首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2-O-Benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-, 4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-, and 2-O-benzoyl-3,4,6-tri-O-benzyl-α-d-galactopyranosyl chloride were converted into the corresponding 2,2,2-trifluoroethanesulfonates, and these were treated with allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give allyl 2-O-benzoyl-4-O-[2-O-benzoyl-3,6-di-O-benzyl-4-O-(chloroacetyl)-β-d-galactopyranosyl]-3,6-di-O-benzyl- α-d-galactopyranoside (26; 41% yield), allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl- α-d-galactopyranoside (27; 62% yield), and allyl 2-O-benzoyl-4-O-(2-O-benzoyl-3,4,6-tri-O-benzyl-β-d-galactopyranosyl)-3,6-di-O-benzyl-α-d-galactopyranoside (28; 65% yield). All disaccharides were free from their α anomers. Disaccharides 26 and 27 were found to be base-sensitive, and were de-esterified by KCN in aqueous ethanol, and debenzylated with H2-Pd. Attempts to produce (1→4)-β-d-galactopyranosides from the coupling of a number of fully esterified d-galactopyranosyl sulfonates to allyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside were unsuccessful.  相似文献   

2.
A series of 2-O-benzoyl-4,6-di-O-benzyl-α-d-galactopyranosyl halides carrying either a second benzoyl group (8a, 12a) or a selectively removable, temporary protecting group (8b–d, 12b) at position 3 was synthesized from allyl α-d-galactopyranoside (1). The key intermediate was 1-propenyl 4,6-di-O-benzyl-α-d-galactopyranoside (5), prepared from 1 via the 4,6-O-benzylidene-2,3-di-O-crotyl derivative 2. The successive incorporation of the 2-O-benzoyl group, by selective acylation at low temperature, and of various 3-substituents gave fully substituted 1-propenyl α-d-galactopyranosides 6a–d. These were converted into the glycosyl halides by published methods. An improved preparation of allyl 2,6-di-O-benzyl-(15) and 2,4,6-tri-O-benzyl-(19) α-d-galactopyranoside was achieved. The direct acetonation of 1 to the 3,4-O-isopropylidene derivative 13, followed by benzylation and mild acid hydrolysis, gave 15 in 56% yield. The transient protection of O-3 in 15 was accomplished by the alkylation of the dibutylstannylene derivative 16 with (2-methoxyethoxy)methyl chloride. Successive benzylation and mild acid hydrolysis of the product 17 efficiently furnished 19.  相似文献   

3.
The bromide-catalyzed condensation of 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (11) with methyl 2,3,6-tri-O-benzoyl-α-d-galactopyranoside (3) gave methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-d-galactopyranoside (12) in 83% yield. The yield of this glycosidation reaction was high, despite the axial orientation of the 4-hydroxyl group of 3. Stepwise deprotection of 12 afforded methyl 4-O-α-d-galactopyranosyl-α-d-galactopyranoside (15). Acetylation of 15, followed by acetolysis, gave the known α-octaacetate 17. This scheme constituted a total synthesis of 4-O-α-d-galactopyranosyl-d-galactopyranose (2) in 25% yield from 3. The disaccharide 2 is the terminal disaccharide of the ceramide trisaccharide related to Fabry's disease.  相似文献   

4.
The 2,3,4- (9) and 2,4,6-tribenzyl (19) ethers of 1-thio-β-d-galactopyranose were prepared from the corresponding O-benzylated normal (1-hydroxyl) sugars 4 and 15 via the sequence: normal sugar → diacetate → O-acetylglycosyl bromide → O-acetyl-glycosyl ethylxanthate → 1-thio sugar. 2,3,4-Tri-O-benzyl-α-d-galactopyranose (4) is most advantageously made from allyl 6-O-allyl-α-d-galactopyranoside (2) by a published synthesis. An improved synthesis of 2,4,6-tri-O-benzyl-d-galactopyranose (15) was devised; it involves the selective 3-O-benzoylation of allyl 2,6-di-O-benzyl-α-d-galactopyranoside (10).  相似文献   

5.
2-Methyl-(3,4,6-tri-O-benzoyl-1,2-dideoxy-α-d-galactopyrano)-[2′,1′:4,5]-2-oxazoline (7) was prepared from 1-propenyl 2-acetamido-3,4,6-tri-O-benzoyl-2- deoxy-β-d-galactopyranoside (6). The latter was prepared from allyl 2-acetamido-2-deoxy-β-d-glucopyranoside (1) through selective benzoylation at O-3 and O-6, conversion into the 4-p-bromobenzenesulfonate 4, inversion of configuration at C-4 to afford allyl 2-acetamido-3,4,6-tri-O-benzoyl-β-d-galactopyranoside (5), and subsequent isomerization with palladium-charcoal to give 6.  相似文献   

6.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

7.
《Carbohydrate research》1985,140(2):277-288
Condensation of 2,4,6-tri-O-acetyl-3-deoxy-3-fluoro-α-d-galactopyranosyl bromide (3) with methyl 2,3,4-tri-O-acetyl-β-d-galactopyranoside (4) gave a fully acetylated (1→6)-β-d-galactobiose fluorinated at the 3′-position which was deacetylated to give the title disaccharide. The corresponding trisaccharide was obtained by reaction of 4 with 2,3,4-tri-O-acetyl-6-O-chloroacetyl-α-d-galactopyranosyl bromide (5), dechloroacetylation of the formed methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)- 2,3,4-tri-O-acetyl-β-d-galactopyranoside to give methyl O-(2,3,4-tri-O-acetyl-β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside (14), condensation with 3, and deacetylation. Dechloroacetylation of methyl O-(2,3,4-tri-O-acetyl-6-O-chloroacetyl-β-d-galactopyranosyl)-(1→6)-O-(2,3,4-tri-O-acetyl- β-d-galactopyranosyl)-(1→6)-2,3,4-tri-O-acetyl-β-d-galactopyranoside, obtained by condensation of disaccharide 14 with bromide 5, was accompanied by extensive acetyl migration giving a mixture of products. These were deacetylated to give, crystalline for the first time, the methyl β-glycoside of (1→6)-β-d-galactotriose in high yield. The structures of the target compounds were confirmed by 500-MHz, 2D, 1H- and conventional 13C- and 19F-n.m.r. spectroscopy.  相似文献   

8.
The selectively benzylated glycoside allyl 2-acetamido-4,6-di-O-benzyl-2-deoxy-β- d-galactopyranoside ( 4) was prepared from the corresponding derivative of 2-acetamido-2-deoxy- d-glucose via the p-bromobenzenesulfonate and the benzoate. 2-O-Benzoyl-3,4,6-tri-O-benzyl-α- d-galactopyranosyl chloride ( 10) was obtained from allyl 6-O-benzyl-2-O-(2-butenyl)-α- d-galactopyranoside via known intermediates. To complete the sequence, the 1-propenyl 3,4,6-tri-O-benzyl galactoside was successively converted into the 2-benzoate, the free sugar, and the chloride 10. A fully protected form ( 11) of the trisaccharide α- l-Fucp-(1→2)-β- d-Galp-(1→4)- d-GalNAc was then synthesized by coupling 10 to 4, partially deblocking the disaccharide product, and l-fucosylating the resulting intermediate. Cleavage of the O-benzyl groups from 11, with concomitant saturation of the allyl group, gave the propyl β-glycoside of the unsubstituted trisaccharide.  相似文献   

9.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

10.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

11.
Alkylation of benzyl 2,3,6-tri-O-benzyl-β-D-glucopyranoside in N,Ndimethyl formamide with (R)-2-chloropropionic acid gave crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-carboxyethyl]-β-D-glucopyranoside. After hydrogenolysis of the benzyl group 4-O-[(S)-D-carboxyethyl]-D-glucose was obtained which lactonized very easily. Treatment of benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-carboxyethyl]-β-D-glucopyranoside with diazomethane gave cristalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(methoxycarbonyl)ethyl]-β-D-glucopyranoside, which was reduced with lithium aluminium hydride to crystalline benzyl 2,3,6-tri-O-benzyl-4-O-[(S)-1-(hydroxymethyl)ethyl]-β-D-glucopyranoside After hydrogenolysis of the benzyl groups 4-O-[(S)-1-(hydroxymethyl)ethyl]-D-glucose was obtained. A similar sequence of reactions was performed with (S)-2-chloropropionic acid.  相似文献   

12.
1,2,4,6-Tetra-O-acetyl-3-O-benzyl-α-D-mannopyranose (7) was obtained in good yield from 3,4,6-tri-O-benzyl-1,2-O-(1-methoxyethylidene)-β-D-mannopyranose (1) by acetolysis. Hydrogenolysis of 7 afforded 1,2,4,6-tetra-O-acetyl-α-D-mannopyranose which is a versatile intermediate for the preparation of other 3-O-substituted D-mannoses, such as 3-O-methyl-D-mannose and 3-O-α-D-mannopyranosyl-D-mannose. 3,4-Di-O-methyl-D-mannose was readily prepared from 1,2,6-tri-O-acetyl-3,4-di-O-benzyl-α-D-mannopyranose, which was also obtained from 1 by controlled acetolysis.  相似文献   

13.
Partial benzylation of methyl 2,3-di-O-benzyl-α-D-galactopyranoside gave methyl 2,3,6-tri-O-benzyl-α-D-galactopyranoside as the major product, whereas the isomeric 2,6-di-O-benzyl ether gave a mixture of products in which the ratio of methyl 2,4,6- to methyl 2,3,6-tri-O-benzyl-α-D-galactopyranoside was ≈4:1. The proportion of unreacted starting-material was low in both cases, whereas after a similar reaction of methyl 2,6-di-O-benzyl-β-D-galactopyranoside more than 50% of the dibenzyl ether was recovered unchanged. In this case also, considerably higher reactivity was exhibited by the hydroxyl group at C-4 than that at C-3. Acid hydrolysis of the methyl glycosides of the tribenzyl ethers afforded crystalline 2,4,6-tri-O-benzyl-α-D-galactose and syrupy 2,3,6-tri-O-benzyl-D-galactose. Structures of intermediates were established by acetylation, examination of their n.m.r. spectra, and conversion into the known 3-O and 4-O-methyl-D-galactose.  相似文献   

14.
As part of a program to synthesize the ceramide trisaccharide (1) related to Fabry's disease, methyl 4-O-(4-O-α-d-galactopyranosyl-β-d-galactopyranosyl)-β-d-glucopyranoside (12) was prepared. Methyl β-lactoside (2) was converted into methyl 4-O-(4,6-O-benzylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (4). Methyl 2,3,6-tri-O-benzoyl-4-O-(2,3,6-tri-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (7) was synthesized from 4 through the intermediates methyl 2,3,6-tri-O-benzoyl-4-O-(4,6-O-benzylidene-2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (5) and methyl 2,3,6-tri-O-benzoyl-4-O-(2,3-di-O-benzoyl-β-d-galactopyranosyl)-β-d-glucopyranoside (6). The halide-catalyzed condensation of 7 with 2,3,4,6-tetra-O-benzyl-d-galactopyranosyl bromide (8) gave methyl 2,3,6-tri-O-benzoyl-4-O-[2,3,6-tri-O-benzoyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)- β-d-galactopyranosyl]-β-d-glucopyranoside (10). Stepwise deprotection of 10 led to 12, the methyl β-glycoside of the trisaccharide related to Fabry's disease.  相似文献   

15.
《Carbohydrate research》1986,154(1):93-101
O-β-d-Galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose has been synthesised by reaction of benzyl 2,6-di-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-β-d-galactopyranosyl)-β-d-glucopyranoside with 2,3,4-tri-O-benzyl-α-l-fucopyranosyl bromide in the presence of mercuric bromide, followed by hydrogenolysis. Benzylation of benzyl 3′,4′-O-isopropylidene-β-lactoside, via tributylstannylation, in the presence of tetrabutylammonium bromide or N-methylimidazole, gave benzyl 2,6-di-O-benzyl-4-O-(6-O-benzyl-3,4-O-isopropylidene-β-d-galactopyranosyl)-β-d-glucopyranoside (6). α-Fucosylation of 6 in the presence of tetraethylammonium bromide provided either benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyransoyl)-β-d- galactopyranosyl]-β-d-glucopyranoside (13, 73%) or a mixture of 13 (42%) and benzyl 2,6-di-O-benzyl-4-O-[6-O-benzyl-3,4,-O-isopropylidene-2-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d- galactopyranosyl-3-O-(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)-β-d-glucopyranoside (16, 34%). α-Fucosylation of 13 in the presence of mercuric bromide and 2,6-di-tert-butyl-4-methylpyridine gave 16 (73%). Hydrogenolysis and acid hydrolysis of 13 and 16 afforded O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-d-glucose and O-α-l-fucopyranosyl-(1→2)-O-β-d-galactopyranosyl-(1→4)-O-[α-l-fucopyranosyl-(1→3)]-d-glucose, respectively.  相似文献   

16.
Starting from allyl 3-O-benzyl-4,6-O-benzylidene-α-D-glucopyranoside as a key intermediate, the following crystalline compounds were prepared: 2-O-allyl-3,4,6-tri-O-benzyl-D-glucopyranose (11) and its p-nitrobenzoate; 2,3,5-tri-O-benzyl-D-arabinofuranose (12) and the corresponding arabinitol; allyl 3,4,6-tri-O-benzyl-α-D-glucopyranoside (7); 3,4,6-tri-O-benzyl-D-glucopyranose (8); 2-O-allyl-3,4-di-O-benzyl-D-glucopyranose (17) and its bis(p-nitrobenzoate); and 3,4-di-O-benzyl-D-glucopyranose (19). The p-nitrobenzoates of compounds 11 and 17 are potential intermediates for the synthesis of the glycolipids of the cytoplasmic membranes of Streptococci.  相似文献   

17.
Condensation of 6-O-benzyl-7,8-dideoxy-1,2:3,4-di-O-isopropylidene-d-glycero-α-d-galacto-oct-7-ynopyranose with methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galacto-heptodialdo-1,5-pyranoside afforded a 2:1 mixture of the 1S and 1R isomers (1a and 1b) of 3-[6(R)-O-benzyl-1,2:3,4-di-O-isopropylidene-α-d-galactopyranos-6-yl]-1-hydroxy-1-(methyl 2,3,4-tri-O-benzyl-6-deoxy-β-d-galactopyranosid-6-yl)propyne. A single crystal of the 1-O-acetyl derivative (1c) of 1a was investigated by X-ray diffraction methods in a four-circle diffractometer. Compound 1c crystallises in the monoclinic system, space group P21 (Z = 2) with cell dimensions a = 14.896(2), b = 8.295(1), c = 20.547(3) Å, and β = 102.66(1)°. The structure was solved by direct methods and refined by a full-matrix, least-squares procedure against 3839 unique reflections (F > 2σF), resulting in a final R = 0.045 (unit weights). The configuration at the new chiral center (C-1) was established as S(d). The galactopyranose rings have conformations 4C1 (tri-O-benzylated moiety) and °S5 + °T2 (di-O-isopropylidenated moiety). The 1,2- and 3,4-O-isopropylidene rings have 3T2 and 2E conformations, respectively.  相似文献   

18.
Condensation of benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-galactopyranoside with 2,3,4-tri-O-acetyl-α-d-fucopyranosyl bromide in 1:1 nitromethane-benzene, in the presence of powdered mercuric cyanide, afforded benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4-tri-O-acetyl-β-d-fucopyranosyl)-α-d-galactopyranoside (3). Cleavage of the benzylidene group of 3 with hot, 60% aqueous acetic acid afforded diol 4, which, on deacetylation, furnished the disaccharide 5. Condensation of diol 4 with 2-methyl-(3,4,6-tri-O-acetyl-1,2-di-deoxy-α-d-glucopyrano)-[2,1-d]-2-oxazoline in 1,2-dichloroethane afforded the trisaccharide derivative (7). Deacetylation of 7 with Amberlyst A-26 (OH?) anion-exchange resin in methanol gave the title trisaccharide (8). The structures of 5 and 8 were confirmed by 13C-n.m.r. spectroscopy.  相似文献   

19.
3- O-(2-Acetamido-2-deoxy-β-d-glucopyranosyl)-α-d-galactopyranose (10, “Lacto-N-biose II”) was synthesized by treatment of benzyl 6-O-allyl-2,4-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)[2,1-d]-2-oxazoline (5), followed by selective O-deallylation, O-deacetylation, and catalytic hydrogenolysis. Condensation of 5 with benzyl 6-O-allyl-2-O-benzyl-α-d-galactopyranoside, followed by removal of the protecting groups, gave 10 and a new, branched trisaccharide, 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-galactopyranose (27).  相似文献   

20.
phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-[4,6-O-(p-methoxybenzylidene)-β-d-alactopyranosyl]-α-d-galactopyranoside (3) was prepared from phenyl 2-acetamido-2-deoxy-4,6-O-(p-methoxybenzylidene)-3-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-galactopyranoside by zemplén deacetylation, followed by reaction with p-methoxybenzaldehyde in the presence of anhydrous zinc chloride. The selective benzoylation of 3 gave the 3′-benzoate which, on condensation with 2,3,4-tri-O-benzyl-α- l-fucopyranosyl bromide under catalysis by halide ion, afforded a crystalline trisaccharide from which the title trisaccharide was obtained by debenzoylation followed by catalytic hydrogenolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号