首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Highlights? Mtb ESX-5-associated and -nonassociated PE/PPE proteins are highly immunogenic ? ESX-5 core component eccD5 modulates the mycobacterial antigenic repertoire ? ESX-5 PE/PPE deleted Δppe25-pe19 Mtb strain is avirulent, yet strongly immunogenic ? Δppe25-pe19 strain protects mice against Mtb infection and represents a vaccine candidate  相似文献   

2.
There is limited knowledge of the neurotoxin gene diversity among Clostridium botulinum type Ab strains. Only the sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene in C. botulinum type Ab strain CDC588 have been reported. In this study, we sequenced the entire bont/A- and bont/B-associated neurotoxin gene clusters of C. botulinum type Ab strain CDC41370 and the bont/A gene of strain CDC588. In addition, we analyzed the organization of the neurotoxin gene clusters in strains CDC588 and CDC1436. The bont/A nucleotide sequence of strain CDC41370 differed from those of the known bont/A subtypes A1 to A4 by 2 to 7%, and the predicted amino acid sequence differed by 4% to 14%. The bont/B nucleotide sequence in strain CDC41370 showed 99.7% identity to the sequence of subtype B1. The bont/A nucleotide sequence of strain CDC588 was 99.9% identical to that of subtype A1. Although all of the C. botulinum type Ab strains analyzed contained the two sets of neurotoxin clusters, similar to what has been found in other bivalent strains, the intergenic spacing of p21-orfX1 and orfX2-orfX3 varied among these strains. The type Ab strains examined in this study had differences in their toxin gene cluster compositions and bont/A and bont/B nucleotide sequences, suggesting that they may have arisen from separate recombination events.Clostridium botulinum is a gram-positive anaerobic bacterium that produces an extremely potent toxin, the botulinum neurotoxin (BoNT). There are seven serologically distinct types of BoNT (serotypes A through G). Although most strains of C. botulinum express a single toxin serotype, some isolates have been shown to produce more than one, namely, Ab, Af, Ba, and Bf (11). In addition, many strains designated type A by mouse bioassay harbor nucleotide sequences for both type A and B toxins (6). These strains have been designated A(B) to indicate the presence of the bont/B gene without type B-specific toxicity.Based on phylogenetic analysis of the neurotoxin gene sequences, four subtypes have been identified within serotype A and five subtypes within serotype B (12). The neurotoxin gene nucleotide sequences of these subtypes differ by up to 8%, and the predicted amino acid sequences differ by up to 16%. In addition, the genes encoding components of the toxin complexes are arranged in clusters that differ in composition and organization (14) (Fig. (Fig.1).1). The toxin gene cluster of subtype A1 (termed ha cluster) includes the gene encoding the nontoxic nonhemagglutinin (ntnh), a regulatory gene (botR), and an operon encoding three hemagglutinins (ha70, ha33, and ha17). The toxin gene clusters containing bont/A2 or bont/A3 (termed orfX cluster) include the ntnh and p21 (analogous to botR) genes and several genes of unknown function (orfX1, orfX2, orfX3, and p47). Type Ba and A(B) strains contain two sets of neurotoxin cluster genes in which ha70, ha33, and ha17 are associated with the bont/B gene, and orfX1, orfX2, orfX3, and p47 are associated with the bont/A gene. In addition, some A1 strains contain a neurotoxin gene cluster that is similar to those in A2 and A3, but the bont/A nucleotide sequence is 99.9% identical to that in other A1 strains. These strains have been designated HA Orfx+ A1 (14). The neurotoxin gene cluster in type B strains includes the ntnh, botR, ha70, ha33, and ha17 genes. Notably, no differences in the neurotoxin gene cluster arrangements among the subtypes within serotype B have been reported.Open in a separate windowFIG. 1.Toxin gene cluster arrangements for BoNT type A-producing strains, including Ab, A(B), and Ba strains.Although several studies have described the organization and the nucleotide sequences of the neurotoxin gene cluster components among type A and B strains [including type Ba and A(B) strains], there is limited information regarding the diversity of the neurotoxin cluster genes among C. botulinum type Ab strains. The nucleotide sequences of the bont/A and bont/B genes in C. botulinum type Ab strain CDC1436 and the sequence of the bont/B gene of C. botulinum type Ab strain CDC588 have been previously reported; strain CDC1436 harbors a bont/A2 gene, and both strains CDC1436 and CDC588 harbor a bont/bvB gene (12, 15). Four additional type Ab strains from Italy have been analyzed by a restriction fragment length polymorphism method to determine the bont/A and bont/B subtypes (7, 9). To the best of our knowledge, the complete nucleotide sequences of the neurotoxin gene clusters in C. botulinum type Ab strains have not been reported. Thus, the objective of this study was to analyze the neurotoxin gene cluster composition in three C. botulinum type Ab strains (CDC41370, CDC588, and CDC1436) available in the CDC strain collection. We report differences in bont/A gene sequence among type Ab strains, including the identification of a novel bont/A nucleotide sequence in strain CDC41370, and describe differences in the organization of the neurotoxin gene clusters among these strains.  相似文献   

3.
The yeast Yarrowia lipolytica is capable of high-intensity synthesis (overproduction) of citric (CA) and isocitric (ICA) acids under nitrogen limitation. The ratio of the synthesized acids depends on the producing strains used and the expression level of the aconitate hydratase gene (ACO1). Recombinant variants with overexpression of the multicopy ACO1 gene have been obtained based on the natural ICA-producing strain Y. lipolytica 672. A recombinant strain Y. lipolytica 20, which has an isocitrate-citrate ratio shifted towards ICA (2.3: 1) as compared to the parental strain (1.1: 1), has been selected. Culturing of the 20 variant in a 10 L reactor has resulted in the production of 72.6 g/L of ICA and 29.0 g/L of CA with a ratio of 2.5: 1. This makes it possible to regard Y. lipolytica 20 as a promising producer for the development of an industrial process for isocitrate production.  相似文献   

4.
To determine bacteriophage PhiX174''s ecological niche, 783 Escherichia coli isolates were screened for susceptibility. Sensitive strains are diverse regarding their phylogenies and core lipopolysaccharides (LPS), but all have rough phenotypes. Further analysis of E. coli K-12 LPS mutants revealed that PhiX174 can use a wide diversity of LPS structures to initiate its infectious process.PhiX174 belongs to the Microviridae family of bacteriophages (12). It is a small, icosahedral, nontailed virus with a circular single-stranded DNA. From its isolation in 1935 up to now, PhiX174 has been used in many landmark experiments because of its small genome size (5,386 nucleotides [nt]) and nonpathogenic status. Furthermore, since PhiX174 is a coliphage, it can be used as an indicator of viral or fecal contamination in aquatic environments (International Organization for Standardization, ISO 10705-2) (5).In 1974, Suzuki et al. found that while phage adsorption is restricted to bacteria which possess a specific receptor, the replication of PhiX174 DNA can be supported by different Escherichia coli strains and distantly related bacteria, such as Pseudomonas aeruginosa (28). These findings imply that the limiting step for PhiX174 infection is entry and not replication or lysis. The commonly used PhiX174 host is the laboratory-derived strain E. coli C, which has a specific rough lipopolysaccharide (LPS) recognized as the receptor (13).The LPS is a major component of the outer membrane of Gram-negative enterobacteria, which is involved in interactions with both biotic and abiotic factors in the environment. It is composed of a lipid A anchored in the membrane and an oligosaccharide core and can have a polysaccharide (O antigen) bound to this core. The inner part of the core LPS is highly conserved within the Gram-negative bacteria (1), whereas the outer-core biochemical structure of the LPS is more diverse. In the E. coli species, five outer-core types have been described: R1, R2, R3, R4, and K-12 (1). E. coli C exhibits an R1 core type. The study of its recently published sequence reveals that its core LPS is fully functional but that the O antigen is affected by an IS insertion in the rfb locus that generates its rough phenotype (GenBank accession number CP000946). Interestingly, a similar IS insertion is found in K-12 (4), creating a rough phenotype, but the bacterium is still resistant to PhiX174, which suggests that the exposed R1 core might be critical for PhiX174 infection. Among the E. coli Reference Collection (ECOR), which is representative of the genetic diversity of the entire E. coli species (1, 20), up to 70% of isolates are of the R1 type (1). However, only 3% (8/291) of E. coli strains isolated from sewage, stools, drinking water, or the laboratory have been found to be sensitive to PhiX174 (19).To better define the molecular determinants affecting the ecological niche of the model virus PhiX174, we did the following: (i) screened a large collection of natural E. coli isolates for PhiX174 susceptibility, (ii) characterized the identified sensitive strains based on their phylogenetic group, serotype, and LPS core type, and (iii) studied the susceptibility to PhiX174 of LPS mutants of E. coli K-12. Our analysis revealed that PhiX174 sensitivity is a phenotypic convergence with diverse molecular origins.  相似文献   

5.
The hydration of oleic acid into 10-hydroxystearic acid was originally described for a Pseudomonas cell extract almost half a century ago. In the intervening years, the enzyme has never been characterized in any detail. We report here the isolation and characterization of oleate hydratase (EC 4.2.1.53) from Elizabethkingia meningoseptica.The ability of cells to convert oleic acid (OA) into 10-hydroxystearic acid (10-HSA) was discovered by Wallen et al. in Pseudomonas sp. strain 3266 in 1962 (Fig. (Fig.1)1) (12). In the following years, many other strains were identified that were also able to convert OA into 10-HSA or to further oxidize it to 10-ketostearic acid (2, 3, 5, 7). The Pseudomonas cells generally start to produce optically pure d-10-HSA in the stationary growth phase, and they do not seem to metabolize it any further, since levels of product accumulate in the fermentation broth. The putative enzyme for this conversion is referred to as oleate hydratase (EC 4.2.1.53); however, so far it has not been purified or characterized in any detail.Open in a separate windowFIG. 1.Reaction catalyzed by oleate hydratase; the conversion of OA into 10-HSA.Kinetic studies have been performed with cell extracts, giving some insight into the stereospecificity and the possible mechanism of the reaction. Studies with 18O-labeled water reported the incorporation of 18O at the C-10 position of 10-HSA, confirming a hydration mechanism (7). The reaction was shown to be reversible; however, the detected concentration ratio at equilibrium was always in the range of 85:15 in favor of 10-HSA (9).Here we report the isolation and first biochemical characterization of the oleate hydratase protein from Elizabethkingia meningoseptica (formerly known as Pseudomonas sp. strain 3266).The primer set GM3 and GM4 (8) was used for PCR amplification of the Pseudomonas sp. strain 3266 16S-rRNA genes. The product (1,444 bp) was sequenced, and 16S phylogeny analysis resulted in a unanimous determination of the species as Elizabethkingia (Chryseobacterium) meningoseptica with a >99.8% resemblance.  相似文献   

6.
The O-antigen (rfb) operon and related genes of MA6, an O rough:H7 Shiga-toxigenic Escherichia coli strain, were examined to determine the cause of the lack of O157 expression. A 1,310-bp insertion, homologous to IS629, was observed within its gne gene. trans complementation with a functional gne gene from O157:H7 restored O157 antigen expression in MA6.Shiga-toxigenic Escherichia coli (STEC) serotype O157:H7 carries O157 and H7 antigens, so these traits are extensively used in identification (1). Strain MA6, isolated from beef in Malaysia (8), carries the O157:H7 virulence factor genes, including the Shiga toxin 2 gene (stx2), the γ intimin allele (γ-eae), the enterohemolysin gene (ehxA), and the +93 uidA single nucleotide polymorphism (SNP) found only in O157:H7 strains (1). Multilocus sequence typing also showed MA6 to have the most common sequence type (ST-66) for O157:H7 strains. However, and in spite the fact that MA6 had per gene sequences essential for O157 antigen synthesis (2), no O157 antigen is expressed (O rough), and therefore, it is undetectable with serological assays used in O157:H7 analysis.The biosynthesis and assembly of E. coli O antigen are highly complex (9). The rfb operon (12 genes) (16), along with 3 ancillary genes outside of the rfb, is required for the biosynthesis of the 4 sugar nucleotide precursors and the assembly of the O unit (11). This is then linked to the core antigen, comprising an inner and an outer component, which require 3 other operons for biosynthesis and assembly (9). As defects in any of these genes could produce the O-null phenotype (13), we systematically examined these genes (Table (Table1)1) to elucidate the cause of the absence of O157 expression in MA6.

TABLE 1.

rfb operon genes, ancillary genes, and waa cluster genes examined in this study
CategoryGeneral functionaGene(s)
O-antigen (rfb) operonNucleotide sugar transferwbdN, wbdO, wbdP, wbdQ, wbdR
O-unit processingwzy, wzx
Nucleotide sugar synthesisper, gmd, fcl, manC, manB
waa core gene clustersStructure modificationwaaQ, waaP, waaY
Nucleotide sugar transferrfaG, rfaC
LPS core biosynthesis enzymewaaI, waaJ, waaD, waaL
Ancillary genesNucleotide sugar synthesismanA
O-unit processingwecA
Nucleotide sugar synthesisgne
Open in a separate windowaLPS, lipopolysaccharide.PCR and sequencing primers for the individual genes were designed from sequences for the O157:H7 strain EDL933 (GenBank accession no. AE005174). The 50-μl PCR mix contained 5 U of HotStar Taq (Qiagen, Valencia, CA), 1× polymerase buffer, 2.5 to 3.5 mM MgCl2, 400 μM each dNTP, 300 nM of each primer, and ∼100 ng of template DNA from either MA6 or the EDL931 reference strain. The “touchdown” PCR (10) consisted of 95°C for 15 min and 10 cycles of 95°C for 30 s, 69 to 60°C (−1°C/cycle) for 20 s, and 72°C for 1.5 min, followed by 35 cycles of 95°C for 30 s, 60°C for 20 s, and 72°C for 1.5 min, with a single step of 72°C for 1 min for final extension. Products were examined on a 1% agarose gel in Tris-borate-EDTA (TBE) buffer. Comparison of amplicons from respective genes from MA6 and EDL931 showed that no gross differences in size were observed for any of the rfb or related genes, suggesting the absence of major insertions or deletions. Consistently, contigs assembled from the MA6 amplicon were identical in sequence to those of EDL933 in GenBank, indicating the absence of base mutations in either the promoter or any of the open reading frames (ORF). One exception was the gne gene, encoding UDP-acetylgalactosamine (GalNAc)-4-epimerase, which is essential for the synthesis of one of the oligosaccharide subunits in the O antigen (14). When PCR primers that bound upstream of the putative promoter and downstream of the gne gene were used, an expected ∼1,400-bp product was obtained from EDL931 (Fig. (Fig.1,1, lane 3), but the MA6 amplicon was ∼2,700 bp (Fig. (Fig.1,1, lane 4). PCR of other O157:H7 strains all yielded the ∼1,400-bp product, while MA6 consistently produced the larger amplicon. Comparison of sequences to that of EDL933 showed the presence of a 1,310-bp insertion within the MA6 gne ORF at +385 that shared 96% homology to the insertion sequence 629 (IS629) (accession no. X51586) element. Furthermore, the deduced protein sequences for the putative orfA and orfB genes on the insert were 100% and 99% identical to those of the IS629 transposase in O157:H7 strains Sakai (accession no. NC_002695), and EDL933 and EC4115 (accession no. NC_011353), respectively.Open in a separate windowFIG. 1.Agarose gel electrophoresis of gne amplicons derived from EDL931 (O157:H7) and MA6. Lanes: 1, exACTGene (1 kb) plus molecular size ladder (Fisher BioReagents, Pittsburgh, PA); 2, negative control (reaction mix without DNA template); 3, EDL931; 4, MA6.To determine whether gne::IS629 (accession no. GU183138) caused the absence of O157 expression in MA6, the wild-type EDL931 gne ORF was amplified using primers that added BamHI and SacI restriction sites at the 5′ and 3′ termini, respectively. The purified amplicon was digested accordingly, ligated into pTrc99A vector (Stratagene, La Jolla, CA), and electroporated into E. coli DH5α (10). Transformants were selected on LB plates with 100 μg/ml ampicillin (Amp). Colonies that were Amp resistant (Ampr) were PCR amplified with vector-specific primers, and those carrying the insert were sequenced to confirm the presence of the wild-type gne insert in the construct (pGNE). For trans-complementation studies, pGNE was electroporated into MA6. Ampr transformants were PCR amplified with vector-specific primers as well as primers that annealed to sequences outside the gne gene and also not present on the vector, to confirm that they carried both pGNE and the gne::IS629 locus. Serological testing with the RIM O157:H7 latex kit (Remel, Lenexa, KS) confirmed that the Ampr MA6 transformants expressed O157 antigen.These results confirmed that gne::IS629 caused the O rough phenotype of MA6. Originally isolated from Shigella sonnei (7), IS629 has since been found, often in multiple copies, to cause gene disruptions in other enteric bacteria (6). fliC::IS629 caused nonmotility of an E. coli O111 strain (17), and wbaM::IS629 resulted in an O rough Shigella boydii strain (15). The IS629 recognition site remains unknown (5), so it is uncertain that there is an IS629 hot spot within the O157:H7 gne ORF. Other bacteria, like O157:H7, also have the gne gene positioned upstream of the rfb operon (12), but no gne::IS629 rough strains of these have been reported. This suggests that the IS629 insertion site within the gne of MA6 may have occurred as a result of a random mutation and that MA6 appears to be the only naturally occurring O rough O157:H7 strain that resulted from the gne::IS629 insertion.The O antigen is not required for growth but does confer protection (9), so the loss of the O antigen has been reported to make pathogens serum sensitive or less virulent (4). If that is so, we would expect MA6 to be less pathogenic than O157:H7; consistent with that speculation, MA6 has not been implicated in illness. Even so, while no O rough O157:H7 strains have caused disease, other O rough STEC strains have caused illnesses (3); hence, the virulence potential of MA6 remains undetermined.In conclusion, the absence of O157 antigen expression by MA6 is caused by gne::IS629. Occurrence of O rough:H7 strains like MA6 in food or clinical samples is of concern, as they are undetectable by the serological assays used to identify O157:H7. However, the IS629 insertion site within the O157:H7 gne ORF appears to have been due to a random mutational event, and therefore, MA6-like O rough mutants of O157:H7 are thus far uncommon.  相似文献   

7.
8.
The bicistronic groESL operon, encoding the Hsp60 and Hsp10 chaperonins, was cloned into an integrative expression vector, pFPN, and incorporated at an innocuous site in the Anabaena sp. strain PCC7120 genome. In the recombinant Anabaena strain, the additional groESL operon was expressed from a strong cyanobacterial PpsbA1 promoter without hampering the stress-responsive expression of the native groESL operon. The net expression of the two groESL operons promoted better growth, supported the vital activities of nitrogen fixation and photosynthesis at ambient conditions, and enhanced the tolerance of the recombinant Anabaena strain to heat and salinity stresses.Nitrogen-fixing cyanobacteria, especially strains of Nostoc and Anabaena, are native to tropical agroclimatic conditions, such as those of Indian paddy fields, and contribute to the carbon (C) and nitrogen (N) economy of these soils (22, 30). However, their biofertilizer potential decreases during exposure to high temperature, salinity, and other such stressful environments (1). A common target for these stresses is cellular proteins, which are denatured and inactivated during stress, resulting in metabolic arrest, cessation of growth, and eventually loss of viability. Molecular chaperones play a major role in the conformational homeostasis of cellular proteins (13, 16, 24, 26) by (i) proper folding of nascent polypeptide chains; (ii) facilitating protein translocation and maturation to functional conformation, including multiprotein complex assembly; (iii) refolding of misfolded proteins; (iv) sequestering damaged proteins to aggregates; and (v) solubilizing protein aggregates for refolding or degradation. Present at basal levels under optimum growth conditions in bacteria, the expression of chaperonins is significantly enhanced during heat shock and other stresses (2, 25, 32).The most common and abundant cyanobacterial chaperones are Hsp60 proteins, and nitrogen-fixing cyanobacteria possess two or more copies of the hsp60 or groEL gene (http://genome.kazusa.or.jp/cyanobase). One occurs as a solitary gene, cpn60 (17, 21), while the other is juxtaposed to its cochaperonin encoding genes groES and constitutes a bicistronic operon groESL (7, 19, 31). The two hsp60 genes encode a 59-kDa GroEL and a 61-kDa Cpn60 protein in Anabaena (2, 20). Both the Hsp60 chaperonins are strongly expressed during heat stress, resulting in the superior thermotolerance of Anabaena, compared to the transient expression of the Hsp60 chaperonins in Escherichia coli (20). GroEL and Cpn60 stably associate with thylakoid membranes in Anabaena strain PCC7120 (14) and in Synechocystis sp. strain PCC6803 (15). In Synechocystis sp. strain PCC6803, photosynthetic inhibitors downregulate, while light and redox perturbation induce cpn60 expression (10, 25, 31), and a cpn60 mutant exhibits a light-sensitive phenotype (http://genome.kazusa.or.jp/cyanobase), indicating a possible role for Cpn60 in photosynthesis. GroEL, a lipochaperonin (12, 28), requires a cochaperonin, GroES, for its folding activity and has wider substrate selectivity. In heterotrophic nitrogen-fixing bacteria, such as Klebsiella pneumoniae and Bradyrhizobium japonicum, the GroEL protein has been implicated in nif gene expression and the assembly, stability, and activity of the nitrogenase proteins (8, 9, 11).Earlier work from our laboratory demonstrated that the Hsp60 family chaperonins are commonly induced general-stress proteins in response to heat, salinity, and osmotic stresses in Anabaena strains (2, 4). Our recent work elucidated a major role of the cpn60 gene in the protection from photosynthesis and the nitrate reductase activity of N-supplemented Anabaena cultures (21). In this study, we integrated and constitutively overexpressed an extra copy of the groESL operon in Anabaena to evaluate the importance and contribution of GroEL chaperonin to the physiology of Anabaena during optimal and stressful conditions.Anabaena sp. strain PCC7120 was photoautotrophically grown in combined nitrogen-free (BG11) or 17 mM NaNO3-supplemented (BG11+) BG11 medium (5) at pH 7.2 under continuous illumination (30 μE m−2 s−1) and aeration (2 liters min−1) at 25°C ± 2°C. Escherichia coli DH5α cultures were grown in Luria-Bertani medium at 37°C at 150 rpm. For E. coli DH5α, kanamycin and carbenicillin were used at final concentrations of 50 μg ml−1 and 100 μg ml−1, respectively. Recombinant Anabaena clones were selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin or in BG11 liquid medium containing 12.5 μg ml−1 neomycin. The growth of cyanobacterial cultures was estimated either by measuring the chlorophyll a content as described previously (18) or the turbidity (optical density at 750 nm). Photosynthesis was measured as light-dependent oxygen evolution at 25 ± 2°C by a Clark electrode (Oxy-lab 2/2; Hansatech Instruments, England) as described previously (21). Nitrogenase activity was estimated by acetylene reduction assays, as described previously (3). Protein denaturation and aggregation were measured in clarified cell extracts containing ∼500 μg cytosolic proteins treated with 100 μM 8-anilino-1-naphthalene sulfonate (ANS). The pellet (protein aggregate) was solubilized in 20 mM Tris-6 M urea-2% sodium dodecyl sulfate (SDS)-40 mM dithiothreitol for 10 min at 50°C. The noncovalently trapped ANS was estimated using a fluorescence spectrometer (model FP-6500; Jasco, Japan) at a λexcitation of 380 nm and a λemission of 485 nm, as described previously (29).The complete bicistronic groESL operon (2.040 kb) (GenBank accession no. FJ608815) was PCR amplified from PCC7120 genomic DNA using specific primers (Table (Table1)1) and the amplicon cloned into the NdeI-BamHI restriction sites of plasmid vector pFPN, which allows integration at a defined innocuous site in the PCC7120 genome and expression from a strong cyanobacterial PpsbA1 promoter (6). The resulting construct, designated pFPNgro (Table (Table1),1), was electroporated into PCC7120 using an exponential-decay wave form electroporator (200 J capacitive energy at a full charging voltage of 2 kV; Pune Polytronics, Pune, India), as described previously (6). The electroporation was carried out at 6 kV cm−1 for 5 ms, employing an external autoclavable electrode with a 2-mm gap. The electroporation buffer contained high concentrations of salt (10 mM HEPES, 100 mM LiCl, 50 mM CaCl2), as have been recommended for plant cells (23) and other cell types (27). The electrotransformants, selected on BG11+ agar plates supplemented with 25 μg ml−1 neomycin by repeated subculturing for at least 25 weeks to achieve complete segregation, were designated AnFPNgro.

TABLE 1.

Plasmids, strains, and primers used in this study
Plasmid, strain, or primerFeature or sequenceaSource or reference
Plasmids
    pFPNIntegrative expression vector6
    pFPNgropFPN with groESL operonThis study
Strains
    An7120Wild-type Anabaena sp. strain PCC7120R. Haselkorn
    AnFPNgroGroESL-overexpressing AnabaenaThis study
Primers
    groESLfwd5′-GGA ATT CCA TAT GGC AGC AGT ATC TCT AAG-3′This study
    groESLrev5′-CGC GGA TCC TTA GTA ATC GAA GTC ACC GCC-3′This study
    PpsbA1fwd5′-GAG CTG CAG GGA TTC CCA AAG ATA GGG-3′6
    PpsbA1rev5′-CTC GGA TCC CCA TAT GTT TTT ATG ATT GCT TTG-3′6
Open in a separate windowaThe underlined nucleotides in the primer sequences represent the incorporated restriction endonuclease sites.The transfer of pFPNgro to PCC7120 resulted in the integration of an extra copy of groESL (PpsbA1-groESL) into the PCC7120 genome. PCR amplification (Fig. (Fig.1I)1I) with the PpsbA1 forward and groESL reverse primer pairs showed the additional copy of groEL juxtaposed downstream to the PpsbA1 promoter (lane 6) in the recombinant Anabaena strain, while the native groESL operon found in the wild-type strain (lane 3) remained intact in the AnFPNgro strain (lane 5).Open in a separate windowFIG. 1.Integration and constitutive expression of an additional groESL operon in Anabaena strain PCC7120. (I) Integration of an additional groESL operon in the PCC7120 genome. The electrophoretogram shows the transfer and integration of PpsbA1-groESL in strain AnFPNgro. Lane 1, 1-kb DNA marker; lane 2, PCR control template without primer; lane 3, PCR product from wild-type Anabaena using the groESLfwd and groESLrev primers; lane 4, PCR product from PCC7120 using the PpsbA1fwd and groESLrev primers; lane 5, PCR product from AnFPNgro using the groESLfwd and groESLrev primers; lane 6, PCR product from AnFPNgro using the PpsbA1fwd and groESLrev primers. (II) Expression of the groESL operon in the wild-type and recombinant Anabaena strains during stress. PCC7120 (An7120) and AnFPNgro were grown for 3 days and then subjected to either heat stress (42°C) for 4 h (A and A′) or salinity stress (150 mM NaCl) for 3 days (B and B′). GroEL levels were estimated by Western blotting of 10% SDS-polyacrylamide gel electrophoresis-resolved whole-cell proteins, followed by immunodetection using anti-AnGroEL antiserum and densitometry (A and B). Panels A′ and B′ depict SDS-polyacrylamide gel electrophoresis-resolved and Coomassie blue-stained proteins to show equal sample loading. Various lanes contained protein samples under unstressed-control (U), heat (H), or salt (S) stress conditions. Numbers below panels A and B show GroEL quantitation by densitometry.Under normal growth conditions, the recombinant AnFPNgro cells expressed about 8.7- to 9.9-fold higher levels of GroEL protein than that detected in the PCC7120 cells (Fig. 1II), indicating a strong constitutive expression of the GroEL protein from the PpsbA1 promoter. In PCC7120, the wild-type copy of the GroEL protein was induced by both heat shock (Fig. 1IIA, lane 2) and salt stress (Fig. 1IIB, lane 2). GroEL levels in the recombinant strain were found to be about 2.5-fold higher under heat stress (Fig. 1IIA, lane 4) and approximately 1.7-fold higher under salinity stress (Fig. 1IIB, lane 4) than that expressed by PCC7120 under these stresses (Fig. 1IIA and IIB, lanes 2). The exposure of AnFPNgro cells to heat stress resulted in a further increase of approximately sixfold in GroEL levels (Fig. 1IIA, lane 4), while salt stress enhanced GroEL levels by approximately threefold (Fig. 1IIB, lane 4), compared to the constitutively expressed GroEL level in this strain (Fig. 1IIA and IIB, lanes 3). The constitutive expression of GroEL protein in AnFPNgro under ambient conditions (Fig. 1IIA and IIB, lanes 3) was from the PpsbA1 promoter (Fig. (Fig.1I,1I, lane 6). We assume that the additional increase in GroEL levels observed under heat and salt stress (Fig. 1IIA and IIB, lanes 4) was due to the native stress-induced groESL operon, functional from its own promoter.The diazotrophically grown PCC7120 did not grow during prolonged exposure to heat stress (42°C) (Fig. (Fig.2A)2A) and showed poor growth during salinity stress (150 mM) (Fig. (Fig.2B).2B). Salinity stress was particularly severe for photosynthetic pigments in PCC7120 and bleached the cells (data not shown). In contrast, the recombinant strain AnFPNgro showed a higher content of major photosynthetic pigments (Fig. (Fig.2C)2C) and presented a healthier blue-green phenotype (data not included). Strain AnFPNgro also showed better growth than wild-type PCC7120, both under unstressed and stressed conditions (Fig. 2A and B).Open in a separate windowFIG. 2.Effect of groESL overexpression on thermotolerance and salinity tolerance of diazotrophically grown Anabaena strains. (A) Growth (measured as chlorophyll a content) of strains during prolonged exposure to 42°C. (B) Growth (turbidity measured at an optical density at 750 nm) during prolonged exposure to 150 mM NaCl. (C) Absorption spectra of a dilute suspension of whole filaments after 7 days of exposure to various NaCl concentrations.The photosynthetic activity decreased with time during heat stress in PCC7120 but was maintained at comparatively higher levels in AnFPNgro cells (Fig. (Fig.3A)3A) than in PCC7120. The dinitrogenase activity in PCC7120 was severely inhibited after 4 h of heat stress (Fig. (Fig.3B).3B). In contrast, the dinitrogenase activity of the recombinant strain (AnFPNgro) was about 1.5-fold higher than PCC7120 under ambient conditions (25°C ± 2°C, no NaCl) and more than 3-fold higher than that of PCC7120 after 4 h of heat stress (Fig. (Fig.3B).3B). Prolonged exposure to salinity stress inhibited photosynthesis and nitrogen fixation in PCC7120 (Fig. 3C and D). However, strain AnFPNgro displayed significant protection of these activities, possibly due to overexpressed GroES/GroEL proteins. The recombinant strain (AnFPNgro) exhibited much-reduced protein aggregation after 4 h of heat stress or after prolonged exposure (10 days) to salinity stress than PCC7120 (Fig. (Fig.44).Open in a separate windowFIG. 3.Effect of groESL overexpression on photosynthesis and nitrogen fixation in Anabaena. Photosynthesis (A and C) and nitrogenase activity (B and D) in wild-type Anabaena strain PCC7120 (An7120) and recombinant AnFPNgro strains exposed to heat stress for 10 days (A) or 4 h (B) or to salinity stress (150 mM) for 10 days (C and D). Letters U, H, and S denote unstressed-control, heat stress, and salt stress conditions, respectively.Open in a separate windowFIG. 4.Protein aggregation in Anabaena strains during exposure to heat and salinity stress. The protein aggregation was monitored by ANS fluorescence after 4 h of exposure to 42°C (H) or 10 days of exposure to 150 mM NaCl (S) and compared with the unstressed controls (U) of recombinant strain AnFPNgro and the wild-type Anabaena strain PCC7120 (An7120). The fluorescence intensity output from the spectrofluorimeter is expressed as arbitrary units (a.u.).This study evaluated the possible benefits of groESL overexpression for the general stress tolerance of PCC7120. The recombinant AnFPNgro strain harbored two groESL operons, one native stress-inducible groESL and a second groESL operon integrated at a defined innocuous site and placed downstream of a constitutive PpsbA1 promoter (Fig. (Fig.1).1). The recombinant AnFPNgro strain showed an 8- to 10-fold higher constitutive expression of GroEL under ambient conditions than PCC7120, while its inherent stress-induced GroEL expression was not impaired and resulted in 30- and 48-fold more GroEL under salt and heat stress, respectively (Fig. (Fig.11).The AnFPNgro cells exhibited better growth (Fig. (Fig.2),2), photosynthesis, and nitrogen fixation (Fig. (Fig.3)3) than PCC7120, suggesting a possible limitation on the availability of GroEL under ambient conditions. The protection of photosynthetic pigments and oxygen photoevolution during salinity stress were particularly impressive. Nearly 2- to 2.5-fold higher GroEL levels in AnFPNgro under heat or salt stress, compared to those of PCC7120 (Fig. (Fig.1),1), lowered the stress-triggered protein aggregation (Fig. (Fig.4)4) and had beneficial consequences for photosynthesis and nitrogen fixation in the recombinant strain (Fig. (Fig.3).3). An overall improvement in the aforesaid vital metabolic activities eventually resulted in the superior tolerance of recombinant AnFPNgro to heat and salt stresses.  相似文献   

9.
10.
Burkholderia cenocepacia is an opportunistic pathogen that displays a remarkably high resistance to antimicrobial peptides. We hypothesize that high resistance to antimicrobial peptides in these bacteria is because of the barrier properties of the outer membrane. Here we report the identification of genes for the biosynthesis of the core oligosaccharide (OS) moiety of the B. cenocepacia lipopolysaccharide. We constructed a panel of isogenic mutants with truncated core OS that facilitated functional gene assignments and the elucidation of the core OS structure in the prototypic strain K56-2. The core OS structure consists of three heptoses in the inner core region, 3-deoxy-d-manno-octulosonic acid, d-glycero-d-talo-octulosonic acid, and 4-amino-4-deoxy-l-arabinose linked to d-glycero-d-talo-octulosonic acid. Also, glucose is linked to heptose I, whereas heptose II carries a second glucose and a terminal heptose, which is the site of attachment of the O antigen. We established that the level of core truncation in the mutants was proportional to their increased in vitro sensitivity to polymyxin B (PmB). Binding assays using fluorescent 5-dimethylaminonaphthalene-1-sulfonyl-labeled PmB demonstrated a correlation between sensitivity and increased binding of PmB to intact cells. Also, the mutant producing a heptoseless core OS did not survive in macrophages as compared with the parental K56-2 strain. Together, our results demonstrate that a complete core OS is required for full PmB resistance in B. cenocepacia and that resistance is due, at least in part, to the ability of B. cenocepacia to prevent binding of the peptide to the bacterial cell envelope.Burkholderia cenocepacia is a Gram-negative opportunistic pathogen ubiquitously found in the environment (1, 2). Although generally harmless to healthy individuals, B. cenocepacia affects immunocompromised patients (1) such as those with cystic fibrosis and chronic granulomatous disease. Infected cystic fibrosis patients commonly develop chronic lung infections that are very difficult to treat because these bacteria are intrinsically resistant to virtually all clinically useful antibiotics as well as antimicrobial peptides (APs)5 (1, 3).Lipopolysaccharide (LPS) is the major surface component of Gram-negative bacteria and consists of lipid A, core oligosaccharide (OS), and in some bacteria O-specific polysaccharide or O antigen (4, 5). The O antigen acts as a protective barrier against desiccation, phagocytosis, and serum complement-mediated killing, whereas the core OS and the lipid A contribute to maintain the integrity of the outer membrane (4, 5). The lipid A also anchors the LPS molecule to the outer leaflet of the outer membrane and accounts for the endotoxic activity of LPS (4, 6). Lipid A is a bisphosphorylated β-1,6-linked glucosamine disaccharide substituted with fatty acids ester-linked at positions 3 and 3′ and amide-linked at positions 2 and 2′ (4). The core OS can be subdivided into the inner core and outer core. The inner core OS typically consists of one or two 3-deoxy-d-manno-octulosonic acid (Kdo) residues linked to the lipid A and three l-glycero-d-manno-heptose residues linked to the first Kdo (4). The outer core OS in enteric bacteria typically consists of 8–12 branched sugars linked to heptose II of the inner core. As a result of phosphate groups on the lipid A and core OS, the bacterial surface has a net negative charge. This plays an important role in the interaction of the bacterial surface with positively charged compounds such as cationic APs, which are cationic amphipathic molecules that kill bacteria by membrane permeabilization. In response to a series of environmental conditions such as low magnesium or high iron, bacteria can express modified LPS molecules that result in a less negative surface. This reduces the binding of APs and promotes resistance to these compounds. Previous studies have shown that Burkholderia LPS molecules possess unique properties. For example, Kdo cannot be detected by classic colorimetric methods in LPS from Burkholderia pseudomallei and Burkholderia cepacia, and the covalent linkage between Kdo and lipid A is more resistant to acid hydrolysis than in conventional LPS molecules (7). In B. cepacia, 4-amino-4-deoxy-l-arabinose (l-Ara4N) is bound to the lipid A by a phosphodiester linkage at position 4 of the nonreducing glucosamine (GlcN II) (8) and is also present as a component of the core OS. Also, instead of two Kdo molecules, the B. cepacia core OS has only one Kdo and the unusual Kdo analog, d-glycero-d-talo-octulosonic acid (Ko), which is nonstoichiometrically substituted with l-Ara4N forming a 1→8 linkage with α-Ko (7, 9). Although this is also the case for the inner core OS of B. cenocepacia J2315 (10), it is not a common feature for the core OS in all Burkholderia. For example, the inner core of Burkholderia caryophylli consists of two Kdo residues and does not possess l-Ara4N (11).Burkholderia species, including B. cenocepacia, are intrinsically resistant to human and non-human APs such as these produced by airway epithelial cells (12, 13), human β-defensin 3 (14), human neutrophil peptides (15), and polymyxin B (PmB) (15, 16). The minimum inhibitory concentration determined for some of these peptides in several Burkholderia species is greater than 500 μg/ml, which could aid these microorganisms during colonization of the respiratory epithelia (13). It has been proposed that the resistance of B. cepacia to cationic APs stems from ineffective binding to the outer membrane, as a consequence of the low number of phosphate and carboxylate groups in the lipopolysaccharide (17), but a systematic analysis of the molecular basis of AP resistance in B. cenocepacia and other Burkholderia is lacking. We have previously reported that a heptoseless B. cenocepacia mutant (SAL1) is significantly more sensitive than the parental clinical strain K56-2 to APs (15). This mutant has a truncated inner core and lacks the outer core, suggesting that a complete core OS is required for resistance of B. cenocepacia to APs.Apart from heptoses, the role of other sugar moieties of the B. cenocepacia core OS in AP resistance is not known. In this study, we report the structure of the core OS for B. cenocepacia strain K56-2 and its isogenic mutants XOA3, XOA7, and XOA8, which carry various core OS truncations. The structural analysis, combined with mutagenesis, allowed us to assign function to the majority of the genes involved in core OS biosynthesis and ligation of the O antigen and to establish that the degree of truncation of the core OS correlates with increased binding and bacterial sensitivity to PmB in vitro and reduced bacterial intracellular survival in macrophages.  相似文献   

11.
12.
The lipopolysaccharide (LPS) from a new Enterobacteriaceae species, Rahnella aquatilis 2-95, was isolated and investigated. The structural components of the LPS molecule, namely, lipid A, core oligosaccharide, and O-specific polysaccharide, were obtained by mild acid hydrolysis. In lipid A, 3-oxytetradecanoic and tetradecanoic acids were found to be the predominant fatty acids. The major monosaccharides of the core oligosaccharide were galactose, arabinose, fucose, rhamnose, and an unidentified component. The O-specific polysaccharide was found to be assembled of a repeated trisaccharide unit of the following structure: The R. aquatilis 2-95 LPS is less toxic and more pyrogenic than the LPS from the R. aquatilis 1-95 strain studied earlier. Both acyl and phosphate groups are essential for toxic and pyrogenic activity of R. aquatilis 2-95 LPS.  相似文献   

13.
While the number of available recombinant Baeyer-Villiger monooxygenases (BVMOs) has grown significantly over the last few years, there is still the demand for other BVMOs to expand the biocatalytic diversity. Most BVMOs that have been described are dedicated to convert efficiently cyclohexanone and related cyclic aliphatic ketones. To cover a broader range of substrate types and enantio- and/or regioselectivities, new BVMOs have to be discovered. The gene encoding a BVMO identified in Pseudomonas putida JD1 converting aromatic ketones (HAPMO; 4-hydroxyacetophenone monooxygenase) was amplified from genomic DNA using SiteFinding-PCR, cloned, and functionally expressed in Escherichia coli. Furthermore, four other open reading frames could be identified clustered around this HAPMO. It has been suggested that these proteins, including the HAPMO, might be involved in the degradation of 4-hydroxyacetophenone. Substrate specificity studies revealed that a large variety of other arylaliphatic ketones are also converted via Baeyer-Villiger oxidation into the corresponding esters, with preferences for para-substitutions at the aromatic ring. In addition, oxidation of aldehydes and some heteroaromatic compounds was observed. Cycloketones and open-chain ketones were not or poorly accepted, respectively. It was also found that this enzyme oxidizes aromatic ketones such as 3-phenyl-2-butanone with excellent enantioselectivity (E ≫100).Baeyer-Villiger monooxygenases (BVMOs; EC 1.14.13.x) belong to the class of oxidoreductases and convert aliphatic, cyclic, and/or aromatic ketones to esters or lactones, respectively, using molecular oxygen (29). Thus, they mimic the chemical Baeyer-Villiger oxidation, which is usually peracid catalyzed and was first described by Adolf Baeyer and Viktor Villiger in 1899 (2). All characterized BVMOs thus far are NAD(P)H dependent and require flavin adenine dinucleotide (FAD) or flavin mononucleotide (FMN) as prosthetic group, which is crucial for catalysis.Today, BVMOs are increasingly recognized as valuable catalysts for stereospecific oxidation reactions. These enzymes display a remarkably broad acceptance profile for nonnatural substrates. Besides conversion of a wide range of aliphatic open-chain, cyclic, and aromatic ketones, they are also able to oxygenate sulfides (16), selenides (27), amines (33), phosphines, olefins (5), aldehydes, and borone- and iodide-containing compounds (Fig. (Fig.1)1) (7).Open in a separate windowFIG. 1.Range of Baeyer-Villiger oxidations catalyzed by BVMOs.Therefore, recombinantly available BVMOs are powerful tools in organic chemistry and demonstrate a high potential as alternatives to existing chemical technologies, where some of these reactions are difficult to perform selectively using chemical catalysts.Except for this promiscuity in reactivity, high enantioselectivities, as well as regio- and stereoselectivities, make them interesting for the pharmaceutical, food, and cosmetic industries, where enantiomerically pure compounds are valuable building blocks. In addition, renunciation of peracids when applying enzymatic driven Baeyer-Villiger oxidations turns them into an ecofriendly alternative and led to a considerable interest for biotransformations using BVMOs on an industrial scale (1, 8, 13-15) during the past decades.Already in 1948 it was recognized that enzymes catalyzing the Baeyer-Villiger reaction exist in nature (39). This was concluded from the observation that a biological Baeyer-Villiger reaction occurred during the degradation of steroids by fungi. Still it took 20 years for the first BVMO to be isolated and characterized (10). Thus far, 22 BVMOs have been cloned, functionally expressed, and characterized. In Fig. Fig.22 their genetic relationships are illustrated, and all BVMOs are sorted into different classes on the basis of their substrate specificity. Only two BVMOs, the 4-hydroxyacetophenone monooxygenase (HAPMO) from Pseudomonas fluorescens ACB (19) and phenylacetone monooxygenase (PAMO) from Thermobifida fusca (11), converting arylaliphatic and aromatic ketones were described. The latter is the only thermostable BVMO and served as a model to elucidate the enzymatic mechanism (28).Open in a separate windowFIG. 2.Phylogenetic relationships within BVMOs. The sequences of 22 enzymes with confirmed BVMO activity were aligned, and an unrooted phylogenetic tree was generated using CLUSTAL W (v.1.81). Cycloketone-converting BVMO (solid lines), open-chain ketone-converting BVMO (dashed lines), and arylketone-converting BVMO (dash/dot lines). NCBI accession numbers of protein sequences: CHMO Acinetobacter, CHMO Acinetobacter calcoaceticus NCIMB 9871 (BAA86293); CHMO Xanthobacter, BVMO Xanthobacter sp. strain ZL5 (CAD10801); CHMO Brachymonas, CHMO Brachymonas petroleovorans (AAR99068); CHMO1 Arthrobacter, CHMO1 Arthrobacter sp. strain BP2 (AAN37479); CHMO2 Arthrobacter, CHMO2 Arthrobacter sp. strain L661 (ABQ10653); CHMO1 Rhodococcus, CHMO1 Rhodococcus Phi1 (AAN37494); CHMO2 Rhodococcus, CHMO2 Rhodococcus Phi2 (AAN37491); CHMO1 Brevibacterium, CHMO1 Brevibacterium sp. strain HCU (AAG01289); CHMO2 Brevibacterium, CHMO2 Brevibacterium sp. strain HCU (AAG01290); CPMO Comamonas, cyclopentanone monooxygenase Comamonas sp. strain NCIMB 9872 (BAC22652); CPDMO Pseudomonas, cyclopentadecanone monooxygenase Pseudomonas sp. strain HI-70 (BAE93346); CDMO R. ruber, cyclododecane monooxygenase Rhodococcus ruber SCI (AAL14233); BVMO Mycobacterium tuberculosis Rv3083, BVMO M. tuberculosis H37Rv (gene Rv3083) (CAA16141); BVMO M. tuberculosis Rv3049c, BVMO M. tuberculosis H37Rv (gene Rv3049c) (CAA16134); BVMO M. tuberculosis Rv3854c, BVMO M. tuberculosis H37Rv (gene Rv3854c) (CAB06212); BVMO P. putida KT2440, BVMO P. putida KT2440 (AAN68413); BVMO P. fluorescens DSM50106: BVMO P. fluorescens DSM50106 (AAC36351); BVMO Pseudomonas veronii MEK700, BVMO P. veronii MEK700 (ABI15711); STMO Rhodococcus rhodochrous, steroid monooxygenase R. rhodochrous (BAA24454); PAMO T. fusca, phenylacetone monooxygenase T. fusca (Q47PU3); HAPMO P. fluorescens ACB, 4-hydroxyacetophenone monooxygenase from P. fluorescens ACB (AAK54073); HAPMO P. putida JD1, 4-hydroxyacetophenone monooxygenase from P. putida JD1 (FJ010625 [the present study]).We report here the amplification, cloning, functional expression, and characterization of a HAPMO from Pseudomonas putida JD1 oxidizing a broad range of aromatic ketones and further substrates.  相似文献   

14.
15.
16.
A new cytochrome P450 monooxygenase, FcpC, from Streptomyces virginiae IBL-14 has been identified. This enzyme is found to be responsible for the bioconversion of a pyrano-spiro steroid (diosgenone) to a rare nuatigenin-type spiro steroid (isonuatigenone), which is a novel C-25-hydroxylated diosgenone derivative. A whole-cell P450 system was developed for the production of isonuatigenone via the expression of the complete three-component electron transfer chain in an Escherichia coli strain.Nuatigenin-type steroids, such as nuatigenin and isonuatigenin (9, 13, 22), are rare natural steroidal sapogenins that are important pharmacological compounds. They are found in several healthy foods and traditional medicinal herbs. These compounds have been shown to have potential anticancer effects, antagonistic effects on rheumatoid arthritis, beneficial cardiovascular activities, and antimalarial activities. Examples include ophiofurospiside in Ophiopogon japonicus (28), nuatigenosido in Solanum sisymbriifolium (13), avenacoside in oat (20), and glycosides in Paris polyphylla SM (7). Since the majority of these nuatigenin-type steroids are very rare, strategies for their isolation can lead to very high production costs. As a result, with a more economical production process in mind, it would be worthwhile to search for a suitable reagent capable of converting the abundant amounts of pyrano-spirostanol sapogenins found in nature, such as diosgenone, to rare nuatigenin-type steroids. At this time, we plan to focus on microbial transformation systems.A previous article (25) described an actinomycete strain named Streptomyces virginiae IBL-14, isolated from soil, that can transform diosgenone to isonuatigenone by introducing a hydroxyl group to the tertiary C-25 atom of the F-ring (Fig. (Fig.1).1). To our knowledge, this was the first report of producing a rare nuatigenin-type spiro steroid from diosgenone by microbial biotransformation. The present study was conducted in order to identify the determinant enzyme from S. virginiae IBL-14 that catalyzes the biotransformation and to design a whole-cell cytochrome P450 system to produce isonuatigenone by using Escherichia coli.Open in a separate windowFIG. 1.(Bio)synthetic conversion of diosgenone (1) to isonuatigenone (2) and nuatigenone (3). Diosgenone can be transformed into isonuatigenone by cytochrome P450 FcpC from S. virginiae IBL-14. Nuatigenone is the rearrangement product of isonuatigenone during acidic work-up (8).  相似文献   

17.
A pale yellow bacterial strain, designated JJ-A5T, was isolated form an agricultural soil from Jeju Island in Republic of Korea. Cells of the strain were Gram-stain-negative, motile, flagellated and rod-shaped. The strain grew at 15–30°C, pH 6.0–9.0, and in the presence of 0–1.5% (w/v) NaCl. Growth occurred on R2A, but not on Luria-Bertani agar, nutrient agar, trypticase soy agar and MacConkey agar. The strain utilized alachlor as a sole carbon source for growth. The strain JJ-A5T showed 16S rRNA gene sequence similarities lower than 95.4% with members of the family Sphingomonadaceae. Phylogenetic analysis showed that the strain belongs to the family Sphingomonadaceae and strain JJ-A5T was distinctly separated from established genera of this family. The strain contained Q-10 as dominant ubiquinone and spermidine as major polyamine. The predominant cellular fatty acids were summed feature 8 (C18:1ω7c and/or C18:1ω6c), summed feature 3 (C16:1ω7c and/or C16:1ω6c), 11-methyl C18:1ω7c, C16:0 and C14:0 2-OH. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol, sphingoglycolipid, and phosphatidylcholine. The DNA G + C content of the strain was 62.7 mol%. On the basis of the phenotypic, genomic and chemotaxonomic characteristics, strain JJ-A5T is considered to represent a novel genus and species within the family Sphingomonadaceae, for which the name Tardibacter chloracetimidivorans gen. nov., sp. nov. is proposed. The type strain of Tardibacter chloracetimidivorans is JJ-A5T (= KACC 19450T = NBRC 113160T).  相似文献   

18.
A Gram-stain-negative, facultative aerobic, non-flagellated, and rod-shaped bacterium, designated AR-13T, was isolated from a seawater on the East Sea in South Korea, and subjected to a polyphasic taxonomic study. Strain AR-13T grew optimally at 30°C, at pH 7.0–8.0 and in the presence of 0–0.5% (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain AR-13T fell within the clade comprising the type strains of Arcobacter species, clustering coherently with the type strain of Arcobacter venerupis. Strain AR-13T exhibited 16S rRNA gene sequence similarity values of 98.1% to the type strain of A. venerupis and of 93.2–96.9% to the type strains of the other Arcobacter species. Strain AR-13T contained MK-6 as the only menaquinone and summed feature 3 (C16:1ω7c and/or C16:1ω6c), C16:0, C18:1ω7c, and summed feature 2 (iso-C16:1 I and/or C14:0 3-OH) as the major fatty acids. The major polar lipids detected in strain AR-13T were phosphatidylethanolamine, phosphatidylglycerol, and one unidentified aminophospholipid. The DNA G+C content was 28.3 mol% and its mean DNA-DNA relatedness value with the type strain of A. venerupis was 21%. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain AR-13T is separated from recognized Arcobacter species. On the basis of the data presented, strain AR-13T is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter acticola sp. nov. is proposed. The type strain is AR-13T (=KCTC 52212T =NBRC 112272T).  相似文献   

19.
Sequencing of the genome of Clostridium botulinum strain Hall A revealed a gene (CBO0515), whose putative amino acid sequence was suggestive of the rare enzyme N5-(1-carboxyethyl) ornithine synthase. To test this hypothesis, CBO0515 has been cloned, and the encoded polypeptide was purified and characterized. This unusual gene appears to be confined to proteolytic strains assigned to group 1 of C. botulinum.In the late 1980s, high concentrations of two unknown ninhydrin-reactive compounds were discovered in the amino acid pool of Lactococcus lactis, an organism used extensively for the manufacture of cheese in the dairy industry. The two compounds, subsequently identified as N5-(l-1-carboxyethyl)-l-ornithine [N5-(CE) ornithine] and N6-(l-1-carboxyethyl)-l-lysine [N6-(CE) lysine], were purified and characterized, and their stereochemical structures were established by chemical syntheses and nuclear magnetic resonance spectroscopy (11, 14, 17). These N-carboxyalkyl derivatives are formed enzymatically via a reductive condensation between pyruvic acid and the ω (side chain) amino groups of ornithine and lysine, respectively (Fig. (Fig.11).Open in a separate windowFIG. 1.Nω-Carboxyethyl derivatives are formed enzymatically via a reductive condensation between pyruvic acid and the side chain amino groups of ornithine and lysine, respectively.In L. lactis, the biosyntheses of N5-(CE) ornithine and N6-(CE) lysine are catalyzed by a unique tetrameric NADPH-dependent enzyme, N5-(carboxyethyl)-ornithine synthase (CEOS; EC 1.5.1.24.) (7, 13, 16). The gene encoding this protein (ceo) has a chromosomal locus and, in the case of L. lactis strain K1, ceo is present on a large transposon (Tn5306) that also encodes the requisite genes for sucrose metabolism and nisin biosynthesis (6, 7, 19). Since its purification in 1989, CEOS has not been reported in other microorganisms and, until recently, no gene(s) with significant similarity to ceo had been found in any of the hundreds of currently sequenced bacterial genomes. It was therefore of considerable interest to find that the recently sequenced genome (12) of Clostridium botulinum strain Hall A encodes a gene, CBO0515 (designated bceo), whose translated polypeptide by comparative sequence alignment using CLUSTAL W2 (20) exhibits 50% identity with the amino acid sequence of CEOS from L. lactis. The L. lactis enzyme (Mr = 35,323; pI = 5.73) is assigned accession no. P15244 (UniProt/Swiss-Prot database). The C. botulinum polypeptide (YP_001253058) (Mr = 35,849; pI = 5.77) is designated A5HZ59 (UniProt/TrEMBL database). It seemed plausible that the clostridial protein could exhibit properties similar to those of the lactococcal enzyme. Testing this hypothesis is the basis for the study described here.  相似文献   

20.
Gene manipulation tools for an arachidonic-producing filamentous fungus, Mortierella alpina 1S-4, have not been sufficiently developed. In this study, Agrobacterium tumefaciens-mediated transformation (ATMT) was investigated for M. alpina 1S-4 transformation, using the uracil-auxotrophic mutant (ura5 strain) of M. alpina 1S-4 as a host strain and the homologous ura5 gene as a selectable marker gene. Furthermore, the gene for ω3-desaturase, catalyzing the conversion of n-6 fatty acid to n-3 fatty acid, was overexpressed in M. alpina 1S-4 by employing the ATMT system. As a result, we revealed that the frequency of transformation surpassed 400 transformants/108 spores, most of the integrated T-DNA appeared as a single copy at a random position in chromosomal DNA, and most of the transformants (60 to 80%) showed mitotic stability. Moreover, the accumulation of n-3 fatty acid in transformants was observed under the conditions of optimal ω3-desaturase gene expression. In particular, eicosapentaenoic acid (20:5n-3), an end product of n-3 fatty acids synthesized in M. alpina 1S-4, reached a maximum of 40% of total fatty acids. In conclusion, the ATMT system was found to be effective and suitable for the industrial strain Mortierella alpina 1S-4 and will be a useful tool for basic mutagenesis research and for industrial breeding of this strain.Two decades ago, a filamentous zygomycete fungus, Mortierella alpina 1S-4, was isolated from soil as a potent producer of polyunsaturated fatty acids (PUFAs) in our laboratory and was utilized for commercial production of arachidonic acid (AA) (20:4n-6) (21). Breeding of mutants derived from the wild strain led to the production of dihomo-γ-linolenic acid (20:3n-6) and Mead acid (20:3n-9) (10-12) (Fig. (Fig.1).1). Furthermore, we attempted to produce other PUFAs synthesized in M. alpina 1S-4, since some fatty acids (e.g., 18:2n-9, 18:4n-3, and 20:4n-3) have limited natural sources and could have promising beneficial physiological effects (9). In particular, for microbial production of n-3 PUFAs, currently prepared from fish oil, it is necessary to achieve stable productivity and quality; however, mutation treatment caused low activity of the specific enzymes involved in PUFA biosynthesis, which is unsuitable for industrial application. In addition, gene manipulation tools have not been sufficiently developed for metabolic control of the PUFA synthetic pathway. Genetic manipulation is a new means of molecularly breeding industrial strains, analyzing their physiological properties, and clarifying the biosynthetic pathway to PUFAs. A comprehensive transformation system for this fungus has been fundamentally established. It involves a uracil-auxotrophic mutant (ura5 strain) as a host strain, a homologous ura5 gene as a selectable marker gene, and transformation through the biolistic method, which is the only effective method (24).Open in a separate windowFIG. 1.Putative biosynthetic pathway of PUFAs in Mortierella alpina 1S-4. OA, oleic acid; LA, linoleic acid; ALA, α-linolenic acid; GLA, γ-linolenic acid; SDA, stearidonic acid; EDA, n-9 eicosadienoic acid; DGLA, dihomo-γ-linolenic acid; ETA, n-3 eicosatetraenoic acid; MA, Mead acid. Open and black arrows indicate elongase and desaturase reactions, respectively.Agrobacterium tumefaciens-mediated transformation (ATMT) has been employed for a wide range of plants (7, 27). Recently, it was reported that A. tumefaciens is also able to transfer its DNA to various fungi, including ascomycetes, basidiomycetes, zygomycetes, and oomycetes, as well as to plants (2, 5, 16). Additionally, this bacterium can transform intact cells and spores as well as protoplasts. Under mild conditions, the ATMT system generates a large number of stable transformants, which show vigorous growth, indicating that the ATMT system can be an efficient tool for molecular manipulation of M. alpina 1S-4. Moreover, the frequency of homologous recombination was higher than that with conventional transformation methods (8). In this study, we evaluated the external gene transfer system using the ATMT system and determined the optimal conditions for M. alpina 1S-4. Furthermore, we overexpressed the ω3-desaturase gene to improve n-3 PUFA productivity in an industrial n-6-PUFA-producing strain, M. alpina 1S-4 (18, 20), using ATMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号