共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA 总被引:1,自引:0,他引:1
Kowalinski E Lunardi T McCarthy AA Louber J Brunel J Grigorov B Gerlier D Cusack S 《Cell》2011,147(2):423-435
RIG-I is a key innate immune pattern-recognition receptor that triggers interferon expression upon detection of intracellular 5'triphosphate double-stranded RNA (5'ppp-dsRNA) of viral origin. RIG-I comprises N-terminal caspase activation and recruitment domains (CARDs), a DECH helicase, and a C-terminal domain (CTD). We present crystal structures of the ligand-free, autorepressed, and RNA-bound, activated states of RIG-I. Inactive RIG-I has an open conformation with the CARDs sequestered by a helical domain inserted between the two helicase moieties. ATP and dsRNA binding induce a major rearrangement to a closed conformation in which the helicase and CTD bind the blunt end 5'ppp-dsRNA with perfect complementarity but incompatibly with continued CARD binding. We propose that after initial binding of 5'ppp-dsRNA to the flexibly linked CTD, co-operative tight binding of ATP and RNA to the helicase domain liberates the CARDs for downstream signaling. These findings significantly advance our molecular understanding of the activation of innate immune signaling helicases. 相似文献
2.
3.
《Cytokine & growth factor reviews》2014,25(5):507-512
Virus-encoded molecular signatures, such as cytosolic double-stranded or otherwise biochemically distinct RNA species, trigger cellular antiviral signaling. Cytoplasmic proteins recognize these non-self RNAs and activate signal transduction pathways that drive the expression of virus-induced genes, including the primary antiviral cytokine, IFNβ, and diverse direct and indirect antiviral effectors [1], [2], [3], [4]. One important group of cytosolic RNA sensors known as the RIG-I-like receptors (RLRs) is comprised of three proteins that are similar in structure and function. The RLR proteins, RIG-I, MDA5, and LGP2, share the ability to recognize nucleic acid signatures produced by virus infections and activate antiviral signaling. Emerging evidence indicates that RNA detection by RLRs culminates in the assembly of dynamic multimeric ribonucleoprotein (RNP) complexes. These RNPs can act as signaling platforms that are capable of propagating and amplifying antiviral signaling responses. Despite their common domain structures and similar abilities to induce antiviral responses, the RLRs differ in their enzymatic properties, their intrinsic abilities to recognize RNA, and their ability to assemble into filamentous complexes. This molecular specialization has enabled the RLRs to recognize and respond to diverse virus infections, and to mediate both unique and overlapping functions in immune regulation [5], [6]. 相似文献
4.
Plant innate immunity relies on the recognition of pathogen effector molecules by nucleotide-binding-leucine-rich repeat (NB-LRR) immune receptor families. Previously we have shown the N immune receptor, a member of TIR-NB-LRR family, indirectly recognizes the 50 kDa helicase (p50) domain of Tobacco mosaic virus (TMV) through its TIR domain. We have identified an N receptor-interacting protein, NRIP1, that directly interacts with both N's TIR domain and p50. NRIP1 is a functional rhodanese sulfurtransferase and is required for N to provide complete resistance to TMV. Interestingly, NRIP1 that normally localizes to the chloroplasts is recruited to the cytoplasm and nucleus by the p50 effector. As a consequence, NRIP1 interacts with N only in the presence of the p50 effector. Our findings show that a chloroplastic protein is intimately involved in pathogen recognition. We propose that N's activation requires a prerecognition complex containing the p50 effector and NRIP1. 相似文献
5.
Garlatti V Belloy N Martin L Lacroix M Matsushita M Endo Y Fujita T Fontecilla-Camps JC Arlaud GJ Thielens NM Gaboriaud C 《The EMBO journal》2007,26(2):623-633
Innate immunity relies critically upon the ability of a few pattern recognition molecules to sense molecular markers on pathogens, but little is known about these interactions at the atomic level. Human L- and H-ficolins are soluble oligomeric defence proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. The X-ray structures of their trimeric recognition domains, alone and in complex with various ligands, have been solved to resolutions up to 1.95 and 1.7 A, respectively. Both domains have three-lobed structures with clefts separating the distal parts of the protomers. Ca(2+) ions are found at sites homologous to those described for tachylectin 5A (TL5A), an invertebrate lectin. Outer binding sites (S1) homologous to the GlcNAc-binding pocket of TL5A are present in the ficolins but show different structures and specificities. In L-ficolin, three additional binding sites (S2-S4) surround the cleft. Together, they define an unpredicted continuous recognition surface able to sense various acetylated and neutral carbohydrate markers in the context of extended polysaccharides such as 1,3-beta-D-glucan, as found on microbial or apoptotic surfaces. 相似文献
6.
Dhurvas Chandrasekaran Dinesh Dominika Chalupska Jan Silhan Eliska Koutna Radim Nencka Vaclav Veverka Evzen Boura 《PLoS pathogens》2020,16(12)
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the coronavirus disease 2019 (COVID-19). SARS-CoV-2 is a single-stranded positive-sense RNA virus. Like other coronaviruses, SARS-CoV-2 has an unusually large genome that encodes four structural proteins and sixteen nonstructural proteins. The structural nucleocapsid phosphoprotein N is essential for linking the viral genome to the viral membrane. Both N-terminal RNA binding (N-NTD) and C-terminal dimerization domains are involved in capturing the RNA genome and, the intrinsically disordered region between these domains anchors the ribonucleoprotein complex to the viral membrane. Here, we characterized the structure of the N-NTD and its interaction with RNA using NMR spectroscopy. We observed a positively charged canyon on the surface of the N-NTD that might serve as a putative RNA binding site similarly to other coronaviruses. The subsequent NMR titrations using single-stranded and double-stranded RNA revealed a much more extensive U-shaped RNA-binding cleft lined with regularly distributed arginines and lysines. The NMR data supported by mutational analysis allowed us to construct hybrid atomic models of the N-NTD/RNA complex that provided detailed insight into RNA recognition. 相似文献
7.
Co(2+) binding RNA aptamers were chosen as research models to reveal the structural basis underlying the recognition of Co(2+) by RNA, with the application of two distinct methods. Using the nucleotide analog interference mapping assay, we found strong interference effects after incorporation of the 7-deaza guanosine phosphorotioate analog into the RNA chain at equivalent positions G27 and G28 in aptamer no. 18 and G25 and G26 in aptamer no. 20. The results obtained by nucleotide analog interference mapping suggest that these guanine bases are crucial for the creation of Co(2+) binding sites and that they appear to be involved in the coordination of the ion to the exposed N7 atom of the tandem guanines. Additionally, most 7-deaza guanosine phosphorotioate and 7-deaza adenosine phosphorotioate interferences were located in the common motifs: loop E-like in aptamer no. 18 and kissing dimer in aptamer no. 20. We also found that purine-rich stretches containing guanines with the highest interference values were the targets for hybridization of 6-mers, which are members of the semi-random oligodeoxyribonucleotide library in both aptamers. It transpired that DNA oligomer directed RNase H digestions are sensitive to Co(2+) and, at an elevated metal ion concentration, the hybridization of oligomers to aptamer targets is inhibited, probably due to higher stability and complexity of the RNA structure. 相似文献
8.
Iwasaki A 《Autophagy》2007,3(4):354-356
Plasmacytoid dendritic cells (pDCs) detect viruses in the acidified endosomes via Toll-like receptors (TLRs) upon endocytosis of virions. Yet, pDC responses to certain single-stranded RNA viruses occur only following live viral infection. In our recent study, we presented evidence that the recognition of such viruses by TLR7 requires autophagy. We speculate that the requirement for autophagy in viral recognition reflects the necessity for transportation of cytosolic viral replication intermediates into the lysosome where TLR7 is activated. In addition, autophagy was found to be required for pDCs to produce type I interferon (IFN) in response to both ssRNA and dsDNA viruses. These results indicated that autophagy plays a key role in mediating virus detection and IFNalpha secretion in pDCs, and suggest that cytosolic replication intermediates of ssRNA viruses serve as pathogen signatures recognized by TLR7. 相似文献
9.
Evolutionary perspective on innate immune recognition 总被引:6,自引:0,他引:6
Analysis of human and Drosophila genomes demonstrates an ancient origin of innate immunity and the diversity of the mechanisms of innate immune recognition. 相似文献
10.
During viral infections, single- and double-stranded RNA (ssRNA and dsRNA) are recognized by the host and induce innate immune responses. The cellular enzyme ADAR-1 (adenosine deaminase acting on RNA-1) activation in virally infected cells leads to presence of inosine-containing RNA (Ino-RNA). Here we report that ss-Ino-RNA is a novel viral recognition element. We synthesized unmodified ssRNA and ssRNA that had 6% to16% inosine residues. The results showed that in primary human cells, or in mice, 10% ss-Ino-RNA rapidly and potently induced a significant increase in inflammatory cytokines, such as interferon (IFN)-β (35 fold), tumor necrosis factor (TNF)-α (9.7 fold), and interleukin (IL)-6 (11.3 fold) (p<0.01). Flow cytometry data revealed a corresponding 4-fold increase in influx of neutrophils into the lungs by ss-Ino-RNA treatment. In our in vitro experiments, treatment of epithelial cells with ss-Ino-RNA reduced replication of respiratory syncytial virus (RSV). Interestingly, RNA structural analysis showed that ss-Ino-RNA had increased formation of secondary structures. Our data further revealed that extracellular ss-Ino-RNA was taken up by scavenger receptor class-A (SR-A) which activated downstream MAP Kinase pathways through Toll-like receptor 3 (TLR3) and dsRNA-activated protein kinase (PKR). Our data suggests that ss-Ino-RNA is an as yet undescribed virus-associated innate immune stimulus. 相似文献
11.
Hu proteins bind to adenosine-uridine (AU)-rich elements (AREs) in the 3' untranslated regions of many short-lived mRNAs, thereby stabilizing them. Here we report the crystal structures of the first two RNA recognition motif (RRM) domains of the HuD protein in complex with an 11-nucleotide fragment of a class I ARE (the c-fos ARE; to 1.8 A), and with an 11-nucleotide fragment of a class II ARE (the tumor necrosis factor alpha ARE; to 2.3 A). These structures reveal a consensus RNA recognition sequence that suggests a preference for pyrimidine-rich sequences and a requirement for a central uracil residue in the clustered AUUUA repeats found in class II AREs. Comparison to structures of other RRM domain-nucleic acid complexes reveals two base recognition pockets in all the structures that interact with bases using residues in conserved ribonucleoprotein motifs and at the C-terminal ends of RRM domains. Different conformations of nucleic acid can be bound by RRM domains by using different combinations of base recognition pockets and multiple RRM domains. 相似文献
12.
Structural basis of DNA-protein recognition 总被引:16,自引:0,他引:16
Recent structure determinations of several repressor-operator complexes have shown how proteins can recognize specific binding sites on DNA. Although each of these repressor proteins belongs to the 'helix-turn-helix' class of DNA-binding proteins, they do not use a simple code for recognition. 相似文献
13.
Fuchs G Stein AJ Fu C Reinisch KM Wolin SL 《Nature structural & molecular biology》2006,13(11):1002-1009
The Ro autoantigen is ring-shaped, binds misfolded noncoding RNAs and is proposed to function in quality control. Here we determine how Ro interacts with misfolded RNAs. Binding of Ro to misfolded precursor (pre)-5S ribosomal RNA requires a single-stranded 3' end and helical elements. As mutating most sequences of the helices and tail results in modest decreases in binding, Ro may be able to associate with a range of RNAs. Ro binds several other RNAs that contain single-stranded tails. A crystal structure of Ro bound to a misfolded pre-5S rRNA fragment reveals that the tail inserts into the cavity, while a helix binds on the surface. Most contacts of Ro with the helix are to the backbone. Mutagenesis reveals that Ro has an extensive RNA-binding surface. We propose that Ro uses this surface to scavenge RNAs that fail to bind their specific RNA-binding proteins. 相似文献
14.
Xiaojun Li Mikaela Stewart Hengyu Xu Tatyana Igumenova 《Archives of biochemistry and biophysics》2009,488(1):23-33
RIG-I, MDA5 and LGP2 are cytosolic pattern recognition receptors detecting single-stranded or double-stranded RNA in virally infected cells. The activation of RIG-I or MDA5 stimulates the secretion of type I interferons that play key roles in antiviral immune responses. The C-terminal domains (CTD) of RIG-I and LGP2 are responsible for RNA binding; however, it is not clear how MDA5 binds RNA. To understand the structural basis of dsRNA recognition by MDA5, we have determined the 1.45 Å resolution structure of the C-terminal domain of human MDA5. The structure revealed a highly conserved fold similar to the structures of RIG-I and LGP2 CTDs. NMR titration of MDA5 CTD with dsRNA demonstrated that a positively charged surface is involved in dsRNA binding. Mutagenesis and RNA binding studies showed that electrostatic interactions play primary roles in dsRNA recognition by MDA5. Like RIG-I and LGP2, MDA5 CTD preferentially binds dsRNA with blunt ends, but does not associate with dsRNA with either 5′ or 3′ overhangs. Molecular modeling of MDA5 CTD/dsRNA complex suggests that MDA5 CTD may recognize the first turn of blunt-ended dsRNA in a similar manner as LGP2. 相似文献
15.
Innate immune recognition of viral infection 总被引:16,自引:0,他引:16
Toll-like receptors (TLRs) are key molecules of the innate immune systems, which detect conserved structures found in a broad range of pathogens and triggers innate immune responses. A subset of TLRs recognize viral components and induce antiviral responses by producing type I interferons. Whereas TLR2 and TLR4 recognize viral components at the cell surface, TLR3, TLR7, TLR8 and TLR9 are exclusively expressed in endosomal compartments. After phagocytes internalize viruses or virus-infected apoptotic cells, viral nucleic acids are released in phagolysosomes and are recognized by these TLRs. Recent reports have shown that hosts also have a mechanism to detect replicating viruses in the cytoplasm in a TLR-independent manner. In this review, we focus on the viral recognition by innate immunity and the signaling pathways. 相似文献
16.
Peptidoglycan recognition proteins of the innate immune system 总被引:1,自引:0,他引:1
Peptidoglycan (PGN) is the major component of bacterial cell walls and one of the main microbial products recognized by the innate immune system. PGN recognition is mediated by several families of pattern recognition molecules, including Toll-like receptors, nucleotide-binding oligomerization domain-containing proteins, and peptidoglycan recognition proteins (PGRPs). However, only the interaction of PGN with PGRPs, which are highly conserved from insects to mammals, has so far been characterized at the molecular level. Here, we describe recent structural studies of PGRPs that reveal the basis for PGN recognition and provide insights into the signal transduction and antibacterial activities of these innate immune proteins. 相似文献
17.
Structural basis of BLyS receptor recognition 总被引:6,自引:0,他引:6
Oren DA Li Y Volovik Y Morris TS Dharia C Das K Galperina O Gentz R Arnold E 《Nature structural biology》2002,9(4):288-292
B lymphocyte stimulator (BLyS), a member of the tumor necrosis factor (TNF) superfamily, is a cytokine that induces B-cell proliferation and immunoglobulin secretion. We have determined the three-dimensional structure of BLyS to 2.0 A resolution and identified receptor recognition segments using limited proteolysis coupled with mass spectrometry. Similar to other structurally determined TNF-like ligands, the BLyS monomer is a beta-sandwich and oligomerizes to form a homotrimer. The receptor-binding region in BLyS is a deeper, more pronounced groove than in other cytokines. The conserved elements on the 'floor' of this groove allow for cytokine recognition of several structurally related receptors, whereas variations on the 'walls' and outer rims of the groove confer receptor specificity. 相似文献
18.
《Cytokine》2013,64(3):219-224
According to the existing paradigm, cellular recognition of viral infection is mediated by molecular patterns within the virus particle or produced during virus replication. However, there are various physical cellular changes indicative of infection that could also trigger innate antiviral responses. The type-I interferon response is rapidly engaged to limit viral infection and a number of studies have shown that the interferon response, or components of it, are induced by general perturbations to cellular processes. Virus entry requires membrane and cytoskeletal perturbation, and both membrane fusion or actin depolymerising agents alone are able to activate antiviral genes. Viruses cause cellular stress and change the cellular environment, and oxidative stress or endoplasmic reticulum stress will amplify antiviral signaling. Many of these responses converge on interferon regulatory factor 3, suggesting that it plays a crucial role in determining the degree to which the cell responds. This review highlights novel paradigms of viral recognition and speculates that viral infection is sensed as a danger signal. 相似文献
19.
20.
Garlatti V Martin L Gout E Reiser JB Fujita T Arlaud GJ Thielens NM Gaboriaud C 《The Journal of biological chemistry》2007,282(49):35814-35820
Ficolins are soluble oligomeric proteins with lectin-like activity, assembled from collagen fibers prolonged by fibrinogen-like recognition domains. They act as innate immune sensors by recognizing conserved molecular markers exposed on microbial surfaces and thereby triggering effector mechanisms such as enhanced phagocytosis and inflammation. In humans, L- and H-ficolins have been characterized in plasma, whereas a third species, M-ficolin, is secreted by monocytes and macrophages. To decipher the molecular mechanisms underlying their recognition properties, we previously solved the structures of the recognition domains of L- and H-ficolins, in complex with various model ligands (Garlatti, V., Belloy, N., Martin, L., Lacroix, M., Matsushita, M., Endo, Y., Fujita, T., Fontecilla-Camps, J. C., Arlaud, G. J., Thielens, N. M., and Gaboriaud, C. (2007) EMBO J. 24, 623-633). We now report the ligand-bound crystal structures of the recognition domain of M-ficolin, determined at high resolution (1.75-1.8 A), which provides the first structural insights into its binding properties. Interaction with acetylated carbohydrates differs from the one previously described for L-ficolin. This study also reveals the structural determinants for binding to sialylated compounds, a property restricted to human M-ficolin and its mouse counterpart, ficolin B. Finally, comparison between the ligand-bound structures obtained at neutral pH and nonbinding conformations observed at pH 5.6 reveals how the ligand binding site is dislocated at acidic pH. This means that the binding function of M-ficolin is subject to a pH-sensitive conformational switch. Considering that the homologous ficolin B is found in the lysosomes of activated macrophages (Runza, V. L., Hehlgans, T., Echtenacher, B., Zahringer, U., Schwaeble, W. J., and Mannel, D. N. (2006) J. Endotoxin Res. 12, 120-126), we propose that this switch could play a physiological role in such acidic compartments. 相似文献