首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Calanthe discolor is a Japanese terrestrial orchid that is cultivated for its beautiful flowers arranged in racemose inflorescences. Although its propagation for horticultural purposes has been studied extensively resulting in the successful production of seedlings, little is known about the pollinators and breeding system of C. discolor in its natural habitat. The current study, which combined field observations and pollination experiments, was conducted to gain further insight into the reproduction of this important orchid species. Three bee species: Eucera nipponensis, Osmia cornifrons and Apis cerana japonica, were found to be effective pollinators, transferring the pollinaria on their heads. Pollination experiments also revealed that this species was self-compatible, although it was neither autogamous nor apogamous. The fruit set for the open-pollinated flowers was less than 10 %, suggesting a high degree of pollinator limitation, possibly as a result of the deceptive nature of this species. These results provide evidence that pollinator specificity is the primary mechanism of reproductive isolation between C. discolor and its close relative Calanthe striata, because the latter species is known to be exclusively pollinated by carpenter bee.  相似文献   

2.
The mimicry of malpighiaceous oil‐flowers appears to be a recurrent pollination strategy among many orchids of the subtribe Oncidiinae. These two plant groups are mainly pollinated by oil‐gathering bees, which also specialize in pollen collection by buzzing. In the present study, the floral ecology of the rewardless orchid Tolumnia guibertiana (Oncidiinae) was studied for the first time. The orchid was self‐incompatible and completely dependent on oil‐gathering female bees (Centris poecila) for fruit production. This bee species was also the pollinator of two other yellow‐flowered plants in the area: the pollen and oil producing Stigmaphyllon diversifolium (Malpighiaceae) and the polliniferous and buzzing‐pollinated Ouratea agrophylla (Ochnaceae). To evaluate whether this system is a case of mimetism, we observed pollinator visits to flowers of the three plant species and compared the floral morphometrics of these flowers. The behavior, preferences and movement patterns of Centris bees among these plants, as well as the morphological data, suggest that, as previously thought, flowers of T. guibertiana mimic the Malpighiaceae S. diversifolium. However, orchid pollination in one of the studied populations appears to depend also on the presence of O. agrophylla. Moreover, at the two studied populations, male and female pollination successes of T. guibertiana were not affected by its own floral display, and did not differ between populations. The results are discussed in relation to the behavior and preferences of Centris bees, as well as the differential presence and influence of each of the two floral models.  相似文献   

3.
Generalized pollination systems may be advantageous on island systems or regions of substantial disturbance. We examined whether or not specialization breakdown has occurred in a presumably bat‐pollinated columnar cactus, Pilosocereus royenii, on Puerto Rico, an island subjected to periodic hurricanes. The flowers show characteristics related to bat pollination including nocturnal anthesis, morphology, and amount and quality of nectar reward. The cactus produces flowers whose styles are temporally and mechanically separated from its anthers and do not self‐pollinate. Hand manipulations indicated that it is partially self‐incompatible or suffers some inbreeding depression. In 217 h of observations conducted biweekly over the course of 1 yr, P. royenii received visits from bats, moths, bees, and birds, but the only effective pollinator was the carpenter bee, Xylocopa mordax. Only four bat visits were recorded, all prior to stigma receptiveness. Floral morphology of P. royenii was significantly more variable than that of other bat‐pollinated species of the genus. We propose that infrequent bat visits are a consequence of a population crash and that floral variability is due to either relaxed selection for bat pollination or a transitional stage from bat pollination to bee pollination.  相似文献   

4.
Calanthe amamiana is a terrestrial orchid that thrives on the shady forest floors of broad-leaved forests on Amami Island, central Ryukyus, Japan. Here, I report on the floral and pollination biology of this critically endangered orchid based on a 7-year study conducted in the species' natural habitats. As the nectarless flowers are probably self-compatible but are unable to autonomously self-pollinate, they need to attract pollen vectors by deceit for pollination. To advertise themselves, the flowering inflorescences, which comprise a few to dozens of flowers, use whitish floral colors that are comparatively conspicuous against the shaded background. The exclusive pollinator was the long-horned bee Eucera okinawae, which nests in soils of the forest floor, although bee abundance varied considerably among study years. Natural fruit-set ratios were generally low but showed interannual variation. The annual fruit-set ratios were positively correlated with annual bee abundance, thereby suggesting that under natural conditions, the orchid is pollinator-limited. Given that C. amamiana is dependent exclusively on E. okinawae for pollination and is also probably pollinator-limited, conservation plans for this orchid should take into consideration the welfare of long-horned bees. In particular, as nectariferous flowers were unavailable within broad-leaved forests, to satisfy the foraging requirements of long-horned bees, conservation managers should be cognizant of conservation values of flowering plants distributed in sun-lit sites near orchid habitats, and manage those in an appropriate manner.  相似文献   

5.
1. Pollinating insects provide important ecosystem services and are influenced by the intensity of grazing. Based on the Intermediate Disturbance Hypothesis (IDH), pollinator diversity is expected to peak at intermediate grazing intensities. However, this hump‐shaped relationship is rarely found. 2. The effect of grazing intensity was tested on flower cover, on the abundance and richness of bees, hoverflies and bee flies, and on pollination services to early‐flowering bee‐pollinated Asphodelus ramosus L. For that, we used data on 11 plant–pollinator phryganic communities from Lesvos Island (Greece) widely differing in grazing intensities. 3. Flower abundance and richness showed hump‐shaped relationships with grazing intensity. Grazing affected the abundance and richness of bees and hoverflies directly and also indirectly, through changes in the flower community. Grazing influenced directly the richness but not the abundance of bee flies. Overall, pollinator abundance and richness showed hump‐shaped relationships with grazing intensity, but variations in strength (hoverfly abundance) and direction (bee community) of the effect appeared along the season. Early in the season, grazing increased bee abundance but decreased richness, resulting in increased pollen limitation in A. ramosus. 4. The effects of grazing on pollinators vary with the intensity of the disturbance, generally supporting the IDH, and the timing of land‐use activities may influence pollination services. Management strategies should include moderate grazing levels to preserve overall diversity in this area, however, the conservation of particular early bee or bee‐pollinated species may benefit from reduced grazing in early spring.  相似文献   

6.
Covariation among traits can modify the evolutionary trajectory of complex structures. This process is thought to operate at a microevolutionary scale, but its long‐term effects remain controversial because trait covariation can itself evolve. Flower morphology, and particularly floral trait (co)variation, has been envisioned as the product of pollinator‐mediated selection. Available evidence suggests that major changes in pollinator assemblages may affect the joint expression of floral traits and their phenotypic integration. We expect species within a monophyletic lineage sharing the same pollinator type will show not only similarity in trait means but also similar phenotypic variance‐covariance structures. Here, we tested this expectation using eighteen Salvia species pollinated either by bees or by hummingbirds. Our findings indicated a nonsignificant multivariate phylogenetic signal and a decoupling between means and variance‐covariance phenotypic matrices of floral traits during the evolution to hummingbird pollination. Mean trait value analyses revealed significant differences between bee‐ and hummingbird‐pollinated Salvia species although fewer differences were detected in the covariance structure between groups. Variance‐covariance matrices were much more similar among bee‐ than hummingbird‐pollinated species. This pattern is consistent with the expectation that, unlike hummingbirds, bees physically manipulate the flower, presumably exerting stronger selection pressures favouring morphological convergence among species. Overall, we conclude that the evolution of hummingbird pollination proceeded through different independent transitions. Thus, although the evolution of hummingbird pollination led to a new phenotypic optimum, the process involved the diversification of the covariance structure.  相似文献   

7.
A study was carried out in Kakamega forest, in the western region of Kenya, to evaluate the effectiveness of the stingless bee Hypotrigona gribodoi (Magretti, 1884) on the pollination of green pepper. Three treatments were applied and consisted of self‐pollination, pollination by feral pollinators in the open field and pollination by H. gribodoi in a net cage. The differences in fruit yield and seed quality were compared among treatments. Flowers pollinated by H. gribodoi produced the heaviest fruits with the highest seed numbers followed by feral pollinators and lastly self‐pollinated flowers. Moreover, seeds were significantly bigger in size in fruits resulting from flowers pollinated by H. gribodoi compared to fruits obtained from self‐pollinated flowers or flowers pollinated by feral insects. We, therefore, conclude that H. gribodoi is an efficient pollinator of green pepper in the tropical region of East Africa.  相似文献   

8.
Honey bees, Apis mellifera L., probe for nectar from robbery slits previously made by male carpenter bees, Xylocopa virginica (L.), at the flowers of rabbiteye blueberry, Vaccinium ashei Reade. This relationship between primary nectar robbers (carpenter bees) and secondary nectar thieves (honey bees) is poorly understood but seemingly unfavorable for V. ashei pollination. We designed two studies to measure the impact of nectar robbers on V. ashei pollination. First, counting the amount of pollen on stigmas (stigmatic pollen loading) showed that nectar robbers delivered fewer blueberry tetrads per stigma after single floral visits than did our benchmark pollinator, the southeastern blueberry bee, Habropoda laboriosa (F.), a recognized effective pollinator of blueberries. Increasing numbers of floral visits by carpenter bee and honey bee robbers yielded larger stigmatic loads. As few as three robbery visits were equivalent to one legitimate visit by a pollen-collecting H. laboriosa female. More than three robbery visits per flower slightly depressed stigmatic pollen loads. In our second study, a survey of 10 commercial blueberry farms demonstrated that corolla slitting by carpenter bees (i.e., robbery) has no appreciable affect on overall V. ashei fruit set. Our observations demonstrate male carpenter bees are benign or even potentially beneficial floral visitors of V ashei. Their robbery of blueberry flowers in the southeast may attract more honey bee pollinators to the crop.  相似文献   

9.
Pollinators have long been known to select for floral traits, but the nature of this relationship has been little investigated in trap pollination systems. We investigated the trapping devices of 15 Arum spp. and compared them with the types of insects trapped. Most species shared a similar general design of trap chamber walls covered in downward‐pointing papillate cells, lacunose cells in the chamber wall and elongated sterile flowers partially blocking the exit of the trap. However, there was significant variation in all these morphological features between species. Furthermore, these differences related to the type of pollinator trapped. Most strikingly, species pollinated by midges had a slippery epidermal surface consisting of smaller papillae than in species pollinated by other insects. Midge‐pollinated species also had more elongated sterile flowers and tended to have a larger lacunose area. We conclude that pollination traps evolve in response to the type of insect trapped and that changes to the slippery surfaces of the chamber wall are an important and previously little recognized variable in the design of pollination traps. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013, 172 , 385–397.  相似文献   

10.
Non‐rewarding plants use a variety of ruses to attract their pollinators. One of the least understood of these is generalized food deception, in which flowers exploit non‐specific food‐seeking responses in their pollinators. Available evidence suggests that colour signals, scent and phenology may all play key roles in this form of deception. Here we investigate the pollination systems of five Eulophia spp. (Orchidaceae) lacking floral rewards. These species are pollinated by bees, notably Xylocopa (Anthophorinae, Apidae) or Megachile (Megachilidae) for the large‐flowered species and anthophorid (Anthophorinae, Apidae) or halictid (Halictidae) bees for the small‐flowered species. Spectra of the lateral petals and ultraviolet‐absorbing patches on the labella are strongly contrasting in a bee visual system, which may falsely signal the presence of pollen to bees. All five species possess pollinarium‐bending mechanisms that are likely to limit pollinator‐mediated self‐pollination. Flowering times extend over 3–4 months and the onset of flowering was not associated with the emergence of pollinators, some of which fly year round. Despite sharing pollinators with other plants and lacking rewards that would encourage fidelity, the Eulophia spp. exhibited relatively high levels of pollen transfer efficiency compared with other rewarding and deceptive orchids. We conclude that the study species employ generalized food deception and exploit food‐seeking bees. © 2013 The Linnean Society of London, Botanical Journal of the Linnean Society, 2013 , 171 , 713–729.  相似文献   

11.
Most Cypripedium spp. are known to be pollinated by bees. However, myiophilous traits are found in some species, especially in sections Trigonopedia and Sinopedilum. Here we chose C. micranthum and C. sichuanense, two sympatric species endemic to Sichuan, China, to test whether these orchids are fly pollinated. Artificial pollination showed that both flowers are self‐compatible but need pollen vectors for successful reproduction. Field observation showed that C. micranthum was pollinated by fruit flies and C. sichuanense by dung flies, both novel pollinators of Cypripedium orchids. These sympatric Cypripedium spp. are also cross‐compatible, but hybrids were not found in nature. The pollination syndromes of C. sichuanense and C. micranthum fit into the complex sapromyiophily pattern. It appears that pollinator specificity is responsible for their reproductive isolation. The discovery of fly pollination in C. sichuanense and C. micranthum, which belong to the related sections Trigonopedia and Sinopedilum, suggests a shift from bee to fly pollination in the genus Cypripedium. Unlike most Cypripedium spp., the anthers of C. micranthum release discrete pollinia with narrow stalks instead of the usual amorphous pollen smears. This ‘proto‐pollinarium’ is described, probably for the first time. These pollinia are most likely an adaptation for pollination by microdiptera, so the fly can carry the contents of both chambers in the same anther. © 2012 The Linnean Society of London, Botanical Journal of the Linnean Society, 2012, 170 , 50–58.  相似文献   

12.
We studied the patterns of adaptive radiation in Disa, a large orchid genus in southern Africa. A cladogram for 27 species was constructed using 44 morphological characters. Pollination systems were then mapped onto the phylogeny in order to analyze pathways of floral evolution. Shifts from one pollination system to another have been a major feature of the evolutionary diversification of Disa. Unlike many plant genera that are pollinated mainly by a single group of insects, radiation in Disa has encompassed nearly all major groups of pollinating insects; in all, 19 different specialized pollination systems have been found in the 27 species included in this analysis. Another striking pattern is the repeated evolution of broadly similar pollination systems in unrelated clades. For example, butterfly-pollinated flowers have evolved twice; showy deceptive flowers pollinated by carpenter bees, twice; long-spurred flowers pollinated by long-tongued flies, four times; night-scented flowers pollinated by moths, three times; and self-pollination, three times. This suggests that a few dominant pollinator species in a region may be sufficient to generate diversification in plants through repeated floral shifts that never retrace the same pathways.  相似文献   

13.
  • Orchids are a classic angiosperm model for understanding biotic pollination. We studied orchid species within two species‐rich herbaceous communities that are known to have either hymenopteran or dipteran insects as the dominant pollinators, in order to understand how flower colour relates to pollinator visual systems.
  • We analysed features of the floral reflectance spectra that are significant to pollinator visual systems and used models of dipteran and hymenopteran colour vision to characterise the chromatic signals used by fly‐pollinated and bee‐pollinated orchid species.
  • In contrast to bee‐pollinated flowers, fly‐pollinated flowers had distinctive points of rapid reflectance change at long wavelengths and a complete absence of such spectral features at short wavelengths. Fly‐pollinated flowers also had significantly more restricted loci than bee‐pollinated flowers in colour space models of fly and bee vision alike.
  • Globally, bee‐pollinated flowers are known to have distinctive, consistent colour signals. Our findings of different signals for fly pollination is consistent with pollinator‐mediated selection on orchid species that results from the distinctive features of fly visual systems.
  相似文献   

14.
  1. Pollination syndromes refer to stereotyped floral characteristics (flower colour, shape, etc.) that are associated with a functional group of pollinators (bee, bird, etc.).
  2. The trumpet creeper Campsis radicans, endemic to the southeast and mid‐west United States, has been assigned to the hummingbird‐pollination syndrome, due mainly to its red, trumpet‐shaped flowers.
  3. Previous studies demonstrated that the ruby‐throated hummingbird Archilochus colubris is C. radicans' primary pollinator, but anecdotal data suggest various bee species may provide pollination service when hummingbirds are absent.
  4. This study characterised C. radicans nectar volume and concentration by time of day. Nectar volume was suitable for hummingbirds, but concentration was higher than typical hummingbird‐pollinated plants (~20% w/w); at ~30% w/w, it approached the concentration expected in bee‐pollinated plants (~50% w/w). We also found substantial amounts of nectar at night.
  5. Two C. radicans populations received virtually no hummingbird visits, but the number of bees were markedly higher than in the populations previously described. Interestingly, there were no night‐time visitors despite the large quantity of nocturnal nectar.
  6. Based on previously published pollen delivery per visit by various species, this study estimated that cumulative deposition by bees routinely reached pollen deposition thresholds for setting fruit in C. radicans. They are, unequivocally, the predominant pollinators in these populations, thus providing pollination service in the absence of hummingbirds.
  7. These results highlight C. radicans as a food source for native bees and add to the understanding of how floral phenotypes can facilitate pollination by disparate functional groups.
  相似文献   

15.
So far, oil‐rewarding flowers are known to be pollinated only by oil‐collecting bees, which gather and use lipids for larval feed and nest building. As honeybees do not have oil‐collecting appendages on their legs, they have not been associated with pollination of such flowers. In a predominantly Apis pollinated and food deceptive clade of wild Cymbidiums, we investigated the reproductive strategy of Cymbidium aloifolium, hitherto unknown for its floral oil reward. Our study demonstrates the requisites for establishment of mutualistic interaction between the oil flower and Apis cerana indica, a corbiculate bee. Success in pollination requires learning by honeybees to access the food reward, thereby displaying cognitive ability of the pollinator to access the customized reward. Morphometric matching between orchid flowers and the pollinator, and that between pollinia and stigmatic cavity also appear to be essential in the pollination success. Absence of pollinator competition and prolonged flower‐handling time are suggested to promote floral constancy. The present study highlights the need to explore the spectrum of pollination rewards pursued by honeybees, which may include unconventional composition of floral resources.  相似文献   

16.
The morphologically diverse flowers in the genusSatyrium reflect adaptations to a wide range of pollinators. Several recently discovered pollination systems inSatyrium are described and illustrated here; these include pollination by solitary bees, carrion flies, butterflies and moths. Two basic types of floral mechanism are recognised inSatyrium: (1) Species pollinated by lepidoptera and birds have long floral spurs and plate-like viscidia seated in lateral rostellum notches; these viscidia become attached to the proboscis or bill of the pollinator. (2) Species pollinated by flies and bees have relatively short floral spurs and globose viscidia seated in terminal rostellum notches; these viscidia become attached to the face, thorax or eyes of the pollinator.  相似文献   

17.
The pollination biology of the nectarless orchid Pogonia minor was investigated in central Japan. The investigation revealed that the solitary flowers failed to attract pollinators, while high rates of fruit set were observed in the natural population. Comparable levels of fruit set were obtained in bagged, artificial self‐pollinated and artificial cross‐pollinated plants, indicating that the species is not pollinator‐limited for fruit set under natural conditions. Autonomous self‐pollination in P. minor resulted from a reduced rostellum, which allowed contact between the pollinia and the stigma. Self‐pollination is thought to be an adaptive response that provides reproductive assurance under conditions of pollinator limitation. Since pollen limitation is generally known to be frequent among deceptive orchids, strong pollen limitation is probably a driving force in the autonomous self‐pollination mechanism in the nectarless orchid P. minor.  相似文献   

18.
Mass flowering is a widespread blooming strategy among Neotropical trees that has been frequently suggested to increase geitonogamous pollination. We investigated the pollination ecology of the mass‐flowering tree Handroanthus impetiginosus, addressing its breeding system, the role in pollination of different visitors, the impact of nectar robbers on fruit set and the function of colour changes in nectar guides. This xenogamous species is mainly pollinated by Centris and Euglossa bees (Apidae) seeking nectar, which are known to fly long distances. The flowers favour these bees by having: (1) a closed entrance in newly opened flowers which provides access only to strong bees capable of deforming the flower tube; and (2) a nectar chamber that is accessible only to long‐tongued bees. Only first‐day flowers with yellow nectar guides produce nectar. Pollinators prefer these flowers over second‐ and third‐day flowers with orange and red nectar guides, respectively. Nectar robbers damage two‐thirds of the flowers and this robbing activity decreases fruit set by half. We attribute the low fruit set of H. impetiginosus to the intense nectar robbing and hypothesize that visual signalling of nectar presence in newly opened (receptive) flowers reduces geitonogamy by minimizing bee visits to unrewarding (non‐receptive) flowers. © 2014 The Linnean Society of London, Botanical Journal of the Linnean Society, 2014, 176 , 396–407.  相似文献   

19.
Many angiosperm lineages present transitions from bee to hummingbird pollination. The flower design in most of these lineages includes either corolla tubes or nectar spurs, structures that commonly experienced an elongation with the acquisition of hummingbird pollination. It is proposed that this increases the fit between the bird head and flower structures, and isolates or partially blocks bees from the interaction. But can this transition occur if the ancestral flower design lacks tubes or spurs? Here we focus on the transition from bee to hummingbird pollination in the Loasaceae subfamily Loasoideae. Loasoideae flowers have radial corollas with separated petals; therefore, they do not display corolla tubes nor nectar spurs. These flowers also present a whorl of nectar scales and staminodes, unique to the subfamily, which is involved in flower–pollinator fit and in nectar harvesting. To explore flower shape adaptation to hummingbird pollination, we tested for correspondence between pollinators and flower shape in Loasoideae. In order to achieve this, we first compared the evolutionary history of flower phenotype and pollination mode, and then used stochastic character mapping and geometric-morphometric variables in a comparison of alternative evolutionary models. The results of our study suggest that the transition from bee to bird pollination was accompanied by changes in the shape of the staminodial complex, along with the evolution of relatively closed corollas. Moreover, while bird pollination seems to be the end point in the evolution of pollination syndromes in many angiosperm lineages, rodent pollinated flowers probably evolved from ancestral bird pollinated flowers in Loasoideae. Our findings suggest that the evolution of bird pollinated flowers from ancestral bee pollinated flowers does not require the presence of corolla tubes or spurs, and can take place as long as the flower design includes structures participating in flower–pollinator fit.  相似文献   

20.
Floral variation among closely related species is thought to often reflect differences in pollination systems. Flowers of the large genus Impatiens are characterized by extensive variation in colour, shape and size and in anther and stigma positioning, but studies of their pollination ecology are scarce and most lack a comparative context. Consequently, the function of floral diversity in Impatiens remains enigmatic. This study documents floral variation and pollination of seven co‐occurring Impatiens spp. in the Southeast Asian diversity hotspot. To assess whether floral trait variation reflects specialization for different pollination systems, we tested whether species depend on pollinators for reproduction, identified animals that visit flowers, determined whether these visitors play a role in pollination and quantified and compared key floral traits, including floral dimensions and nectar characteristics. Experimental exclusion of insects decreased fruit and seed set significantly for all species except I. muscicola, which also received almost no visits from animals. Most species received visits from several animals, including bees, birds, butterflies and hawkmoths, only a subset of which were effective pollinators. Impatiens psittacina, I. kerriae, I. racemosa and I. daraneenae were pollinated by bees, primarily Bombus haemorrhoidalis. Impatiens chiangdaoensis and I. santisukii had bimodal pollination systems which combined bee and lepidopteran pollination. Floral traits differed significantly among species with different pollination systems. Autogamous flowers were small and spurless, and did not produce nectar; bee‐pollinated flowers had short spurs and large floral chambers with a wide entrance; and bimodally bee‐ and lepidopteran‐pollinated species had long spurs and a small floral chamber with a narrow entrance. Nectar‐producing species with different pollination systems did not differ in nectar volume and sugar concentration. Despite the high frequency of bee pollination in co‐occurring species, individuals with a morphology suggestive of hybrid origin were rare. Variation in floral architecture, including various forms of corolla asymmetry, facilitates distinct, species‐specific pollen‐placement on visiting bees. Our results show that floral morphological diversity among Impatiens spp. is associated with both differences in functional pollinator groups and divergent use of the same pollinator. Non‐homologous mechanisms of floral asymmetry are consistent with repeated independent evolution, suggesting that competitive interactions among species with the same pollination system have been an important driver of floral variation among Impatiens spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号