共查询到20条相似文献,搜索用时 8 毫秒
1.
The malaria parasite Plasmodium falciparum invades human red blood cells. Before infecting new erythrocytes, the merozoites have to exit their host cell to get into the blood plasma. Knowledge about the mechanism of egress is scarce, but it is thought that proteases are basically involved in this step. We have introduced a biotinylated dibenzyl aziridine-2,3-dicarboxylate (bADA) as an irreversible cysteine protease inhibitor to study the mechanism of merozoite release and to identify the proteases involved. The compound acts on parasite proteins in the digestive vacuole and in the host cell cytosol, as judged by fluorescence microscopy. The inhibitor blocks rupture of the host cell membrane, leading to clustered merozoite structures, as evidenced by immunoelectron microscopy. Interestingly, bADA did not prevent rupture of the parasitophorous vacuole membrane (PVM) that surrounds the parasite during the period of intraerythrocytic maturation. The compound appears to be a valuable template for the development of inhibitors specific for individual plasmodial proteases, which would be useful tools to dissect the molecular mechanisms underlying the process of merozoite release and consequently to develop potent antimalarial drugs. 相似文献
2.
3.
4.
Sergei E. Permyakov Tatyana I. Khokhlova Vladimir N. Uversky Eugene A. Permyakov 《Proteins》2010,78(12):2609-2624
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc. 相似文献
5.
Bao‐Dong Tang Xin Xia Xiao‐Fei Lv Bei‐Xin Yu Jia‐Ni Yuan Xiao‐Yi Mai Jin‐Yan Shang Jia‐Guo Zhou Si‐Jia Liang Rui‐Ping Pang 《Journal of cellular and molecular medicine》2017,21(5):904-915
Increasing evidence supports that activation of store‐operated Ca2+ entry (SOCE) is implicated in the chemoresistance of cancer cells subjected to chemotherapy. However, the molecular mechanisms underlying chemoresistance are not well understood. In this study, we aim to investigate whether 5‐FU induces hepatocarcinoma cell death through regulating Ca2+‐dependent autophagy. [Ca2+]i was measured using fura2/AM dye. Protein expression was determined by Western blotting and immunohistochemistry. We found that 5‐fluorouracil (5‐FU) induced autophagic cell death in HepG2 hepatocarcinoma cells by inhibiting PI3K/AKT/mTOR pathway. Orai1 expression was obviously elevated in hepatocarcinoma tissues. 5‐FU treatment decreased SOCE and Orai1 expressions, but had no effects on Stim1 and TRPC1 expressions. Knockdown of Orai1 or pharmacological inhibition of SOCE enhanced 5‐FU‐induced inhibition of PI3K/AKT/mTOR pathway and potentiated 5‐FU‐activated autophagic cell death. On the contrary, ectopic overexpression of Orai1 antagonizes 5‐FU‐induced autophagy and cell death. Our findings provide convincing evidence to show that Orai1 expression is increased in hepatocarcinoma tissues. 5‐FU can induce autophagic cell death in HepG2 hepatocarcinoma cells through inhibition of SOCE via decreasing Orai1 expression. These findings suggest that Orai1 expression is a predictor of 5‐FU sensitivity for hepatocarcinoma treatment and blockade of Orai1‐mediated Ca2+ entry may be a promising strategy to sensitize hepatocarcinoma cells to 5‐FU treatment. 相似文献
6.
7.
Thrombin increases the cytosolic Ca2+ concentrations and induces NO production by activating proteinase‐activated receptor 1 (PAR1) in vascular endothelial cells. The store‐operated Ca2+ influx is a major Ca2+ influx pathway in non‐excitable cells including endothelial cells and it has been reported to play a role in the thrombin‐induced Ca2+ signaling in endothelial cells. Recent studies have identified stromal interaction molecule 1 (STIM1) to function as a sensor of the store site Ca2+ content, thereby regulating the store‐operated Ca2+ influx. However, the functional role of STIM1 in the thrombin‐induced Ca2+ influx and NO production in endothelial cells still remains to be elucidated. Fura‐2 and diaminorhodamine‐4M fluorometry was utilized to evaluate the thrombin‐induced changes in cytosolic Ca2+ concentrations and NO production, respectively, in porcine aortic endothelial cells transfected with small interfering RNA (siRNA) targeted to STIM1. STIM1‐targeted siRNA suppressed the STIM1 expression and the thapsigargin‐induced Ca2+ influx. The degree of suppression of the STIM1 expression correlated well to the degree of suppression of the Ca2+ influx. The knockdown of STIM1 was associated with a substantial inhibition of the Ca2+ influx and a partial reduction of the NO production induced by thrombin. The thrombin‐induced Ca2+ influx exhibited the similar sensitivity toward the Ca2+ influx inhibitors to that seen with the thapsigargin‐induced Ca2+ influx. The present study provides the first evidence that STIM1 plays a critical role in the PAR1‐mediated Ca2+ influx and Ca2+‐dependent component of the NO production in endothelial cells. J. Cell. Biochem. 108: 499–507, 2009. © 2009 Wiley‐Liss, Inc. 相似文献
8.
Highly synchronous cultures of the erythrocyte stages of Plasmodium falciparum were used to determine the effects of a number of protease inhibitors on parasite development and merozoite invasion. Leupeptin, N-tosyl-L-lysyl chloromethylketone and pepstatin at a concentration greater than 0.05 mM were deleterious to both parasite development and merozoite invasion whereas aprotinin, antipain, alpha-1-antitrypsin and soybean trypsin inhibitor had no effect at a concentration of 0.5 mM. On the other hand, N-tosyl-L-phenylalanyl chloromethylketone and phenylmethylsulfonylfluoride at a concentration of 1 mM and chymostatin at a concentration of 0.15 mM inhibited merozoite invasion but were not deleterious to parasite development. Pretreatment of red cells with these three inhibitors did not block merozoite invasion. These results suggested that a chymotrypsin-like activity of the merozoite is important in the invasion process. 相似文献
9.
10.
11.
PKC-induced sensitization of Ca2+-dependent exocytosis is mediated by reducing the Ca2+ cooperativity in pituitary gonadotropes 下载免费PDF全文
The highly cooperative nature of Ca2+-dependent exocytosis is very important for the precise regulation of transmitter release. It is not known whether the number of binding sites on the Ca2+ sensor can be modulated or not. We have previously reported that protein kinase C (PKC) activation sensitizes the Ca2+ sensor for exocytosis in pituitary gonadotropes. To further unravel the underlying mechanism of how the Ca2+ sensor is modulated by protein phosphorylation, we have performed kinetic modeling of the exocytotic burst and investigated how the kinetic parameters of Ca2+-triggered fusion are affected by PKC activation. We propose that PKC sensitizes exocytosis by reducing the number of calcium binding sites on the Ca2+ sensor (from three to two) without significantly altering the Ca2+-binding kinetics. The reduction in the number of Ca2+-binding steps lowers the threshold for release and up-regulates release of fusion-competent vesicles distant from Ca2+ channels. 相似文献
12.
Viola Introini Alex Crick Teresa Tiffert Jurij Kotar Yen-Chun Lin Pietro Cicuta Virgilio L. Lew 《Biophysical journal》2018,114(7):1695-1706
Severe malaria is primarily caused by Plasmodium falciparum parasites during their asexual reproduction cycle within red blood cells. One of the least understood stages in this cycle is the brief preinvasion period during which merozoite-red cell contacts lead to apical alignment of the merozoite in readiness for penetration, a stage of major relevance in the control of invasion efficiency. Red blood cell deformations associated with this process were suggested to be active plasma membrane responses mediated by transients of elevated intracellular calcium. Few studies have addressed this hypothesis because of technical challenges, and the results remained inconclusive. Here, Fluo-4 was used as a fluorescent calcium indicator with optimized protocols to investigate the distribution of the dye in red blood cell populations used as P. falciparum invasion targets in egress-invasion assays. Preinvasion dynamics was observed simultaneously under bright-field and fluorescence microscopy by recording egress-invasion events. All the egress-invasion sequences showed red blood cell deformations of varied intensities during the preinvasion period and the echinocytic changes that follow during invasion. Intraerythrocytic calcium signals were absent throughout this interval in over half the records and totally absent during the preinvasion period, regardless of deformation strength. When present, calcium signals were of a punctate modality, initiated within merozoites already poised for invasion. These results argue against a role of elevated intracellular calcium during the preinvasion stage. We suggest an alternative mechanism of merozoite-induced preinvasion deformations based on passive red cell responses to transient agonist-receptor interactions associated with the formation of adhesive coat filaments. 相似文献
13.
Frédéric Darios Violeta Ruipérez Inmaculada López Jose Villanueva Luis M Gutierrez Bazbek Davletov 《EMBO reports》2010,11(7):528-533
α‐Synuclein is a synaptic modulatory protein implicated in the pathogenesis of Parkinson disease. The precise functions of this small cytosolic protein are still under investigation. α‐Synuclein has been proposed to regulate soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor (SNARE) proteins involved in vesicle fusion. Interestingly, α‐synuclein fails to interact with SNARE proteins in conventional protein‐binding assays, thus suggesting an indirect mode of action. As the structural and functional properties of both α‐synuclein and the SNARE proteins can be modified by arachidonic acid, a common lipid regulator, we analysed this possible tripartite link in detail. Here, we show that the ability of arachidonic acid to stimulate SNARE complex formation and exocytosis can be controlled by α‐synuclein, both in vitro and in vivo. α‐Synuclein sequesters arachidonic acid and thereby blocks the activation of SNAREs. Our data provide mechanistic insights into the action of α‐synuclein in the modulation of neurotransmission. 相似文献
14.
15.
16.
We studied the effects of increased Ca2+ influx on α1‐adrenoceptor‐stimulated InsP formation in adult rat cardiac myocytes. We further examined if such effects could be mediated through a specific α1‐adrenoceptor subtype. [3H]InsP responses to adrenaline were dependent on extracellular Ca2+ concentration, from 0.1 μM to 2 mM, and were completely blocked by Ca2+ removal. However, in cardiac myocytes preloaded with BAPTA, a highly selective calcium chelating agent, Ca2+ concentrations higher than 1 μM had no effect on adrenaline‐stimulated [3H]InsP formation. Taken together these results suggest that [3H]InsP formation induced by α1‐adrenergic stimulation is in part mediated by increased Ca2+ influx. Consistent with this, ionomycin, a calcium ionophore, stimulated [3H]InsP formation. This response was additive with the response to adrenaline stimulation implying that different signaling mechanisms may be involved. In cardiac myocytes treated with the α1B‐adrenoceptor alkylating agent, CEC, [3H]InsP formation remained unaffected by increased Ca2+ concentrations, a pattern similar to that observed when intracellular Ca2+ was chelated with BAPTA. In contrast, addition of the α1A‐subtype antagonist, 5′‐methyl urapidil, did not affect the Ca2+ dependence of [3H]InsP formation. Neither nifedipine, a voltage‐dependent Ca2+ channel blocker nor the inorganic Ca2+ channel blockers, Ni2+ and Co2+, had any effect on adrenaline stimulated [3H]InsP, at concentrations that inhibit Ca2+ channels. The results suggest that in adult rat cardiac myocytes, in addition to G protein‐mediated response, α1‐adrenergic‐stimulated [3H]InsP formation is activated by increased Ca2+ influx mediated by the α1B‐subtype. J. Cell. Biochem. 84: 201–210, 2002. © 2001 Wiley‐Liss, Inc. 相似文献
17.
Shan Liu Michael K. Danquah Gareth M. Forde Charles Ma Lina Wang Ross Coppel 《Biotechnology progress》2010,26(1):257-262
The 19 kDa carboxyl‐terminal fragment of merozoite surface protein 1 (MSP119) is a major component of the invasion‐inhibitory response in individual immunity to malaria. A novel ultrasonic atomization approach for the formulation of biodegradable poly(lactic‐co‐glycolic acid) (PLGA) microparticles of malaria DNA vaccines encoding MSP119 is presented here. After condensing the plasmid DNA (pDNA) molecules with a cationic polymer polyethylenimine (PEI), a 40 kHz ultrasonic atomization frequency was used to formulate PLGA microparticles at a flow rate of 18 mL h?1. High levels of gene expression and moderate cytotoxicity in COS‐7 cells were achieved with the condensed pDNA at a nitrogen to phosphate (N/P) ratio of 20, thus demonstrating enhanced cellular uptake and expression of the transgene. The ability of the microparticles to convey pDNA was examined by characterizing the formulated microparticles. The microparticles displayed Z‐average hydrodynamic diameters of 1.50–2.10 μm and zeta potentials of 17.8–23.2 mV. The encapsulation efficiencies were between 78 and 83%, and 76 and 85% of the embedded malaria pDNA molecules were released under physiological conditions in vitro. These results indicate that PLGA‐mediated microparticles can be employed as potential gene delivery systems to antigen‐presenting cells in the prevention of malaria. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2010 相似文献
18.
19.
Li YS Wu P Zhou XY Chen JG Cai L Wang F Xu LM Zhang XL Chen Y Liu SJ Huang YP Ye DY 《Archives of biochemistry and biophysics》2008,478(1):110-118
In electrically non-excitable cells, one major source of Ca2+ influx is through the store-operated (or Ca2+ release-activated Ca2+) channel by which the process of emptying the intracellular Ca2+ stores results in the activation of Ca2+ channels in the plasma membrane. Using both whole-cell patch-clamp and Ca2+ imaging technique, we describe the electrophysiology mechanism underlying formyl-peptide receptor like 1 (FPRL1) linked to intracellular Ca2+ mobilization. The FPRL1 agonists induced Ca2+ release from the endoplasmic reticulum and subsequently evoked ICRAC-like currents displaying fast inactivation in K562 erythroleukemia cells which expresses FPRL1, but had almost no effect in K562 cells treated with FPRL1 RNA-interference and HEK293 cells which showed no FPRL1 expression. The currents were impaired after either complete store depletion by the sarco/endoplasmic reticulum Ca2+-ATPase inhibitor thapsigargin, or after inhibition of PLC by U73122. Our results present the first evidence that FPRL1 is a potent mediator in the activation of CRAC channels. 相似文献