首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
引进天敌莲草直胸跳甲的遗传多样性   总被引:1,自引:0,他引:1  
我国从美国引进天敌昆虫莲草直胸跳甲防治喜旱莲子草已有20多年历史.本研究采用随机引物扩增多态性DNA(RAPD)分析方法,对引入我国的4个莲草直胸跳甲地理种群(广州、重庆、昆明、福州)的遗传多样性情况进行分析,并以美国佛罗里达种群为参照,从分子水平上揭示其种群的遗传分化及其与环境之间的关系.从111条随机引物中选取13条条带清晰、重复性好的引物对5个种群的25个样本进行扩增.结果表明:总多态位点百分率为42.0%,其中美国佛罗里达种群的多态位点百分率显著高于我国的4个地理种群;25.5%遗传分化发生在4个群体间;对各地理种群间的遗传距离采用非加权配对算术平均法( UPGMA)进行聚类分析发现,遗传距离与种群空间分布距离呈正相关.  相似文献   

2.
R Y Shirk  J L Hamrick  C Zhang  S Qiang 《Heredity》2014,112(5):497-507
Genetic diversity, and thus the adaptive potential of invasive populations, is largely based on three factors: patterns of genetic diversity in the species'' native range, the number and location of introductions and the number of founding individuals per introduction. Specifically, reductions in genetic diversity (‘founder effects'') should be stronger for species with low within-population diversity in their native range and few introductions of few individuals to the invasive range. We test these predictions with Geranium carolinianum, a winter annual herb native to North America and invasive in China. We measure the extent of founder effects using allozymes and microsatellites, and ask whether this is consistent with its colonization history and patterns of diversity in the native range. In the native range, genetic diversity is higher and structure is lower than expected based on life history traits. In China, our results provide evidence for multiple introductions near Nanjing, Jiangsu province, with subsequent range expansion to the west and south. Patterns of genetic diversity across China reveal weak founder effects that are driven largely by low-diversity populations at the expansion front, away from the introduction location. This suggests that reduced diversity in China has resulted from successive founder events during range expansion, and that the loss of genetic diversity in the Nanjing area was mitigated by multiple introductions from diverse source populations. This has implications for the future of G. carolinianum in China, as continued gene flow among populations should eventually increase genetic diversity within the more recently founded populations.  相似文献   

3.
Genetic variation in invasive populations is affected by a variety of processes including stochastic forces, multiple introductions, population dynamics and mating system. Here, we compare genetic diversity between native and invasive populations of the selfing, annual plant Senecio vulgaris to infer the relative importance of genetic bottlenecks, multiple introductions, post-introduction genetic drift and gene flow to genetic diversity in invasive populations. We scored multilocus genotypes at eight microsatellite loci from nine native European and 19 Chinese introduced populations and compared heterozygosity and number of alleles between continents. We inferred possible source populations for introduced populations by performing assignment analyses and evaluated the relative contributions of gene flow and genetic drift to genetic diversity based on correlations of pairwise genetic and geographic distance. Genetic diversity within Chinese populations was significantly reduced compared to European populations indicating genetic bottlenecks accompanying invasion. Assignment tests provided support for multiple introductions with populations from Central China and southwestern China descended from genotypes matching those from Switzerland and the UK, respectively. Genetic differentiation among populations in China and Europe was not correlated with geographic distance. However, European populations exhibited less variation in the relation between G ST and geographical distance than populations in China. These results suggest that gene flow probably plays a more significant role in structuring genetic diversity in native populations, whereas genetic drift appears to predominate in introduced populations. High rates of selfing in Chinese populations may restrict opportunities for pollen-mediated gene flow. Repeated colonization-extinction cycles associated with ongoing invasion is likely to maintain low genetic diversity in Chinese populations.  相似文献   

4.
The Formosan subterranean termite, Coptotermes formosanus is recognized as one of the most important invasive pest species. Originating from China, C. formosanus has spread to many tropical and subtropical regions around the globe in the last 400 years, including Japan, Hawaii and the continental USA. Although the current distribution is well documented, information about the patterns of invasion and effects of introduction on the population genetics of this species is largely lacking. We analyzed the genetic structure of populations from two native populations (Guangdong and Hunan provinces, China) and two introduced populations (Maui and Kauai, Hawaii) using microsatellite genotyping. We also reanalyzed published data of additional populations from China, Japan, Hawaii, and the continental USA. The population from Hunan, the earliest introduction outside of China (Japan) and the first introduction to the continental USA (South Carolina) showed little genetic similarity with any of the native or introduced populations investigated. However, populations from Oahu (HI), New Orleans (LA) and Rutherford County (NC) showed close similarity. In general, genetic patterns suggest multiple introductions to the USA, with, for example, two separate introductions to the island of Maui. Bottleneck effects were detected in almost all recent introductions (after 1940). All populations in the introduced range showed lower genetic diversity than those in the native range. However, this low genetic diversity did not result in the formation of polygynous supercolonies as has been described for other invasive termite and ant species.  相似文献   

5.
The number and diversity of source populations may influence the genetic diversity of newly introduced populations and affect the likelihood of their establishment and spread. We used the cytochrome b mitochondrial gene and nuclear microsatellite loci to identify the sources of a successful invader in southern Florida, USA, Cichlasoma urophthalmus (Mayan cichlid). Our cytochrome b data supported an introduction from Guatemala, while our microsatellite data suggested movement of Mayan Cichlids from the upper Yucatán Peninsula to Guatemala and introductions from Guatemala and Belize to Florida. The mismatch between mitochondrial and nuclear genomes suggests admixture of a female lineage from Guatemala, where all individuals were fixed for the mitochondrial haplotype found in the introduced population, and a more diverse but also relatively small number of individuals from Belize. The Florida cytochrome b haplotype appears to be absent from Belize (0 out of 136 fish screened from Belize had this haplotype). Genetic structure within the Florida population was minimal, indicating a panmictic population, while Mexican and Central American samples displayed more genetic subdivision. Individuals from the Upper Yucatán Peninsula and the Petén region of Guatemala were more genetically similar to each other than to fish from nearby sites and movement of Mayan Cichlids between these regions occurred thousands of generations ago, suggestive of pre-Columbian human transportation of Mayan Cichlids through this region. Mayan Cichlids present a rare example of cytonuclear disequilibrium and reduced genetic diversity in the introduced population that persists more than 30 years (at least 7–8 generations) after introduction. We suggest that hybridization occurred in ornamental fish farms in Florida and may contribute their establishment in the novel habitat. Hybridization prior to release may contribute to other successful invasions.  相似文献   

6.
During the century following its initial introduction in 1886, the Australian tree Melaleuca quinquenervia (Myrtaceae) dispersed from a few introduction points to occupy over 200,000 ha, primarily in historic Everglades wetlands of southern Florida. Cellulose acetate gel electrophoresis (CAGE) was used to investigate the allozyme diversity and population genetic structure of 208 individuals in a dozen populations resulting from this invasion. The analyses showed that these populations have a high (82%) rate of polymorphic loci and an average of 2 alleles/locus. There was substantial heterozygosity (mean He = 0.356), which concords well with recent studies reporting a greater number of introduction events and sources than generally recognized. The introduction history and distributional patterns within Florida have led to geographic structuring (GST = 0.419) in which the Gulf Coast metapopulation has a greater effective number of alleles and greater heterozygosity than the Atlantic Coast metapopulation. The gene diversity in M. quinquenervia was comparable to other tropical woody species. Its strong population divergence was reminiscent of pioneer species and consistent with its status as a plant invader in Florida.  相似文献   

7.
Sparse, incomplete and inappropriate historical records of invasive species often hamper invasive species management interventions. Population genetic analyses of invaders might provide a suitable context for the identification of their source populations and possible introduction routes. Here, we describe the population genetics of Heracleum persicum Desf. ex Fisch and trace its route of introduction into Europe. Microsatellite markers revealed a significantly higher genetic diversity of H. persicum in its native range, and the loss of diversity in the introduced range may be attributed to a recent genetic bottleneck. Bayesian cluster analysis on regional levels identified three and two genetic clusters in the native and the introduced ranges, respectively. A global structure analysis revealed two worldwide distinct genetic groups: one primarily in Iran and Denmark, the other primarily in Norway. There were also varying degrees of admixture in England, Sweden, Finland and Latvia. Approximate Bayesian computation indicated two independent introductions of H. persicum from Iran to Europe: the first one in Denmark and the second one in England. Finland was subsequently colonized by English populations. In contrast to the contemporary hypothesis of English origin of Norwegian populations, we found Finland to be a more likely source for Norwegian populations, a scenario supported by higher estimated histor‐ical migration from Finland to Norway. Genetic diversity per se is not a primary determinant of invasiveness in H. persicum. Our results indicate that, due to either pre‐adaptations or rapid local adaptations, introduced populations may have acqu‐ired invasiveness after subsequent introductions, once a suitable environment was encountered.  相似文献   

8.
Field survey of the entomopathogenic fungus Beauveria bassiana in association with the red turpentine beetle, Dendroctonus valens, was undertaken in three pine plantations in Northern China. In total, 88 strains of B. bassiana sensu lato were isolated from the soil, bark, beetle frass, living adult and cadaver samples and soil was proved to be an important inoculum reservoir for fungal entomopathogens. Of these, 77 isolates were included for genetic diversity analysis by PCR for inter-simple sequence repeats (ISSR). Genetic diversity and population structure analysis of the isolates from three sites and five niches demonstrated high genetic diversity and heterogeneity between and/or within populations. Wright's statistics revealed a high gene flow rate (4.529) among the three populations, especially among the soil-derived isolate subpopulations. Low variation was mainly caused (94.8%) by variation among different substrates, suggesting the importance of microhabitat substrates on genetic diversity of B. bassiana. Phylogenetic variation was not associated with geographic distance.  相似文献   

9.
Some introduced populations thrive and evolve despite the presumed loss of diversity at introduction. We aimed to quantify the amount of genetic diversity retained at introduction in species that have shown evidence of adaptation to their introduced environments. Samples were taken from native and introduced ranges of Arctotheca populifolia and Petrorhagia nanteuilii. Using microsatellite data, we identified the source for each introduction, estimated genetic diversity in native and introduced populations, and calculated the amount of diversity retained in introduced populations. These values were compared to those from a literature review of diversity in native, confamilial populations and to estimates of genetic diversity retained at introduction. Gene diversity in the native range of both species was significantly lower than for confamilials. We found that, on average, introduced populations showing evidence of adaptation to their new environments retained 81% of the genetic diversity from the native range. Introduced populations of P. nanteuilii had higher genetic diversity than found in the native source populations, whereas introduced populations of A. populifolia retained only 14% of its native diversity in one introduction and 1% in another. Our literature review has shown that most introductions demonstrating adaptive ability have lost diversity upon introduction. The two species studied here had exceptionally low native range genetic diversity. Further, the two introductions of A. populifolia represent the largest percentage loss of genetic diversity in a species showing evidence of substantial morphological change in the introduced range. While high genetic diversity may increase the likelihood of invasion success, the species examined here adapted to their new environments with very little neutral genetic diversity. This finding suggests that even introductions founded by small numbers of individuals have the potential to become invasive.  相似文献   

10.
Since 1973, the red swamp crayfish, Procambarus clarkii, native to south-central United States and northeastern Mexico, has spread throughout Europe. Here, we surveyed the genetic variability of five European populations of the species using RAPD markers. Genetic variation was found to be so high as to uniquely fingerprint most of the surveyed individuals. Analysis of molecular variance (AMOVA) of the RAPD markers showed that 1) a large part of the genetic variation can be attributed to the differentiation among localities, and 2) the differentiation was mainly due to the separation of the samples from Louisiana with respect to the European set. A hypothesis emerged in which subsequent introductions of crayfish from different sources were performed. This hypothesis might explain the high genetic diversity observed within each population and the genetic differentiation among populations, as the result, respectively, of the introduction of different sets of crayfish and the casual bias of introductions. Although preliminary, our results suggest that RAPDs could be helpful in providing information about human-mediated introduced populations.  相似文献   

11.
The oriental fruit fly, Bactrocera dorsalis, is a serious pest of fruits and vegetables in South‐east Asia, and, because of quarantine restrictions, impedes international trade and economic development in the region. Revealing genetic variation in oriental fruit fly populations will provide a better understanding of the colonization process and facilitate the quarantine and management of this species. The genetic structure in 15 populations of oriental fruit fly from southern China, Laos and Myanmar in South‐east Asia was examined with a 640‐bp sequence of the mitochondrial cytochrome oxidase subunit I (COI) gene. The highest levels of genetic diversity were found in Laos and Myanmar. Low to medium levels of genetic differentiation (FST ≤ 0.134) were observed among populations. Pooled populations from mainland China differed from those in Laos and Myanmar (FST = 0.024). Genetic structure across the region did not follow the isolation‐by‐distance model. The high genetic diversity observed in Laos and Myanmar supports the South‐east Asian origin of B. dorsalis. High genetic diversity and significant differentiation between some populations within mainland China indicate B. dorsalis populations have been established in the region for an extended period of time. High levels of genetic diversity observed among the five populations from Hainan Island and similarity between the Island and Chinese mainland populations indicate that B. dorsalis was introduced to Hainan from the mainland and has been on the island for many years. High genetic diversity in the recently established population in Shanghai (Pudong) suggests multiple introductions or a larger number of founders.  相似文献   

12.
Aim To explore the potential of genetic processes and mating systems to influence successful plant invasions, we compared genetic diversity of the highly invasive tropical treelet, Miconia calvescens, in nine invasive populations and three native range populations. Specifically, we tested how genetic diversity is partitioned in native and invaded regions, which have different invasion histories (multiple vs. single introductions). Lastly, we infer how levels of inbreeding in different regions impact invasion success. Location Invaded ranges in the Pacific (Hawaii, Tahiti, New Caledonia) and Australia and native range in Costa Rica. Methods Genetic diversity was inferred by analysing variation at nine microsatellite loci in 273 individuals from 13 populations of M. calvescens. Genetic structure was assessed using amova , isolation by distance (IBD) within regions, a Bayesian clustering approach, and principal coordinates analysis. Results Microsatellite analysis revealed that invaded regions exhibit low levels of allelic richness and genetic diversity with few private alleles. To the contrary, in the native range, we observed high levels of allelic richness, high heterozygosity and 78% of all private alleles. Surprisingly, despite evident genetic bottlenecks in all invasive regions, similarly high levels of inbreeding were detected in both invasive and native ranges (FIS: 0.345 and 0.399, respectively). Bayesian clustering analysis showed a lack of geographical structure in the Pacific and evidence of differing invasion histories between the Pacific and Australia. While Pacific populations are derived from a single introduction to the region, multiple introductions have taken place in Australia from different source regions. Main conclusions Multiple introductions have not resulted in increased genetic diversity for M. calvescens invasions. Moreover, similar inbreeding levels between native and invaded ranges suggests that there is no correlation between levels of inbreeding and levels of standing genetic diversity for M. calvescens. Overall, our results show that neither inbreeding nor low genetic diversity is an impediment to invasion success.  相似文献   

13.
Aim Lionfish (Pterois volitans and P. miles) are popular ornamental fishes native to the Indo‐Pacific that were introduced into Florida waters and are rapidly spreading and establishing throughout the Western Atlantic (WA). Although unfortunate, this invasion provides an excellent system in which to test hypotheses on conservation biology and marine biogeography. The goals of this study are: (1) to document the geographical extent of P. volitans and P. miles; (2) to determine whether the progression of the lionfish invasion is the result of expansion following the initial introduction event or the consequence of multiple introductions at various WA locations; and (3) to analyse the chronology of the invasion in conjunction with the genetic data in order to provide real‐time assessments of hypotheses of marine biogeography. Location The Greater Caribbean, including the US east coast, Bermuda, the Bahamas and the Caribbean Sea. Methods Mitochondrial control region sequences were obtained from lionfish individuals collected from Bermuda and three Caribbean locations and analysed in conjunction with previously published data from five native and two non‐native locations (US east coast and the Bahamas; a total of six WA locations). Genetic variation within and among groups was quantified, and population structure inferred via spatial analyses of molecular variance, pairwise ΦST, exact tests, Mantel tests and haplotype networks. Results Mitochondrial DNA screening of WA lionfish shows that while P. miles is restricted to the northernmost locations (Bermuda and the US east coast), P. volitans is ubiquitous and much more abundant. Invasive populations of P. miles and P. volitans have significantly lower levels of genetic diversity relative to their native counterparts, confirming that their introduction resulted in a strong founder effect. Despite the relative genetic homogeneity across the six WA locations, population structure analyses of P. volitans indicate significant differentiation between the northern (US east coast, the Bahamas and Bermuda) and the Caribbean populations. Main conclusions Our findings suggest that the ubiquity of WA lionfish is the result of dispersal from a single source of introduction in Florida and not of multiple independent introductions across the range. In addition, the progression of the lionfish invasion (as documented from sightings), integrated with the genetic evidence, provides support for five of six major scenarios of connectivity and phylogeographical breaks previously inferred for Caribbean organisms.  相似文献   

14.
Many populations are small and isolated with limited genetic variation and high risk of mating with close relatives. Inbreeding depression is suspected to contribute to extinction of wild populations, but the historical and demographic factors that contribute to reduced population viability are often difficult to tease apart. Replicated introduction events in non‐native species can offer insights into this problem because they allow us to study how genetic variation and inbreeding depression are affected by demographic events (e.g. bottlenecks), genetic admixture and the extent and duration of isolation. Using detailed knowledge about the introduction history of 21 non‐native populations of the wall lizard Podarcis muralis in England, we show greater loss of genetic diversity (estimated from microsatellite loci) in older populations and in populations from native regions of high diversity. Loss of genetic diversity was accompanied by higher embryonic mortality in non‐native populations, suggesting that introduced populations are sufficiently inbred to jeopardize long‐term viability. However, there was no statistical correlation between population‐level genetic diversity and average embryonic mortality. Similarly, at the individual level, there was no correlation between female heterozygosity and clutch size, infertility or hatching success, or between embryo heterozygosity and mortality. We discuss these results in the context of human‐mediated introductions and how the history of introductions can play a fundamental role in influencing individual and population fitness in non‐native species.  相似文献   

15.
Abstract 1 The red turpentine beetle, Dendroctonus valens LeConte, is a recent New World introduction to the People's Republic of China. An outbreak of these beetles has infested over 0.5 million hectares of pine forests. 2 Efforts are underway to suppress this outbreak using biological control measures. However, the wide distribution in the native range of D. valens suggests regional variation of the beetle's biology, predators, and parasitoids. Thus, knowledge of the origin of these beetles can help devise precise and effective control measures. 3 A portion of the mitochondrial cytochrome oxidase subunit I gene was sequenced for 218 individuals from 32 populations throughout the native range of D. valens and in China. 4 Haplotype diversity was high. A total of 131 haplotypes were found and Jukes–Cantor corrected nucleotide difference ranged from 0 to 16%. Haplotype diversity ranged from 0.53 to 0.98 and unique haplotypes were found in most populations. 5 Parsimony and statistical parsimony analyses of these haplotypes support the hypothesis that the introduction of D. valens to China was recent and originated from the Pacific North‐west of the U.S.A. 6 In addition, the high haplotype diversity also suggests a large or multiple introductions. However, based on the genetics of the beetle's reproductive behaviour, this diversity may also be explained by a limited number of individuals or introductions.  相似文献   

16.

Aims

We investigate native and introduced populations of Solanum rostratum, an annual, self-compatible plant that has been introduced around the globe. This study is the first to compare the genetic diversity of Solanum rostratum between native and introduced populations. We aim to (1) determine the level of genetic diversity across the studied regions; (2) explore the likely origins of invasive populations in China; and (3) investigate whether there is the evidence of multiple introductions into China.

Methods

We genotyped 329 individuals at 10 microsatellite loci to determine the levels of genetic diversity and to investigate population structure of native and introduced populations of S. rostratum. We studied five populations in each of three regions across two continents: Mexico, the U.S.A. and China.

Important Findings

We found the highest genetic diversity among Mexican populations of S. rostratum. Genetic diversity was significantly lower in Chinese and U.S.A. populations, but we found no regional difference in inbreeding coefficients (F IS) or population differentiation (F ST). Population structure analyses indicate that Chinese and U.S.A. populations are more closely related to each other than to sampled Mexican populations, revealing that introduced populations in China share an origin with the sampled U.S.A. populations. The distinctiveness between some introduced populations indicates multiple introductions of S. rostratum into China.  相似文献   

17.
Conservation measures to preserve critically endangered species aim to maintain healthy and self-sustaining populations and often involve reintroductions. Effective introductions must take into account the genetic structure and diversity remaining in the species to inform choices of germplasm for introduction strategies. Lupinus aridorum (McFarlin ex Beckner; Fabaceae) is an endangered plant found on two disjunct ridge systems in central Florida. All plants are found in areas that are favored for human development and agriculture. Few options exist for introduction locations, so the most informed strategies must be used to preserve this species. We used ten microsatellite loci, developed for this species, to determine genetic diversity and genetic differentiation among populations, and to compare L. aridorum with two closely related congeners. Our results show a low level of diversity remaining in the species in comparison with a more abundant congener and similar levels of variability among each L. aridorum population. At least three L. aridorum populations exhibit a genetic signal of partial selfing. Hybridization with a closely-related congener was not apparent; however, additional crossing trials are needed to fully assess the possibility of hybridization. Although some sources list the taxonomy of L. aridorum as a variety of a Florida panhandle species, L. westianus (Small), the genetic differences revealed by our data support listing these two species as separate entities. Our findings can be used to guide sampling strategies for ex situ conservation such as providing a mixture of source populations to improve the probability of successful introductions.  相似文献   

18.
Setaria viridis is an important self-pollinating, cosmopolitan weed of temperate regions worldwide. Allozyme markers were used to investigate genetic diversity and structure in 168 accessions (including four S. italica) collected mainly from North America and Eurasia. Genetic diversity in green foxtail, and its population genetic structure, provided important clues about this weed's evolutionary history. Genetic diversity was low, with marked population differentiation: the percentage of polymorphic loci was 25% (0.95 criterion); mean number of alleles per locus was 1.86; mean panmictic heterozygosity was 0.07; and the coefficient of population genetic differentiation was 0.65. A common genotype occurred in 25 accessions distributed in six countries from both the Old World and New World, in a wide variety of ecological situations. Relatively little genetic divergence occurred between Eurasia and North America, with Nei's unbiased genetic identity between the two regions equaling 1.0. Populations from these two continents also had equivalent genetic diversity. Within North America, regional differentiation was indicated by northern and southern groups separated at 43.5° N latitude. No geographic pattern in genetic diversity was found within Eurasia. The size of the geographic range from which populations were sampled was not an accurate indicator of the extent of genetic diversity found among populations from that region. These results suggest that present patterning among green foxtail populations in North America is the consequence of multiple introductions into the New World followed by local adaptation and regional differentiation. Finally, S. italica and several green foxtail varieties did not differ isozymatically from typical forms of green foxtail. This supports the view that S. italica and S. viridis are conspecific, that the former (foxtail millet) is a domesticated form of the latter, and also questions the taxonomic validity of formally recognizing morphological varieties within green foxtail.  相似文献   

19.
20.
Prentice  M. B.  Vye  S. R.  Jenkins  S. R.  Shaw  P. W.  Ironside  J. E. 《Biological invasions》2021,23(12):3613-3624

Introductions of invasive, non-native species in the marine environment are increasing as human activity within coastal areas rises. Genetic datasets are useful tools to identify source populations, track routes of invasions, and illuminate the role of genetic variation in the establishment and subsequent spread of novel introductions. Here, a microsatellite dataset is used to estimate the genetic diversity and population structure of 7 introduced Didemnum vexillum populations in Britain and Ireland, 4 of which are associated with aquaculture and 3 with marinas. Genetic differentiation observed between these populations indicates human-mediated transport as the main mechanism underlying the population structure of D. vexillum in Britain and Ireland. In addition to elucidating patterns of population structure we found that aquaculture sites showed significantly higher genetic diversity (measured as allelic richness) in comparison to the marina sites. We discuss these findings in relation to the history of each invasion, the complex life history of D. vexillum, and available evidence of the relative invasiveness of these populations. Our results show numerous interesting patterns which highlight further research avenues to elucidate the complex factors underlying the global spread of this successful invader.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号