共查询到20条相似文献,搜索用时 0 毫秒
1.
Bo Delling Stefan Palm Eleftheria Palkopoulou Tore Prestegaard 《Ecology and evolution》2014,4(22):4346-4360
Presence of sympatric populations may reflect local diversification or secondary contact of already distinct forms. The Baltic cisco (Coregonus albula) normally spawns in late autumn, but in a few lakes in Northern Europe sympatric autumn and spring‐ or winter‐spawners have been described. So far, the evolutionary relationships and taxonomic status of these main life history forms have remained largely unclear. With microsatellites and mtDNA sequences, we analyzed extant and extinct spring‐ and autumn‐spawners from a total of 23 Swedish localities, including sympatric populations. Published sequences from Baltic ciscoes in Germany and Finland, and Coregonus sardinella from North America were also included together with novel mtDNA sequences from Siberian C. sardinella. A clear genetic structure within Sweden was found that included two population assemblages markedly differentiated at microsatellites and apparently fixed for mtDNA haplotypes from two distinct clades. All sympatric Swedish populations belonged to the same assemblage, suggesting parallel evolution of spring‐spawning rather than secondary contact. The pattern observed further suggests that postglacial immigration to Northern Europe occurred from at least two different refugia. Previous results showing that mtDNA in Baltic cisco is paraphyletic with respect to North American C. sardinella were confirmed. However, the inclusion of Siberian C. sardinella revealed a more complicated pattern, as these novel haplotypes were found within one of the two main C. albula clades and were clearly distinct from those in North American C. sardinella. The evolutionary history of Northern Hemisphere ciscoes thus seems to be more complex than previously recognized. 相似文献
2.
Mimi Rebein Charli N. Davis Helena Abad Taylor Stone Jillian del Sol Natalie Skinner Matthew D. Moran 《Ecology and evolution》2017,7(11):4035-4043
Several North American trees are hypothesized to have lost their co‐evolved seed disperser during the late‐Pleistocene extinction and are therefore considered anachronistic. We tested this hypothesis for the American persimmon (Diospyros virginiana) by studying the effects of gut passage of proposed seed dispersers on seedling survival and growth, natural fruiting characteristics, and modern animal consumption patterns. We tested gut passage effects on persimmon seeds using three native living species, the raccoon (Procyon lotor), Virginia opossum (Didelphis virginiana), and coyote (Canis latrans), and two Pleistocene analogs; the Asian elephant (Elephas maximus) and alpaca (Vicugna pacos). Persimmon seeds excreted by raccoons, coyotes, and elephants survived gut transit. Gut passage did not affect sprouting success, but did tend to decrease time to sprout and increase seedling quality. Under field conditions, persimmon fruits were palatable on the parent tree and on the ground for an equal duration, but most fruits were consumed on the ground. Seven vertebrate species fed upon persimmon fruits, with the white‐tailed deer (Odocoileus virginianus)—a species not capable of dispersing persimmon seeds—comprising over 90% of detections. Conversely, potential living seed dispersers were rarely detected. Our results suggest the American persimmon evolved to attract a variety of seed dispersers and thus is not anachronistic. However, human‐induced changes in mammal communities could be affecting successful seed dispersal. We argue that changes in the relative abundance of mammals during the Anthropocene may be modifying seed dispersal patterns, leading to potential changes in forest community composition. 相似文献
3.
4.
Lélia Lagache Etienne K. Klein Alexis Ducousso Rémy J. Petit 《Molecular ecology》2014,23(17):4331-4343
Reproductive strategies of closely related species distributed along successional gradients should differ as a consequence of the trade‐off between competition and colonization abilities. We compared male reproductive strategies of Quercus robur and Q. petraea, two partly interfertile European oak species with different successional status. In the studied even‐aged stand, trees of the late‐successional species (Q. petraea) grew faster and suffered less from intertree competition than trees of the early‐successional species (Q. robur). A large‐scale paternity study and a spatially explicit individual‐based mating model were used to estimate parameters of pollen production and dispersal as well as sexual barriers between species. Male fecundity was found to be dependent both on a tree's circumference and on its environment, particularly so for Q. petraea. Pollen dispersal was greater and more isotropic in Q. robur than in Q. petraea. Premating barriers to hybridization were strong in both species, but more so in Q. petraea than in Q. robur. Hence, predictions based on the competition–colonization trade‐off are well supported, whereas the sexual barriers themselves seem to be shaped by colonization dynamics. 相似文献
5.
S. Jha 《Molecular ecology》2015,24(5):993-1006
Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human‐altered habitats. Yet, little is known about the role of natural and human‐altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow‐faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human‐altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (FST = 0.041, F’ST = 0.044 and Dest = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services. 相似文献
6.
Joseph B. Pfaller Adam C. Payton Karen A. Bjorndal Alan B. Bolten Stuart F. McDaniel 《Ecology and evolution》2019,9(3):957-974
Population differentiation and diversification depend in large part on the ability and propensity of organisms to successfully disperse. However, our understanding of these processes in organisms with high dispersal ability is biased by the limited genetic resolution offered by traditional genotypic markers. Many neustonic animals disperse not only as pelagic larvae, but also as juveniles and adults while drifting or rafting at the surface of the open ocean. In theory, the heightened dispersal ability of these animals should limit opportunities for species diversification and population differentiation. To test these predictions, we used next‐generation sequencing of genomewide restriction‐site‐associated DNA tags (RADseq) and traditional mitochondrial DNA sequencing, to investigate the species‐level relationships and global population structure of Planes crabs collected from oceanic flotsam and sea turtles. Our results indicate that species diversity in this clade is low—likely three closely related species—with no evidence of cryptic or undescribed species. Moreover, our results indicate weak population differentiation among widely separated aggregations with genetic indices showing only subtle genetic discontinuities across all oceans of the world (RADseq FST = 0.08–0.16). The results of this study provide unprecedented resolution of the systematics and global biogeography of this group and contribute valuable information to our understanding of how theoretical dispersal potential relates to actual population differentiation and diversification among marine organisms. Moreover, these results demonstrate the limitations of single gene analyses and the value of genomic‐level resolution for estimating contemporary population structure in organisms with large, highly connected populations. 相似文献
7.
Alex D. Rogers Adam D. Leaché Kate L. Ciborowski Michael J. Polito Heather J. Lynch Michael J. Dunn Tom Hart 《Ecology and evolution》2016,6(6):1834-1853
Climate change, fisheries' pressure on penguin prey, and direct human disturbance of wildlife have all been implicated in causing large shifts in the abundance and distribution of penguins in the Southern Ocean. Without mark‐recapture studies, understanding how colonies form and, by extension, how ranges shift is challenging. Genetic studies, particularly focused on newly established colonies, provide a snapshot of colonization and can reveal the extent to which shifts in abundance and occupancy result from changes in demographic rates (e.g., reproduction and survival) or migration among suitable patches of habitat. Here, we describe the population structure of a colonial seabird breeding across a large latitudinal range in the Southern Ocean. Using multilocus microsatellite genotype data from 510 Gentoo penguin (Pygoscelis papua) individuals from 14 colonies along the Scotia Arc and Antarctic Peninsula, together with mitochondrial DNA data, we find strong genetic differentiation between colonies north and south of the Polar Front, that coincides geographically with the taxonomic boundary separating the subspecies P. p. papua and P. p. ellsworthii. Using a discrete Bayesian phylogeographic approach, we show that southern Gentoos expanded from a possible glacial refuge in the center of their current range, colonizing regions to the north and south through rare, long‐distance dispersal. Our findings show that this dispersal is important for new colony foundation and range expansion in a seabird species that ordinarily exhibits high levels of natal philopatry, though persistent oceanographic features serve as barriers to movement. 相似文献
8.
VANESSA MILLER‐SIMS MARTHA DELANEY JELLE ATEMA MICHAEL KINGSFORD GABRIELE GERLACH 《Molecular ecology resources》2005,5(4):841-843
To determine genetic substructuring in populations of the spiny damselfish Acanthochromis polyacanthus among different reefs of the Great Barrier Reef, Australia, we characterized six polymorphic microsatellite loci. 相似文献
9.
During the past 50 years, Fennoscandian populations of spring‐spawning Baltic cisco (Coregonus albula), sympatric to common autumn‐spawners, have declined or disappeared; for example, three out of four known spring‐spawning populations in Sweden are regarded as extinct. Over the same period, the climate has changed and populations have been subject to other anthropogenic stressors. We compared historic (1960s) and recent (1990–2000s) morphological data from the still‐existent sympatric cisco populations in Lake Fegen, Sweden. Phenotypic changes were found for spring‐spawners making them more similar to the sympatric autumn‐spawners that had remained virtually unchanged. Based on results for other salmoniform fishes, a phenotypically plastic response to increased temperature during early development appears unlikely. The recent material was also analyzed with microsatellite markers; long‐term effective population size in spring‐spawners was estimated to be about 20 times lower than autumn‐spawners, with signs of long‐term gene flow in both directions and a recent genetic bottleneck in spring‐spawners. We suggest the change toward a less distinct phenotype in spring‐spawners to reflect a recent increase in gene flow from autumn‐spawners. Time since divergence was estimated to only c. 1,900 years (95% CI: 400–5,900), but still the Fegen populations represent the most morphologically and genetically distinct sympatric populations studied. Consequently, we hypothesize that less distinct population pairs can be even younger and that spring‐spawning may have repeatedly evolved and disappeared in several lakes since the end of the last glaciation, concurrent with changed environmental conditions. 相似文献
10.
Caroline E. Dub Emilie Boissin Alexandre Mercire Serge Planes 《Molecular ecology》2020,29(8):1508-1522
Dispersal is a critical process for the persistence and productivity of marine populations. For many reef species, there is increasing evidence that local demography and self‐recruitment have major consequences on their genetic diversity and adaptation to environmental change. Yet empirical data of dispersal patterns in reef‐building species remain scarce. Here, we document the first genetic estimates of self‐recruitment and dispersal distances in a free‐spawning marine invertebrate, the hydrocoral Millepora cf. platyphylla. Using twelve microsatellite markers, we gathered genotypic information from 3,160 georeferenced colonies collected over 27,000 m2 of a single reef in three adjacent habitats in Moorea, French Polynesia; the mid slope, upper slope, and back reef. Although the adult population was predominantly clonal (85% were clones), our parentage analysis revealed a moderate self‐recruitment rate with a minimum of 8% of sexual propagules produced locally. Assigned offspring often settled at <10 m from their parents and dispersal events decrease with increasing geographic distance. There were no discrepancies between the dispersal distances of offspring assigned to parents belonging to clonal versus nonclonal genotypes. Interhabitat dispersal events via cross‐reef transport were also detected for sexual and asexual propagules. Sibship analysis showed that full siblings recruit nearby on the reef (more than 40% settled at <30 m), resulting in sibling aggregations. Our findings highlight the importance of self‐recruitment together with clonality in stabilizing population dynamics, which may ultimately enhance local sustainability and resilience to disturbance. 相似文献
11.
Both deterministic and stochastic forces determine the representation and frequency of floral morphs in heterostylous plant populations. Phylogeographic analysis of molecular variation can provide information on the role of historical factors, including founder events, in affecting population morph structure. Here, we investigate geographical patterns of floral morph variation in a distylous shrub Luculia pinceana (Rubiaceae) by examining the relations between floral polymorphism and molecular (cpDNA and microsatellite) variation in 25 populations sampled throughout the distribution of the species in southwest China and adjacent countries. In 19 of the 25 populations, the frequency of floral morphs was not significantly different from the expected 1:1 ratio. The remaining populations were either L‐morph biased (2) or monomorphic (4) for this form and were morphologically differentiated from the remaining populations in several floral traits, that is, corolla tube length, sex organ position and stigma‐anther separation. Phylogeographic analysis supports the hypothesis that L. pinceana was initially split into west‐central and eastern lineages in the Early Pleistocene (~1.982 Mya). A centrally located lineage composed of morph‐biased and monomorphic populations appears to have been subsequently derived from the west‐central lineage, perhaps by a founder event after the last glacial maximum. Hypotheses to explain why these populations have not returned to equilibrium morph frequencies are considered. 相似文献
12.
Ling‐Xiao Ying Ting‐Ting Zhang Ching‐An Chiu Tze‐Ying Chen Shu‐Jin Luo Xiao‐Yong Chen Ze‐Hao Shen 《Ecology and evolution》2016,6(9):2805-2816
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species. 相似文献
13.
14.
François Mayer Frédéric B. Piel Anna Cassel‐Lundhagen Natalia Kirichenko Laurent Grumiau Bjørn Økland Coralie Bertheau Patrick Mardulyn 《Molecular ecology》2015,24(6):1292-1310
While phylogeographic patterns of organisms are often interpreted through past environmental disturbances, mediated by climate changes, and geographic barriers, they may also be strongly influenced by species‐specific traits. To investigate the impact of such traits, we focused on two Eurasian spruce bark beetles that share a similar geographic distribution, but differ in their ecology and reproduction. Ips typographus is an aggressive tree‐killing species characterized by strong dispersal, whereas Dendroctonus micans is a discrete inbreeding species (sib mating is the rule), parasite of living trees and a poor disperser. We compared genetic variation between the two species over both beetles’ entire range in Eurasia with five independent gene fragments, to evaluate whether their intrinsic differences could have an influence over their phylogeographic patterns. We highlighted widely divergent patterns of genetic variation for the two species and argue that the difference is indeed largely compatible with their contrasting dispersal strategies and modes of reproduction. In addition, genetic structure in I. typographus divides European populations in a northern and a southern group, as was previously observed for its host plant, and suggests past allopatric divergence. A long divergence time was estimated between East Asian and other populations of both species, indicating their long‐standing presence in Eurasia, prior to the last glacial maximum. Finally, the strong population structure observed in D. micans for the mitochondrial locus provides insights into the recent colonization history of this species, from its native European range to regions where it was recently introduced. 相似文献
15.
Potential declines in native pollinator communities and increased reliance on pollinator‐dependent crops have raised concerns about native pollinator conservation and dispersal across human‐altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human‐altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine‐scale relatedness patterns of the yellow‐faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (FST = 0.019, Dest = 0.049). Most importantly, we reveal significant relationships between pairwise FST and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation‐related impervious cover. Finally, our fine‐scale analysis reveals significant but declining relatedness between individuals at the 1–9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization. 相似文献
16.
This study investigated the effects of climate oscillations on the evolution of two closely related Allium species, A. neriniflorum and A. tubiflorum. We sequenced three cp DNA (cpDNA) fragments (rps16, rpl32‐trnL, and trnD‐trnT, together approximately 2,500 bp in length) of two closely related Allium species, with samples from 367 individuals in 47 populations distributed across the total range of these species. The interspecific and intraspecific divergence times of the two species were in the Quaternary glaciation. The population divergence was high for the cpDNA variation, suggesting a significant phylogeographic structure (NST = 0.844, GST = 0.798, p < 0.05). Remarkable ecological differentiation was also revealed by Niche models and statistical analyses. Our results suggest the speciation event of the two species was triggered by violent climatic changes during the Quaternary glaciation. 相似文献
17.
Lise Zemagho Sigrid Liede‐Schumann Bonaventure Sonké Steven Janssens Olivier Lachenaud Brecht Verstraete Steven Dessein 《Botanical journal of the Linnean Society. Linnean Society of London》2016,182(3):551-580
Tribe Sabiceeae (Ixoroideae, Rubiaceae) has undergone recent taxonomical changes with the incorporation of the related genera Ecpoma, Pseudosabicea and Stipularia into the type genus Sabicea. We use phylogenetic analysis and morphological data to verify the relationships among members of the tribe, including the most comprehensive taxon sampling of the tribe to date with 74 of 145 species. Sequence data from the nuclear internal transcribed spacer (ITS) and three plastid markers (petD, rps16, trnT–F) were used to infer relationships among the members of the tribe. Individual analyses using maximum likelihood, parsimony and Bayesian approaches reveal several supported clades: the former genus Stipularia is resolved as a monophyletic unit, but Ecpoma is monophyletic only if Sabicea urbaniana and Sabicea xanthotricha are included (corresponding to Sabicea subgenus Stipulariopsis sensu Wernham). Pseudosabicea is biphyletic, with one clade corresponding to section Anisophyllae of Hallé (1964) and the other one to the other sections (Floribundae and Sphaericae) of the genus. Eleven morphological characteristics were recorded for all species studied and seven have been mapped onto the phylogenetic tree to study their evolution in the group and assess their value for the classification of Sabicea s.l. Finally, our study shows that a combination of diagnostic characteristics should be used to differentiate each group and we propose to recognise four subgenera in Sabicea. 相似文献
18.
Seed dispersal selection pressures may cause morphological differences in cone structure and seed traits of large‐seeded pine trees. We investigated the cone, seed, and scale traits of four species of animal‐dispersed pine trees to explore the adaptations of morphological structures to different dispersers. The four focal pines analyzed in this study were Chinese white pine (Pinus armandi), Korean pine (P. koraiensis), Siberian dwarf pine (P. pumila), and Dabieshan white pine (P. dabeshanensis). There are significant differences in the traits of the cones and seeds of these four animal‐dispersed pines. The scales of Korean pine and Siberian dwarf pine are somewhat opened after cone maturity, the seeds are closely combined with scales, and the seed coat and scales are thick. The cones of Chinese white pine and Dabieshan white pine are open after ripening, the seeds fall easily from the cones, and the seed coat and seed scales are relatively thin. The results showed that the cone structure of Chinese white pine is similar to that of Dabieshan white pine, whereas Korean pine and Siberian dwarf pine are significantly different from the other two pines and vary significantly from each other. This suggests that species with similar seed dispersal strategies exhibit similar morphological adaptions. Accordingly, we predicted three possible seed dispersal paradigms for animal‐dispersed pines: the first, as represented by Chinese white pine and Dabieshan white pine, relies upon small forest rodents for seed dispersal; the second, represented by Korean pine, relies primarily on birds and squirrels to disperse the seeds; and the third, represented by Siberian dwarf pine, relies primarily on birds for seed dispersal. Our study highlights the significance of animal seed dispersal in shaping cone morphology, and our predictions provide a theoretical framework for research investigating the coevolution of large‐seeded pines and their seed dispersers. 相似文献
19.
Understanding the genetic diversity and structure of invasive pathogens in source and in introduced areas is crucial to the revelation of hidden biological features of an organism, to the reconstruction of the course of invasions and to the establishment of effective control measures. Hymenoscyphus pseudoalbidus (anamorph: Chalara fraxinea) is an invasive and highly destructive fungal pathogen found on common ash Fraxinus excelsior in Europe and is native to East Asia. To gain insights into its dispersal mechanisms and history of invasion, we used microsatellite markers and characterized the genetic structure and diversity of H. pseudoalbidus populations at three spatial levels: (i) between Europe and Japan, (ii) in Europe and (iii) at the epidemic's front in Switzerland. Phylogenetic and network analysis demonstrated that individuals from both regions are conspecific. However, populations from Japan harboured a higher genetic diversity and were genetically differentiated from European ones. No evident population structure was found among the 1208 European strains using Bayesian and multivariate clustering analysis. Only the distribution of genetic diversity in space, pairwise population differentiation (GST) and the spatial analysis of principal components revealed a faint geographical pattern around Europe. A significant allele deficiency in most European populations pointed to a recent genetic bottleneck, whereas no pattern of isolation by distance was found. Our data suggest that H. pseudoalbidus was introduced just once by at least two individuals. The potential source region of H. pseudoalbidus is vast, and further investigations are required for a more accurate localization of the source population. 相似文献
20.
Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within‐generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial—for the evolutionary significance of transgenerational plasticity—but still unresolved questions. In this study, we investigated how the grand‐parental, parental and offspring exposures to predation cues shape the predator‐induced defences of offspring in the Physa acuta snail. We expected that the offspring phenotypes result from a three‐way interaction among grand‐parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand‐parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand‐parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand‐parental transgenerational plasticity and the within‐generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages. 相似文献