首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Leaf‐cutting ants are highly polyphagous insects, but some plants escape their attack due to the presence of secondary metabolites that are toxic to the ant–fungus symbiosis. Previous studies have demonstrated that the terpenoid β‐eudesmol extracted from Eucalyptus species (Myrtaceae) is responsible for the deleterious behavior in colonies of leaf‐cutting ant species. The objective of this study was to evaluate the effect of β‐eudesmol on workers of the leaf‐cutting ant Atta sexdens rubropilosa Forel (Hymenoptera: Formicidae). This chemical caused behavioral modification in the colonies, leading to mutilation and death of workers. It is suggested that β‐eudesmol interferes with colony nestmate recognition. As a consequence, colony cohesion may be disrupted by β‐eudesmol what could be used as an additional control tactic against this important pest ant.  相似文献   

2.
A bstract The tawny crazy ant(Nylanderia fulva)is a new invasive pest in the United States.At present,its management mainly relies on the use of synthetic insecticides,which are generally ineffective at producing lasting control of the pest,necessitating alternative environmentally friendly measures.In this study,we evaluated the feasibility of gene silencing to control this ant species.Six housekeeping genes encoding actin(NfActin),coatomer subunit β (NfCOPP),arginine kinase(NfArgK),and V-type proton ATPase subunits A(NfvATPaseA),B(NfvATPaseB)and E(NfvATPaseE)were cloned.Phylogenetic analysis revealed high sequence similarity to homologs from other ant species,particularly the Florida carpenter ant(Camponotus floridanus).To silence these genes,vector L4440 was used to generate six specific RNAi constructs for bacterial expression.Heat-inactivated,dsRNA-expressing Escherichia coli were incorporated into artificial diet.Worker ants exhibited reduced endogenous gene expression after feeding on such diet for 9 d.However,only ingestion of dsRNAs of NfCOPfi(a gene involved in protein trafficking)and NfArgK(a cellular energy reserve regulatory gene in invertebrates)caused modest but significantly higher ant mortality than the control.These results suggest that bacterially expressed dsRNA can be orally delivered to ant cells as a mean to target its vulnerabilities.Improved efficacy is necessary for the RNAi-based approach to be useful in tawny crazy ant management.  相似文献   

3.
The aphantochilid spider Aphanlochilus rogersi accurately mimics black ants of tribe Cephalotini, and is commonly found in the neighbourhood of its models' nests. The mimic seems to be a specialized predator of this type of ant, rejecting any insect offered as prey other than cephalotines. In the field, A. rogersi was observed preying on the model species Zacryptocerus pusillus. In captivity, the spider preyed on the models Z. pusillus and Z. depressus, as well as on the yellow non-model Z. clypeatus. Recognition of correct prey by A. rogersi appears to be based primarily on visual and tactile stimuli. Capturing ant prey from behind was the most common attack tactic observed in A. rogersi, and is probably safer than frontal attacks, as in this case the spider can be bitten on the legs before the ant is immobilized. Aphanlochilus rogersi, when feeding on the hard-bodied ant models, uses the ant corpses as a ‘protective shield’ against patrolling ants of the victim's colony and resembles an ant carrying a dead companion. Certain types of mimetic traits in A. rogersi (close similarity to ant models in integument texture and pilosity of body and legs), together with ‘shielding behaviour’, are thought to function as ant-deceivers, facilitating the obligatory intimate contact the mimic must make with cephalotines in order to capture a prey among other ants. The close similarity in the arrangement of dorsal spines, body shape, integument brightness and locomotion, together with antennal illusion, is regarded as a strategy of A. rogersi for deceiving visually-hunting predators that avoid its sharp spined ant models. It is proposed that ant-mimicry in A. rogersi has both an aggressive and a Batesian adaptive component, and evolved as a result of combined selective pressures exerted both by Cephalotini ant models (through defensive behaviour towards the mimics which attack them) and predators that avoid cephalotines (through predatory behaviour toward imperfect mimics). This suggestion is schematized and discussed in terms of two tripartite mimicry systems.  相似文献   

4.
Alternative environmentally friendly methods for pest control are in high demand because of the environmental impacts of pesticides. Notably, predator-released kairomone is a natural compound released by natural enemies, which mediates non-consumptive effects between natural enemies and prey. However, this novel pest control agent is underutilized relative to pesticides and natural enemies. Additionally, the effects of spraying predator kairomone on the number and diversity of arthropods in fields and whether this method is environmental-friendly are poorly understood. In the present study, a predator kairomone, rove beetle (Paederus fuscipes Curtis) abdominal gland secretion (AGS), was sprayed in rice fields to investigate whether AGS can suppress pest populations or will affect the fields’ arthropod communities. After AGS spraying, the abundance of arthropods decreased throughout the first 12-d period, including arthropod pests such as hemipterans (small brown planthopper, Laodelphax striatellus (Fallén), brown planthopper, Nilaparvata lugens (Stål), white-backed planthopper, Sogatella furcifera (Horváth), and leafhoppers), and lepidopterans (rice leaf folder, Cnaphalocrocis medinalis Guenée). The abundance of arthropod predators was not affected, except for predatory spiders, which decreased, and rove beetles (P. fuscipes), which increased. In the terms of arthropod diversity, neither pests nor their natural enemies were changed by AGS application. This work highlights that predator kairomone can temporarily suppress pest populations in fields but has no adverse effects on arthropod diversity; thus, this approach is environmentally friendly and can be used in real-world applications. Broadly, present studies suggest that the application of predator kairomone may have synergistic or cumulative effects on pest suppression.  相似文献   

5.
Shaded coffee agroecosystems traditionally have few pest problems potentially due to higher abundance and diversity of predators of herbivores. However, with coffee intensification (e.g., shade tree removal or pruning), some pest problems increase. For example, coffee leaf miner outbreaks have been linked to more intensive management and increased use of agrochemicals. Parasitic wasps control the coffee leaf miner, but few studies have examined the role of predators, such as ants, that are abundant and diverse in coffee plantations. Here, we examine linkages between arboreal ant communities and coffee leaf miner incidence in a coffee plantation in Mexico. We examined relationships between incidence and severity of leaf miner attack and: (1) variation in canopy cover, tree density, tree diversity, and relative abundance of Inga spp. shade trees; (2) presence of Azteca instabilis, an arboreal canopy dominant ant; and (3) the number of arboreal twig‐nesting ant species and nests in coffee plants. Differences in vegetation characteristics in study plots did not correlate with leaf miner damage perhaps because environmental factors act on pest populations at a larger spatial scale. Further, presence of A. instabilis did not influence presence or severity of leaf miner damage. The proportion of leaves with leaf miner damage was significantly lower where abundance of twig‐nesting ants was higher but not where twig‐nesting ant richness was higher. These results indicate that abundance of twig‐nesting ants in shaded coffee plantations may contribute to maintenance of low leaf miner populations and that ants provide important ecosystem services in coffee agroecosystems.  相似文献   

6.
The economic loss due to pest attack in stored commodities is a serious problem worldwide. About 200 insect species attack stored commodities. These insect pests are responsible for quantitative and qualitative losses in cereal grains. Among the stored grain pests, Angoumois grain moth, Sitotroga cerealella is considered as common, top of the list and most destructive pest of cereal grains. Its infestation starts in the standing crop and continues in storage. Although there are many control strategies, our need is some effective, cheap and readily available strategy for safe storage. This review presents different ways by which S. cerealella can be controlled. In this paper, a list of approaches is given which are used to improve the protection of stored grains against S. cerealella attack. These approaches include use of edible oils, containers, synthetic chemicals, agricultural waste materials, plant derivatives, bacterial protoxins, biopesticides, biocontrol enhancers and semiochemicals. If these tactics are followed as combined strategies in a compatible manner, they can provide us an integrated pest management programme for the efficient control of S. cerealella in cereal grains.  相似文献   

7.
Natural enemies attracted to plants may provide those plants with protection against herbivores but may also protect neighbouring plants, that is through associational resistance. Ant attendance may be an important mechanism for the occurrence of such effects because ants can reduce the damage caused by a wide variety of herbivorous insects. Ants have been shown, in a previous field experiment, to decrease the damage caused by the pine weevil, Hylobius abietis (L.) (Coleoptera: Curculionidae), a pest species that causes high seedling mortality in forest regeneration areas. In this study, we specifically tested whether seedlings planted close to ant‐attended seedlings experience associational resistance. We did this under laboratory conditions using the ant species Lasius niger (L.) (Hymenoptera: Formicidae). The feeding damage by pine weevils was significantly reduced on seedlings attended by ants. The neighbouring seedlings, however, did not experience associational resistance. Nevertheless, some associational effects were observed as the number of weevils recorded on both ant‐attended and neighbouring seedlings was significantly lower compared with ant‐excluded seedlings.  相似文献   

8.
Disturbance resulting from urbanization is a leading cause of biotic homogenization worldwide. Native species are replaced with widespread non-native species and ants are among the world’s most notorious invaders. To date, all documented cases of ant invasions involve exotic introduced species that are spread around the world by human-mediated dispersal. I investigated the effect of urbanization on the evolution of invasive characteristics in a native ant species, the odorous house ant, Tapinoma sessile (Say). Colony social structure, life history traits, and the spatial pattern of nest distribution were compared by sampling T. sessile across a gradient of three distinct habitats: natural, semi-natural, and urban. Results demonstrate a remarkable transition in colony social and spatial structure and life history traits between natural and urban environments. In natural habitats, T. sessile colonies are comprised of small, monogyne (single queen), and monodomous (single nest) colonies. In urban areas, T. sessile often exhibit extreme polygyny and polydomy, form large supercolonies, and become a dominant pest. Results also suggest that urban T. sessile colonies may have a negative impact on native ant abundance and diversity. In the natural environment T. sessile coexisted with a wide array of other ant species, while very few ant species were present in the urban environment invaded by T. sessile. Habitat degradation and urbanization can lead to extreme changes in social and spatial colony structure and life history traits in a native ant species and can promote the evolution of invasive characteristics such as polygyny, polydomy, and supercolonial colony structure.  相似文献   

9.
Species’ functional traits are an important part of the ecological complexity that determines the provisioning of ecosystem services. In biological pest control, predator response to pest density variation is a dynamic trait that impacts the provision of this service in agroecosystems. When pest populations fluctuate, farmers relying on biocontrol services need to know how natural enemies respond to these changes. Here we test the effect of variation in coffee berry borer (CBB) density on the biocontrol efficiency of a keystone ant species (Azteca sericeasur) in a coffee agroecosystem. We performed exclosure experiments to measure the infestation rate of CBB released on coffee branches in the presence and absence of ants at four different CBB density levels. We measured infestation rate as the number of CBB bored into fruits after 24 hours, quantified biocontrol efficiency (BCE) as the proportion of infesting CBB removed by ants, and estimated functional response from ant attack rates, measured as the difference in CBB infestation between branches. Infestation rates of CBB on branches with ants were significantly lower (71%-82%) than on those without ants across all density levels. Additionally, biocontrol efficiency was generally high and did not significantly vary across pest density treatments. Furthermore, ant attack rates increased linearly with increasing CBB density, suggesting a Type I functional response. These results demonstrate that ants can provide robust biological control of CBB, despite variation in pest density, and that the response of predators to pest density variation is an important factor in the provision of biocontrol services. Considering how natural enemies respond to changes in pest densities will allow for more accurate biocontrol predictions and better-informed management of this ecosystem service in agroecosystems.  相似文献   

10.
Management programs for major forest defoliators such as gypsy moths or forest tent caterpillars, and crop pests such as the European corn borer have shifted from broad-spectrum insecticides to more environmentally benign microbial pesticides such as Bacillus thuringiensis (foliage sprays and transgenic toxin expression in plant tissues). Phytochemically resistant host plants and natural enemies have been used as alternative pest management strategies (including generalist tachinid flies such as Compsilura, viruses, microsporidians, and fungi), but all of these have some non-target impacts, as described from literature review. A sequence of lab and field studies were conducted to determine non-target impacts on native Lepidoptera in North America. The conclusions reached are that a decision not to spray Bt pesticides (i.e. to allow defoliation and natural pest outbreaks to run their course) could be as bad or worse for non-target Lepidoptera as the microbial insecticides would be. The important concept that must be maintained is that all pest management programs have some risk of negative non-target impacts, but it is the magnitude and relative importance that will remain the most critical issue for environmental impacts and pest management.  相似文献   

11.
  1. Vineyards are economically valuable agroecosystems that have spread to all continents. As such, sustainable management of their pests is an important goal. Mealybugs are serious pests of vines with Planococcus ficus (VMB) being the most problematic worldwide. Mealybugs are attended by different ant species, whose trophobiotic relationship is often considered damaging since some ant species may offer effective protection from natural enemies in exchange for honeydew.
  2. We tested whether this trophobiosis can be used as a VMB monitoring tool, developing a protocol to evaluate infestation on the plants based on ant behaviour (Ant method). We compared this new protocol with the conventional one, consisting in visual counting of VMBs on infested leaves (Leaf method).
  3. Our results demonstrated that the Ant method yielded significant advantages over the Leaf method by: (i) allowing to detect VMB infestation on individual plants much earlier; and (ii) allowing to keep track of VMB presence after pest treatments.
  4. The Ant method is proposed as a valid complementary tool for integrated pest management in vineyards and its successful achievement encourage searching for further agricultural contexts in which ants may be revaluated as a monitoring tool.
  相似文献   

12.
Genetically modified plants are widely grown predominantly in North America and to a lesser extent in Australia, Argentina and China but their regions of production are expected to spread soon beyond these limited areas also reaching Europe where great controversy over the application of gene technology in agriculture persists. Currently, several cultivars of eight major crop plants are commercially available including canola, corn, cotton, potato, soybean, sugar beet, tobacco and tomato, but many more plants with new and combined multiple traits are close to registration. While currently agronomic traits (herbicide resistance, insect resistance) dominate, traits conferring “quality” traits (altered oil compositions, protein and starch contents) will begin to dominate within the next years. However, economically the most promising future lies in the development and marketing of crop plants expressing pharmaceutical or “nutraceuticals” (functional foods), and plants that express a number of different genes. From this it is clear that future agricultural and, ultimately, also natural ecosystems will be challenged by the large-scale introduction of entirely novel genes and gene products in new combinations at high frequencies all of which will have unknown impacts on their associated complex of non-target organisms, i.e. all organisms that are not targeted by the insecticidal protein. In times of severe global decline of biodiversity, pro-active precaution is necessary and careful consideration of the likely expected effects of transgenic plants on biodiversity of plants and insects is mandatory.In this paper possible implications of non-target effects for insect and plant biodiversity are discussed and a case example of such non-target effects is presented. In a multiple year research project, tritrophic and bitrophic effects of transgenic corn, expressing the gene from Bacillus thuringiensis (Bt-corn) that codes for the high expression of an insecticidal toxin (Cry1Ab), on the natural enemy species, Chrysoperla carnea (the green lacewing), was investigated. In these laboratory trials, we found prey-mediated effects of transgenic Bt-corn causing significantly higher mortality of C. carnea larvae. In further laboratory trials, we confirmed that the route of exposure (fed directly or via a herbivorous prey) and the origin of the Bt (from transgenic plants or incorporated into artificial diet) strongly influenced the degree of mortality. In choice feeding trials where C. carnea could choose between Spodoptera littoralis fed transgenic Bt-corn and S. littoralis fed non-transgenic corn, larger instars showed a significant preference for S. littoralis fed non-transgenic corn while this was not the case when the choice was between Bt- and isogenic corn fed aphids. Field implications of these findings could be multifold but will be difficult to assess because they interfere in very intricate ways with complex ecosystem processes that we still know only very little about. The future challenge in pest management will be to explore how transgenic plants can be incorporated as safe and effective components of IPM systems and what gene technology can contribute to the needs of a modern sustainable agriculture that avoids or reduces adverse impacts on biodiversity? For mainly economically motivated resistance management purposes, constitutive high expression of Bt-toxins in transgenic plants is promoted seeking to kill almost 100% of all susceptible (and if possible heterozygote resistant) target pest insects. However, for pest management this is usually not necessary. Control at or below an established economic injury level is sufficient for most pests and cropping systems. It is proposed that partially or moderately resistant plants expressing quantitative rather than single gene traits and affecting the target pest sub-lethally may provide a more meaningful contribution of agricultural biotechnology to modern sustainable agriculture. Some examples of such plants produced through conventional breeding are presented. Non-target effects may be less severe allowing for better incorporation of these plants into IPM or biological control programs using multiple control strategies, thereby, also reducing selection pressure for pest resistance development.  相似文献   

13.
The banana weevil, Cosmopolites sordidus (Germar), is an important pest of bananas. Predatory ants are increasingly being viewed as possible biological control agents of this pest because they are capable of entering banana plants and soil in search of prey. We studied ant predation on banana weevil in Uganda in crop residues and live plants in both laboratory and field experiments. Field studies with live plants used chemical ant exclusion in some plots and ant enhancement via colony transfer in others to measure effects of Pheidole sp. 2 and Odontomachus troglodytes Santschi on plant damage and densities of immature banana weevils.In crop residues, an important pest breeding site, twice as many larvae were removed from ant-enhanced plots as in control plots. In young (2 month) potted suckers held in shade houses, ant ability to reduce densities of banana weevil life stages varied with the weevil inoculation rate. At the lowest density (2 female weevils per pot), densities of eggs, larvae, and pupae were reduced by ants. At higher rates there was no effect. In older suckers (5–11 months) grown in larger containers, banana weevil densities were not affected by ants, but damage levels were reduced. In a field trial lasting a full crop cycle (30 months), we found that the ants tested reduced the density of banana weevil eggs in suckers during the crop, but did not affect larval densities in the sampled suckers. However, most larvae occur in the main banana plants, rather than associated suckers. Nevertheless, levels of damage in mature plants at harvest did not differ between Amdro-treated and ant-enhanced plots, suggesting the ant species studied were not able to provide economic control of banana weevil under our test conditions.  相似文献   

14.
Agricultural systems often provide a model for testing ecological hypotheses, while ecological theory can enable more effective pest management. One of the best examples of this is the interaction between host‐plant resistance and natural enemies. With the advent of crops that are genetically modified to produce insecticidal toxins from the bacterium Bacillus thuringiensis (Bt), a new form of host‐plant resistance has been introduced to agroecosystems. How Bt crops interact with natural enemies, especially insect pathogens in below‐ground systems, is not well understood, but provides a unique opportunity to study below‐ground tritrophic interactions. In this study, we used two species of entomopathogenic fungi and three species of entomopathogenic nematodes to determine how this community of soil‐borne natural enemies might interact with Bt maize (event 59122, expressing the insecticidal protein Cry34/35Ab1) to affect survival and development of western corn rootworm (Diabrotica virgifera virgifera), which is an obligate root feeder and a serious pest of maize. We ran two experiments, one in a greenhouse and one in a growth chamber. Both experiments consisted of a fully crossed design with two maize treatments (Bt maize and non‐Bt maize) and two entomopathogen treatments (present or absent). The community of entomopathogens significantly increased mortality of western corn rootworm, and Bt maize increased larval developmental time and mortality. Entomopathogens and Bt maize acted in an independent and additive manner, with both factors increasing the mortality of western corn rootworm. Results from this study suggest that entomopathogens may complement host‐plant resistance from Bt crops.  相似文献   

15.
Many ant species are highly invasive and are a significant component of disturbed ecosystems. They can have a major suppressive effect upon indigenous invertebrates, including other ants. Despite overwhelming circumstantial evidence for the ecological resourcefulness of many ants, there appears to be no experimental evidence illustrating the habitat breadth of a potentially invasive ant species. We demonstrate here that a particularly opportunistic and locally dominant ant Anoplolepis custodiens, which is a major indigenous African pest, overrides habitat structure to maintain its population level. We compared A. custodiens activity, morphology, foraging behaviour and ant species diversity in artificially established surrogate habitats (cover crops) in a vineyard containing an ample food resource in the form of the honeydew-producing mealybug Planococcus ficus. These cover crops were chosen so as to create highly altered habitats. The ant's ability to overcome these potentially suppressive habitat conditions hinged on its tight mutualism with the mealybug, and on its chasing away mealybug parasitoids. This ant species is predicted to be a latent invasive beyond Africa. It is unlikely to be impeded once it has established a foothold in a variety of novel habitats. It could locally invade to obtain food resources in a wide range of habitat types. Furthermore, in agricultural systems, cover crops are unlikely to control such an ant. Potential invasives such as this ant should be flagged as important quarantine suspects.  相似文献   

16.
基于集合模型的草地贪夜蛾的潜在分布预测   总被引:1,自引:0,他引:1       下载免费PDF全文
[目的]探讨世界范围和我国草地贪夜蛾对玉米等作物的危害.[方法]采用生态位模型集合预测方案,结合基于中分辨率成像光谱仪(MODIS)的玉米种植密度模拟,对世界范围和我国草地贪夜蛾潜在分布进行了分析.[结果]世界范围内玉米的密集种植区已完全被草地贪夜蛾的潜在分布区所覆盖,这些适生区内的玉米受到草地贪夜蛾的威胁,需重点防控...  相似文献   

17.
The fall armyworm, Spodoptera frugiperda (J.E. Smith), is a major target pest of Bt crops (e.g., corn, cotton, and soybean) in North and South America. This pest has recently invaded Africa and Asia including China and the invasion has placed a great threat to the food security in many countries of these two continents. Due to the extensive use of Bt crops, practical resistance of S. frugiperda to Cry1F corn (TC 1507) with field control problems has widely occurred in Puerto Rico, Brazil, Argentina, and the mainland United States. Analyzing data generated from decade-long studies showed that several factors might have contributed to the wide development of the resistance. These factors include (1) limited modes of action of Bt proteins used in Bt crops; (2) cross-resistance among Cry1 proteins; (3) use of nonhigh dose Bt crop traits; (4) that the resistance is complete on Bt corn plants; (5) abundant in initial Cry1F resistance alleles; and (6) lack of fitness costs/recessive fitness costs of the resistance. The long-term use of Bt crop technology in the Americas suggests that Bt corn can be an effective tool for controlling S. frugiperda in China. IRM programs for Bt corn in China should be as simple as possible to be easily adopted by small-scale growers. The following aspects may be considered in its Bt corn IRM programs: (1) use of only “high dose” traits for both S. frugiperda and stalk borers; (2) developing and implementing a combined resistance monitoring program; (3) use “gene pyramiding” as a primary IRM strategy; and (4) if possible, Bt corn may not be planted in the areas where S. frugiperda overwinters. Lessons and experience gained from the global long-term use of Bt crops should have values in improving IRM programs in the Americas, as well as for a sustainable use of Bt corn technology in China.  相似文献   

18.
19.
The spotted stem borer, Chilo partellus (Swinhoe, 1885) (Lepidoptera: Crambidae), an invasive pest of wild and cultivated grasses in Asia and Africa, was found for the first time during periodic surveys of maize fields in the East Mediterranean region of Turkey in September and October 2014. The pest was recorded in maize fields of three of four provinces surveyed (Adana, Hatay and Osmaniye; it was not detected in Icel province). The Mediterranean corn stalk borer, Sesamia nonagrioides Lefebvre (Lepidoptera: Noctuidae), is the dominant maize pest in the East Mediterranean region of Turkey, followed by the European corn borer, Ostrinia nubilalis (Hübner) (Lepidoptera: Crambidae). The new invasive species comprised 4.9% of the total number of collected lepidopteran pests collected from maize stems and cobs in locations infested by C. partellus. No natural enemies of the new pest were recorded during our surveys. We discuss possible interactions among these three lepidopteran pests sharing the same habitat, prospects for control of C. partellus by the control methods currently used against S. nonagrioides and O. nubilalis, and also speculate on the path of invasion taken by C. partellus into Turkey.  相似文献   

20.
S. Toepfer  U. Kuhlmann 《BioControl》2004,49(4):385-395
The western corn rootworm, Diabrotica virgifera virgifera LeConte(Coleoptera: Chrysomelidae), is the mostdestructive pest of maize (Zea mays L.)in North America, and began to successfullyinvade Central Europe in the early 1990's. Thispaper reports a three-year field surveyconducted in Hungary, Yugoslavia, and Croatia,which are currently the focal points ofinvasion, with the aim to determine theoccurrence of indigenous natural enemies ofD. v. virgifera in Europe. A total of9,900 eggs, 550 larvae, 70 pupae and 33,000adults were examined for the occurrence ofparasitoids, nematodes, and fungal pathogens. It can be concluded from the survey resultsthat effective indigenous natural enemies arenot attacking any of the life stages of D.v. virgifera in Europe. The exception is theoccurrence of the fungi Beauveriabassiana (Bals.) Vuill. (Mitosporic fungi;formerly Deuteromyces) and Metarhiziumanisopliae (Metsch.) Sorok (Mitosporic fungi)attacking adults of D. v. virgifera at anextremely low level (< 1%). However no otherentomopathogenic fungal pathogens,entomopathogenic nematodes, or parasitoids werefound on eggs, larvae, pupae or adults. Whileseveral natural enemies in North and CentralAmerica are known to attack D. v.virgifera, it is apparent that indigenousnatural enemies in Europe have not adapted tothe high population density of the alieninvasive species D. v. virgifera. Classical biological control may provide anopportunity to reconstruct the natural enemycomplex of an invading alien pest, and itsapplication to manage D. v. virgiferapopulations in Europe should be considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号