogenation, acetylation, and acetolysis, the peracylated derivative (21) of di-N-acetylchitobiose.  相似文献   

11.
The selectively benzylated glycoside allyl 2-acetamido-4,6-di-O-benzyl-2-deoxy-β- d-galactopyranoside ( 4) was prepared from the corresponding derivative of 2-acetamido-2-deoxy- d-glucose via the p-bromobenzenesulfonate and the benzoate. 2-O-Benzoyl-3,4,6-tri-O-benzyl-α- d-galactopyranosyl chloride ( 10) was obtained from allyl 6-O-benzyl-2-O-(2-butenyl)-α- d-galactopyranoside via known intermediates. To complete the sequence, the 1-propenyl 3,4,6-tri-O-benzyl galactoside was successively converted into the 2-benzoate, the free sugar, and the chloride 10. A fully protected form ( 11) of the trisaccharide α- l-Fucp-(1→2)-β- d-Galp-(1→4)- d-GalNAc was then synthesized by coupling 10 to 4, partially deblocking the disaccharide product, and l-fucosylating the resulting intermediate. Cleavage of the O-benzyl groups from 11, with concomitant saturation of the allyl group, gave the propyl β-glycoside of the unsubstituted trisaccharide.  相似文献   

12.
The reaction of p-nitrophenyl 2,3-O-isopropylidene-α-d-mannopyranoside and 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1-d]-2-oxazoline gave a crystalline, 6-O-substituted disaccharide derivative which, on de-isopropylidenation followed by saponification, produced the disaccharide p-nitrophenyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside. Synthesis of methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-mannopyranoside was also accomplished by a similar reaction-sequence. The structures of these disaccharides have been established by 13C-n.m.r. spectroscopy.  相似文献   

13.
6-O-Acetyl-2,4-diazido-3-O-benzyl-2,4-dideoxy-β-D-glucopyranosyl chloride and 2,6-diazido-3,4-di-O-benzyl-2,6-dideoxy-β-D-glucopyranosyl chloride are two valuable building units suitable for the synthesis of α-linked disaccharides containing 2,4-diamino-2,4-dideoxy- or 2,6-diamino-2,6-dideoxy-D-glucose as nonreducing moieties. The glycoside synthesis is accomplished stereoselectively under mild conditions in the presence of silver perchlorate. The α-(1→3)-linked disaccharides 2,4-diacetamido-2,4-dideoxy-3-O-(2,4-diacetamido-2,4-dideoxy-α-D-glucopyranosyl)-D-glucopyranose and 2-acetamido-2-deoxy-3-O-(2,6-diacetamido-2,6-dideoxy-α-D-glucopyranosyl)-D-glucopyranose have been prepared.  相似文献   

14.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

15.
Optically pure 2-acetamido-2-deoxy-3-O-α-L-fucopyranosyl-α-D-glucose was synthesized by the Koenigs-Knorr reaction of 2-O-benzyl-3,4-di-O-p-nitrobenzoyl-α-L-fucopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-D-glucopyrainoside. Reaction of 2,3,4-tri-O-acetyl-α-L-fucopyranosyl bromide gave the β-L-fucopyranosyl anomer. In contrast to the stereospecificity shown in this reaction by these two bromides, 2,3,4-tri-O-benzyl-α-L-fucopyranosyl bromide afforded a mixture of α-L and β-L anomers in almost equimolar proportions. The disaccharides synthesized were crystallized and characterized, and their optical purity demonstrated by g.l.c. of the per(trimethylsilyl) ethers of the corresponding alditols.  相似文献   

16.
The crystalline intermediate 2-acetamido-6-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide (5), obtained by condensation of 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl bromide with either 2-acetamido-3,4-di-O-acetyl-2-deoxy-β-D-glucopyranosyl azide or its 6-O-triphenylmethyl derivative, was reduced in the presence of Adams' catalyst to give a disaccharide amine. Condensation with 1-benzyl N-(benzyloxycarbonyl)-L-aspartate afforded crystalline 2-acetamido-6-O-(2-acetamido-3,4 6-tri-O-acetyl-2-deoxy-β-D-glucopyranosyl)-3,4-di-O-acetyl-1-N-[1-benzyl N-(benzyloxycarbonyl)-L-aspart-4-oyl]-2-deoxy-β-D-glucopyranosylamine (9). Catalytic hydrogenation in the presence of palladium-on-charcoal was followed by saponification to give 2-acetamido-6-O-(2-acetamido-2-deoxy-β-D-glucopyranosyl)-1-N-(L-aspart-4-oyl)-2-deoxy-β-D-glucopyranosylamine (11) in crystalline form. From the mother liquors of the reduction of 5, a further crystalline product was isolated, to which was assigned a bisglycosylamine structure (12).  相似文献   

17.
Condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside (2) gave an α-d-linked disaccharide, further transformed by removal of the carbonyl and benzylidene groups and acetylation into the previously reported benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranoside. Condensation of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-d-glucopyranose or 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-glucopyranosyl bromide with 2 gave benzyl 2-acetamido-3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside. Removal of the acetyl group at O-2, followed by oxidation with acetic anhydride-dimethyl sulfoxide, gave the β-d-arabino-hexosid-2-ulose 14. Reduction with sodium borohydride, and removal of the protective groups, gave 2-acetamido-2-deoxy-3-O-β-d-mannopyranosyl-d-glucose, which was characterized as the heptaacetate. The anomeric configuration of the glycosidic linkage was ascertained by comparison with the α-d-linked analog.  相似文献   

18.
Starting from allyl 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside as a key intermediate, the following crystalline compounds were prepared: 2-O-allyl-3,4,6-tri-O-benzyl-D-glucopyranose (11) and its p-nitrobenzoate; 2,3,5-tri-O-benzyl-D-arabinofuranose (12) and the corresponding arabinitol; allyl 3,4,6-tri-O-benzyl-α-D-glucopyranoside (7); 3,4,6-tri-O-benzyl-D-glucopyranose (8); 2-O-allyl-3,4-di-O-benzyl-D-glucopyranose (17) and its bis(p-nitrobenzoate); and 3,4-di-O-benzyl-D-glucopyranose (19). The p-nitrobenzoates of compounds 11 and 17 are potential intermediates for the synthesis of the glycolipids of the cytoplasmic membranes of Streptococci.  相似文献   

19.
Synthetic routes are described to the d-mannopentaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-α-d-mannopyranosyl-α-d-mannopyranoside, and the d-mannohexaoside methyl 3-O-(3,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-6-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-α- d-mannopyranoside, formed in a regio- and stereo-controlled way by employing the properly protected d-mannobioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-3-O-(2,4-di-O-benzyl-α-d-mannopyranosyl)-6-O-(3,4,6-tri-O-benzyl-α-d- mannopyranosyl)-α-d-mannopyranoside as key intermediates.  相似文献   

20.
Synthetic routes are discussed to the branched d-mannopentaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-α-d-mannopyranosyl-α-d-mannopyranoside and d-mannohexaoside methyl 6-O-(2,6-di-O-α-d-mannopyranosyl-α-d-mannopyranosyl)-3-O-(2-O-α-d-mannopyranosyl-α-d-mannopyranosyl)- α-d-mannopyranoside, employing the properly benzylated d-mannobioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-α-d-mannopyranoside and d-mannotrioside methyl 2,4-di-O-benzyl-6-O-(3,4-di-O-benzyl-α-d-mannopyranosyl)-3-O-(3,4,6-tri-O-benzyl-α-d-mannopyranosyl)-α-d- mannopyranoside as key intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号