首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
《Biophysical journal》2022,121(14):2767-2780
Hemoglobins M (Hbs M) are human hemoglobin variants in which either the α or β subunit contains a ferric heme in the α2β2 tetramer. Though the ferric subunit cannot bind O2, it regulates O2 affinity of its counterpart ferrous subunit. We have investigated resonance Raman spectra of two Hbs, M Iwate (α87His → tyrosine [Tyr]) and M Boston (α58His → Tyr), having tyrosine as a heme axial ligand at proximal and distal positions, respectively, that exhibit unassigned resonance Raman bands arising from ferric (not ferrous) hemes at 899 and 876 cm-1. Our quantum chemical calculations using density functional theory on Fe-porphyrin models with p-cresol and/or 4-methylimidazole showed that the unassigned bands correspond to the breathing-like modes of Fe3+-bound Tyr and are sensitive to the Fe-O-C(Tyr) angle. Based on the frequencies of the Raman bands, the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston were predicted to be 153.5° and 129.2°, respectively. Consistent with this prediction, x-ray crystallographic analysis showed that the Fe-O-C(Tyr) angles of Hbs M Iwate and M Boston in the T quaternary structure were 153.6° and 134.6°, respectively. It also showed a similar Fe-O bond length (1.96 and 1.97 Å) and different tilting angles.  相似文献   

2.
J B Dunn  D F Shriver  I M Klotz 《Biochemistry》1975,14(12):2689-2695
Resonance Raman spectroscopy has been used as a probe of the structure of ligands at the active site of hemerythrin. Molecularly revealing insights have been obtained with oxyhemerythrin and with metazidohemerythrin. This spectroscopic technique has also facilitated a comparison of oxygen carrier within erythrocytes with that in solution. The electronic state of the bound O2 is the same in the natural environment as in the artificial one.  相似文献   

3.
4.
Schelvis JP  Berka V  Babcock GT  Tsai AL 《Biochemistry》2002,41(18):5695-5701
We report the first low-frequency resonance Raman spectra of ferric endothelial nitric oxide synthase (eNOS) holoenzyme, including the frequency of the Fe-S vibration in the presence of the substrate L-arginine. This is the first direct measurement of the strength of the Fe-S bond in NOS. The Fe-S vibration is observed at 338 cm(-1) with excitation at 363.8 nm. The assignment of this band to the Fe-S stretching vibration was confirmed by the observation of isotopic shifts in eNOS reconstituted with 54Fe- and 57Fe-labeled hemin. Furthermore, the frequency of this vibration is close to those observed in cytochrome P450(cam) and chloroperoxidase (CPO). The frequency of this vibration is lower in eNOS than in P450(cam) and CPO, which can be explained by differences in hydrogen bonding to the proximal cysteine heme ligand. On addition of substrate to eNOS, we also observe several low-frequency vibrations, which are associated with the heme pyrrole groups. The enhancement of these vibrations suggests that substrate binding results in protein-mediated changes of the heme geometry, which may provide the protein with an additional tuning element for the redox potential of the heme iron. The implications of our findings for the function of eNOS will be discussed by comparison with P450(cam) and model compounds.  相似文献   

5.
Resonance Raman measurements have been performed with solutions of iodine-complexed synthetic amyloses (DP 25–200), malto-oligomers (DP 3–18, and -cylodextrin. Interest was focused on the minimum chain length for helical complex formation and a possible preferred length for the polyiodine chain. Four fundamental vibrations are observed at 164, 112, 52 and 24 cm−1. The 112 cm−1 Raman line was shown to arise both from free I3 (enhanced at 363.8 nm excitation) and from bound iodine (relatively most intense at 457.9 nm excitation). The main signal of complexed iodine at 164 cm−1is enhanced at an excitation wavelength close to the long wavelength absorption maximum. This signal is observed firt with malto-octaose and -cyclodextrin. The less intense signals at 52 and 24−1 are only detected at DP 15 and higher. Raman spectra give no evidence for a preferred length of the polyiodine chain. Significantly identical Raman spectra are obtained when using different molar ratios of I2/KI solution or I2 solution initially free of I ions. The results are discussed in view of previous assignments of the Raman lines to I2, I3/I2, and I5 subunits. Our findings are incompatible with I3 units as the only bound species. They are compatible with both I3/I2 and I3 subunits under certain conditions. In the case of I2 solution used for complexation we favour the polyiodine chain model proposed previously by Cramer35,36. The I3 ions formed could function mainly as chain initiators, as has been suggested by Cesàro and Brant30.  相似文献   

6.
The bleomycin-iron complexes with CO, NO, C2H5NC, OH-, N-3, CN-, and CH3NH2 were characterized by electronic, ESR, 1H-NMR, and M?ssbauer spectroscopies and the findings were compared with the corresponding hemoprotein complexes. The 1H-NMR and M?ssbauer features for the CO and C2H5NC adducts of the bleomycin-Fe(II) complex are consistent with an S = 0 ferrous assignment. The OH-, CH3NH2, and N-3 adducts of the bleomycin-Fe(III) complex show the ESR, 1H-NMR, and M?ssbauer spectra typical of a low-spin Fe(III). The unique M?ssbauer parameters of the bleomycin-Fe(II)-NO complex demonstrate mixing between the NO pi- and the Fe 3d-orbitals. The magnitude of the proton chemical shifts over +/- 50 ppm indicates a high-spin ferric type for the bleomycin-Fe(III)-CN complex. The M?ssbauer parameters (delta EQ = 0.89 and delta = 0.48 mm/s) of the CN- adduct differ substantially from those of typical low-spin hemoprotein-cyanide complexes. Except for the CN- adduct, the M?ssbauer and crystal field parameters of these bleomycin-iron complexes are similar to those of the corresponding hemoprotein complexes.  相似文献   

7.
8.
9.
10.
11.
Resonance Raman spectra are reported for both the heme domain and holoenzyme of cytochrome P450BM3 in the resting state and for the ferric NO, ferrous CO, and ferrous NO adducts in the absence and presence of the substrate, palmitate. Comparison of the spectrum of the palmitate-bound form of the heme domain with that of the holoenzyme indicates that the presence of the flavin reductase domain alters the structure of the heme domain in such a way that water accessibility to the distal pocket is greater for the holoenzyme, a result that is consistent with analogous studies of cytochrome P450cam. The data for the exogenous ligand adducts are compared to those previously reported for corresponding derivatives of cytochrome P450cam and document significant and important differences for the two proteins. Specifically, while the binding of substrate induces relatively dramatic changes in the nu(Fe-XY) modes of the ferrous CO, ferric NO, and ferrous NO derivatives of cytochrome P450cam, no significant changes are observed for the corresponding derivatives of cytochrome P450BM3 upon binding of palmitate. In fact, the spectral data for substrate-free cytochrome P450BM3 provide evidence for distortion of the Fe-XY fragment, even in the absence of substrate. This apparent distortion, which is nonexistent in the case of substrate-free cytochrome P450cam, is most reasonably attributed to interaction of the Fe-XY fragment with the F87 phenylalanine side chain. This residue is known to lie very close to the heme iron in the substrate-free derivative of cytochrome P450BM3 and has been suggested to prevent hydroxylation of the terminal, omega, position of long-chain fatty acids.  相似文献   

12.
Resonance Raman studies of hydroporphyrins and chlorophylls   总被引:1,自引:0,他引:1  
  相似文献   

13.
S Jeyarajah  J R Kincaid 《Biochemistry》1990,29(21):5087-5094
Hybrid hemoglobins, containing mesoheme in one type of subunit and protoheme in the partner subunits, have been studied by resonance Raman spectroscopy. These hybrids have been studied in both the met hybrid and fully reduced, deoxy forms. Judicious choice of laser excitation frequency permits selective enhancement of modes associated with each type of subunit; i.e., either meso- or protoheme-containing subunit. The assignments of low-frequency modes of meso- and protoheme are briefly discussed with special reference to the iron-histidine linkage. Despite functional differences between the hybrids, no significant changes in the strength of the iron-histidine linkages are detected by resonance Raman spectroscopy. These results are discussed with reference to recent high-resolution NMR studies of these same hybrids.  相似文献   

14.
To assign the observed vibrationsl modes in the resonance Raman spectrum of the retinylidene chromophore of rhodopsin, we have studied chemically modified retinals. The series of analogs investigated are the n-butyl retinals substituted at C9 and C13. The results obtained for the 11-cis isomer have clearly assigned the CCH3 vibrational frequencies observed in the spectrum of the retinylidene chromophore. The data show that the C(9)CH3 stretching vibration can be assigned to the vibrational mode observed in the 1017 cm?1 region, and the vibration detected at 997 cm?1 can be assigned to the C(13CH3 vibration. The C(5)CH3 stretching mode does not contribute to the vibrations observed in this region. The splitting in the C(n)CH3 (n = 9, 13) vibration is characteristic of the 11-cis conformation. The results on the modified retinals do not support the hypothesis that the splitting arises from equilibrium mixtures of 11-cis, 12-s-cis and 11-cis, 12-s-trans in solution. Thus, this splitting cannot be used to determine whether the chromophore in rhodopsin is in a 12-s-cis or 12-s-trans conformation. However, our results demonstrate that there are other vibrational modes in the spectra which are sensitive to this conformational equilibrium and we use the presence of a strong ~ 1271 cm?1 mode in bovine and squid rhodopsin spectra as an indication that the chromophore in these pigments is 11-cis, 12-s-trans.  相似文献   

15.
Resonance Raman spectra of native bovine liver ferri-catalase have been obtained in the 200-1800 cm-1 region. Excitation at a series of wavelengths ranging from 406.7 to 514.5 nm has been used and gives rise to distinct sets of resonance Raman bands. Excitation within the Soret and Q-bands of the heme group produces the expected set of polarized and nonpolarized porphyrin modes, respectively. The frequencies of the porphyrin skeletal stretching bands in the 1450-1700 cm-1 region indicate that catalase contains only five-coordinate, high-spin heme groups. In addition to the porphyrin modes, bovine liver catalase exhibits bands near 1612 and 1520 cm-1 that are attributable to ring vibrations of the proximal tyrosinate that are enhanced via resonance with a proximal tyrosinate----Fe(III) change transfer transition centered near 490 nm. Similar bands have been observed in mutant hemoglobins that have tyrosinate axial ligands and in other Fe(III)-tyrosinate proteins. No resonance Raman bands have been observed that can be attributed to degraded hemes. The spectra are relatively insensitive to pH over the range of 5-10, and the same spectra are observed for catalase samples that do and do not contain tightly bound NADPH. Resonance Raman spectra of the fluoride complex exhibit porphyrin skeletal stretching modes that show it to be six coordinate, high spin, while the cyanide complex is six coordinate, low spin. Both the azide and thiocyanate complexes, however, are spin-state mixtures with the high-spin form predominant.  相似文献   

16.
Resonance Raman spectra were investigated for the sulfo and desulfo forms of cow's milk xanthine oxidase, with various visible excitation lines between 400 and 650 nm, and Mo(VI)-ligand vibrations were observed for the first time. The Mo(VI)=S stretch was identified at 474 and 462 cm(-1 )for the (32)S- and (34)S-sulfo forms, respectively, but was absent in the reduced state and in the desulfo form. The Mo(VI)=O stretch was weakly observed at 899 cm(-1 )for the sulfo form and shifted to 892 cm(-1) with very weak intensity for the dioxo desulfo form. In measurements of an excitation profile, the two bands at 474 and 899 cm(-1) showed maximum intensity at similar excitation wavelengths, suggesting that the Raman intensity of the metal-ligand modes is due to the Mo(VI)<--S charge transfer transition, and that this is the origin of the intrinsically weak features of the Mo(VI)-ligand Raman bands. When the sulfo form was regenerated from the desulfo form, the 899 cm(-1) band reappeared. However, the band at 899 cm(-1) showed no frequency shift when regeneration was conducted in H(2)(18)O, or after several turnovers in the presence of xanthine in H(2)(18)O. When the sulfo form was reduced and reoxidized in H(2)(18)O buffer, the 899 cm(-1) band reappeared without any frequency shift. These observations suggest that the oxo oxygen in the Mo center of xanthine oxidase is not labile. Low-frequency vibrations of the Mo center were observed together with those of the Fe(2)S(2) center with some overlaps, while FAD modes were observed clearly. The absence of dithiolene modes in XO is in contrast to the Mo(VI) centers of DMSO reductase and sulfite oxidase.  相似文献   

17.
Mixtures of nitric oxide and hemoglobin were prepared in a rapid freeze apparatus and analyzed by EPR spectroscopy. Spectra from samples at various degrees of saturation showed that the two subunits bound NO at equal rates. Identical results were observed in 0.1 M phosphate at pH 6.5 and 0.1 M 2,2'-bis(hydroxymethyl)-2,2',2'-nitrilotriethanol, 0.1 M NaCl at pH 7.0, both in the presence and absence of inositol hexaphosphate at either buffer condition. At subsaturating levels of NO (less than 60%), or at all levels of saturation in the presence of inositol hexaphosphate, it was found that the EPR spectrum of nitrosylhemoglobin varied with the length of time before freezing. This change was characterized by the development of a hyperfine structure at g = 2.01 which appeared with a half-time of approximately 0.4 s. Maxwell and Caughey (Maxwell, J. C., and Caughey, W. S. (1976) Biochemistry 15, 388-395) have attributed this three-line EPR hyperfine structure to the formation of a pentacoordinate ferroheme-NO complex. Corresponding slow changes were observed in the visible absorption spectrum following the binding of low levels of NO to deoxyhemoglobin or inositol hexaphosphate to fully saturated nitrosylhemoglobin. Thus it appears that NO binding to the alpha and beta subunits of deoxyhemoglobin takes place at equal rates and, under conditions favoring the T quaternary state (low saturation, presence of inositol hexaphosphate), a further slow structural change takes place, resulting in the cleavage of the iron--proximal histidine bond.  相似文献   

18.
S Dasgupta  T G Spiro 《Biochemistry》1986,25(20):5941-5948
Resonance Raman spectra are reported for deoxyhemoglobin (deoxyHb) and the (carbonmonoxy)hemoglobin (HbCO) photoproduct Hb by use of 7-ns YAG laser pulses at wavelengths of 416 and 532 nm, where enhancement is observed for totally symmetric and nontotally symmetric modes, respectively. The frequencies of the porphyrin skeletal modes v10, v2, v19, v11, and v3 have been determined to be 1602, 1559, 1553, 1542, and 1466 cm-1 in Hb. These frequencies are 2-3 cm-1 lower than the corresponding frequencies for deoxyHb. The v19 and v11 frequencies are at the expected values for a Ct-N distance of 2.057 A, the known core size for a 6-coordinate high-spin FeII-porphyrin complex. The remaining frequencies, however, deviate from the core size correlations for these modes in the same direction as do those of deoxyHb, suggesting that the porphyrin ring is domed in both species. Thus, the heme structure is similar for deoxyHb and Hb but is slightly expanded in the latter. The expanded heme in Hb implies a restraint on the full out-of-plane displacement of the Fe atom, by an estimated approximately 0.1 A relative to deoxyHb. This could result from a residual interaction with the CO molecule if the latter remains held by the protein against the Fe atom, in a high-spin 6-coordinate complex. The available spectroscopic evidence suggests that such a complex may be stabilized at 4 K but is unlikely to persist at room temperature beyond the electronic relaxation (0.35 ps) of the electronically excited heme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
In addition to interacting with hemoglobin as a heme ligand to form nitrosylhemoglobin, NO can react with cysteine sulfhydryl groups to form S-nitrosocysteine or cysteine oxides such as cysteinesulfenic acid. Both modes of interaction are very sensitive to the quaternary structure of hemoglobin. To directly view the interaction of NO with quaternary-T deoxyhemoglobin, crystallographic studies were carried out on crystals of deoxyhemoglobin that were exposed to gaseous NO under a variety of conditions. Consistent with previous spectroscopic studies in solution, these crystallographic studies show that the binding of NO to the heme groups of crystalline wild-type deoxyhemoglobin ruptures the Fe-proximal histidine bonds of the alpha-subunits but not the beta-subunits. This finding supports Perutz's theory that ligand binding induces tension in the alpha Fe-proximal histidine bond. To test Perutz's theory, deoxy crystals of the mutant hemoglobin betaW37E were exposed to NO. This experiment was carried out because previous studies have shown that this mutation greatly reduces the quaternary constraints that oppose the ligand-induced movement of the alpha-heme Fe atom into the plane of the porphyrin ring. As hypothesized, the Fe-proximal histidine bonds in both the beta- and the alpha-subunits remain intact in crystalline betaW37E after exposure to NO. With regard to S-nitrosocysteine or cysteine oxide formation, no evidence for the reaction of NO with any cysteine residues was detected under anaerobic conditions. However, when deoxyhemoglobin crystals are first exposed to air and then to NO, the appearance of additional electron density indicates that Cys93(F9)beta has been modified, most likely to cysteinesulfenic acid. This modification of Cys93(F9)beta disrupts the intrasubunit salt bridge between His146(HC3)beta and Asp94(FG1)beta, a key feature of the quaternary-T hemoglobin structure. Also presented is a reanalysis of our previous crystallographic studies [Chan, N.-L., et al. (1998) Biochemistry 37, 16459-16464] of the interaction of NO with liganded hemoglobin in the quaternary-R2 structure. These studies showed additional electron density at Cys93(F9)beta that was consistent with an NO adduct. However, for reasons discussed in this paper, we now believe that this adduct may be the Hb-S-N.-O-H radical intermediate and not Hb-S-N=O as previously suggested.  相似文献   

20.
Hemoglobins modified for therapeutic use as either hemoglobin-based oxygen carriers or scavengers of nitric oxide are currently being evaluated in clinical trials. One such product, pyridoxalated hemoglobin polyoxyethylene conjugate (PHP), is a human-derived and chemically modified hemoglobin that has yielded promising results in Phase II clinical trials, and is entering a pivotal Phase III clinical trial for the treatment of shock associated with systemic inflammatory response syndrome (SIRS). Shock associated with SIRS is a NO-induced shock. PHP, a new mechanism-based therapy, has been demonstrated in clinical trials to have the expected hemodynamic activity of raising blood pressure and reducing catecholamine use, consistent with its mechanism of action as a NO scavenger. PHP is conjugated with polyoxyethylene, which results in a surface-decorated molecule with enhanced circulation time and stability as well as in attachment of soluble red blood cell enzymes, including catalase and superoxide dismutase. PHP thus contains an antioxidant profile similar to the intact red blood cell and is therefore resistant to both initial oxidative modification by oxidants such as hydrogen peroxide and subsequent ferrylhemoglobin formation. These studies suggest both that the redox activity of modified hemoglobins can be attenuated and that modified hemoglobins containing endogenous antioxidants, such as PHP, may have reduced pro-oxidant potential. These antioxidant properties, in addition to the NO-scavenging properties, may allow the use of PHP in other indications in which excess NO, superoxide, or hydrogen peroxide is involved, including ischemia-reperfusion injury and hemorrhagic shock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号