首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The arenavirus Lassa virus (LASV) causes a severe haemorrhagic fever with high mortality in man. The cellular receptor for LASV is dystroglycan (DG). DG is a ubiquitous receptor for extracellular matrix (ECM) proteins, which cooperates with β1 integrins to control cell-matrix interactions. Here, we investigated whether LASV binding to DG triggers signal transduction, mimicking the natural ligands. Engagement of DG by LASV resulted in the recruitment of the adaptor protein Grb2 and the protein kinase MEK1 by the cytoplasmic domain of DG without activating the MEK/ERK pathway, indicating assembly of an inactive signalling complex. LASV binding to cells however affected the activation of the MEK/ERK pathway via α6β1 integrins. The virus-induced perturbation of α6β1 integrin signalling critically depended on high-affinity LASV binding to DG and DG's cytoplasmic domain, indicating that LASV-receptor binding perturbed signalling cross-talk between DG and β1 integrins.  相似文献   

2.
Cell biology of virus entry   总被引:16,自引:0,他引:16  
Dimitrov DS 《Cell》2000,101(7):697-702
  相似文献   

3.
Although O-mannosylated dystroglycan is a receptor for Lassa virus, a causative agent of Lassa fever, recent findings suggest the existence of an alternative receptor(s). Here we identified four molecules as receptors for Lassa virus: Axl and Tyro3, from the TAM family, and dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin (DC-SIGN) and liver and lymph node sinusoidal endothelial calcium-dependent lectin (LSECtin), from the C-type lectin family. These molecules enhanced the binding of Lassa virus to cells and mediated infection independently of dystroglycan. Axl- or Tyro3-mediated infection required intracellular signaling via the tyrosine kinase activity of Axl or Tyro3, whereas DC-SIGN- or LSECtin-mediated infection and binding were dependent on a specific carbohydrate and on ions. The identification of these four molecules as Lassa virus receptors advances our understanding of Lassa virus cell entry.  相似文献   

4.
The treatment of cells with staurosporine results in inhibition and less frequently activation of protein kinases, in a cell-type specific manner. In the social amoeba Dictyostelium discoideum, staurosporine induces marked changes in cell morphology affecting growth and development. Here we describe that incubation of D. discoideum growing or starved cells with staurosporine results in a rapid and unexpected tyrosine phosphorylation on two polypeptides of approximately 64 and approximately 62 kDa. These proteins emerge as novel substrates for tyrosine phosphorylation opening up new perspectives for the study of cell signalling in D. discoideum.  相似文献   

5.
The addition of platelet-activating factor (PAF) to human neutrophils increases the levels of the tyrosine phosphorylation in several proteins. These proteins have molecular weights of 41 (pp41), 54 (pp54), 66 (pp66), 104 (pp104), and 116 (pp116) kDa. The effect of PAF was dose-dependent and could be seen at concentrations as low as 1 nM. The nonmetabolizable bioactive PAF analog, C-PAF, caused an increase in the level of phosphorylation of the same proteins in a time- and dose-dependent manner. On the contrary, lyso-PAF, enantio-PAF, and L-beta,gamma-dihexadecyl-alpha-lecithin failed to stimulate the phosphorylation of any of the aforementioned proteins. The response to PAF was prevented by the PAF antagonist BN-52021. The PAF-induced increases in tyrosine phosphorylation in pp66, pp116, and pp104 were selectively inhibited by pertussis toxin. In contrast, the level of pp41 phosphorylation remained unchanged after the pertussis toxin treatment. The calcium chelator EGTA significantly inhibited the PAF-produced phosphorylation of the pp41 protein. The intracellular calcium chelator 1,2-bis-(O-aminophenoxil)ethane-N,N,N',N'-tetraacetic acid (BAPTA) potentiated the PAF-enhanced levels of tyrosine phosphorylation on the pp41 protein. On the other hand, the PAF-induced phosphorylations of pp66, pp104, and pp116 were inhibited in BAPTA-treated cells. The calcium ionophore A23187 selectively potentiated the phosphorylation of the pp41 protein and reduced the phosphorylation in the pp54 protein. This phosphorylation was dependent on the extracellular calcium and was inhibited in toxin-treated cells. The results suggest that PAF is able to affect either directly or indirectly tyrosine kinase and/or phosphotyrosine phosphatase activities. The phosphorylation of the high and low molecular weight proteins are mediated by two different sets of kinases and/or phosphatases.  相似文献   

6.
IL-7 induction of protein tyrosine phosphorylation was examined in an IL-7-dependent thymocyte cell line, D1, which was generated from a p53-/- mouse. Anti-phosphotyrosine antibody was used both to immunoprecipitate and Western blot, and showed that IL-7 induced tyrosine phosphorylation of a protein with a molecular weight of approximately 200 kDa. The P200 band was purified by reversed-phase high-performance liquid chromatography. Amino acid sequencing by mass spectrometry revealed three peptides identical to rat clathrin heavy chain (CHC) 1 (192 kDa), and this was confirmed by blotting with an anti-clathrin antibody. Stimulation of normal pro-T cells by IL-7 showed an increased tyrosine phosphorylation of clathrin heavy chain. Tyrosine phosphorylation of clathrin heavy chain was strongly induced by IL-7 and to a lesser extent by IL-4, while no effect could be observed with the cytokines IL-2, IL-9 and IL-15, whose receptors share the gammac chain. Phosphorylation of clathrin heavy chain was found to be sensitive to Jak3 inhibitors but not to Src inhibitors. Clathrin is involved in internalization of many receptors, and its phosphorylation by IL-7 stimulation may affect the internalization of the IL-7 receptor.  相似文献   

7.
We examined the effect of heat shock on protein tyrosine phosphorylation in cultured animal cells using antiphosphotyrosine antibodies in immunoblotting and immunofluorescence microscopy experiments. Heat shock significantly elevated the level of phosphotyrosine in proteins in most of the cultured cells examined, including fibroblasts, epithelial cells, nerve cells, and muscle cells, but not in Rous sarcoma virus-transformed fibroblasts. The increase in protein tyrosine phosphorylation induced by heat shock occurred in proteins with a wide range of molecular masses and was dependent on the temperature and duration of the heat shock.  相似文献   

8.
Mediators including the neuropeptide endothelin-1 (ET-1), which are released in response to injury, modulate the expression of cell adhesion molecules on leukocytes and endothelial cells. The mechanisms underlying this process are not clear. In this study we investigated the effect of endothelin-1 on the expression of tyrosine phosphorylated proteins in human blood monocytes. Endothelin-1 caused an increase in tyrosine phosphorylated proteins in monocytes in a time-dependent and dose-dependent manner, the Mr 60, 80 and 110 kDa proteins being the most prominent. This effect was blocked by pre-incubating the monocytes with the selective tyrosine kinase inhibitors genistein or herbimycin A. Endothelin-1-induced upregulation of tyrosine phosphorylated proteins appears to be mediated by the ETAreceptor. Unlike our previously reported studies in endothelial cells, immunoprecipitation with anti-src or anti-JAK antibodies followed by immunoblotting with PY20 in human blood monocytes revealed that these proteins of Mr 60, 80 and 110 kDa were not related to src or JAK kinases. These findings suggest that ET-1 exerts its effect on monocytes by a pathway involving tyrosine kinases other than src or JAK kinases.  相似文献   

9.
In our previous studies, we found that expression of polyglutamine-expanded huntingtin in HN33 cells induced sensitization of N-methyl-D-aspartate (NMDA) receptors (Sun, Y., Savinainen, A., and Liu, Y. F. (2001) J. Biol. Chem. 276, 24713-24718). Following this study, we investigated whether tyrosine phosphorylation of NMDA receptors might contribute to the altered property of the receptors. Expression of polyglutamine-expanded huntingtin induced elevation of phosphorylated or activated Src and increased targeting of PSD-95 (post-synaptic density 95) and activated Src to cell surface membrane. Expression of the mutated huntingtin also induced tyrosine phosphorylation of NR2B (NMDA receptor 2B) subunits, and co-expression of PSD-95 enhanced the phosphorylation. Treatment of SU6656 (a specific Src inhibitor) or co-expression of a mutated NR2B subunit with mutations of all three major tyrosine phosphorylation sites significantly attenuated neuronal toxicity induced by the mutated huntingtin. Addition of AP-5 did not further inhibit the neuronal toxicity. Taken together, our studies show that polyglutamine-expanded huntingtin increases tyrosine phosphorylation of NMDA receptors via PSD-95 and Src, and increased tyrosine phosphorylation may contribute to the sensitization of the receptors mediated by polyglutamine-expanded huntingtin.  相似文献   

10.
Chemoattractant priming and activation of PMNs results in changes in cytosolic Ca2+ concentration, tyrosine kinase activity, and gene expression. We hypothesize that the initial signaling for the activation of a 105 kDa protein (Rel-1) requires Ca2+-dependent tyrosine phosphorylation. A rapid and time-dependent tyrosine phosphorylation of Rel-1 occurred following formyl-Met-Leu-Phe (fMLP) stimulation of human PMNs at concentrations that primed or activated the NADPH oxidase (10−9 to 10−6 M), becoming maximal after 30 s. Pretreatment with pertussis toxin (Ptx) or tyrosine kinase inhibitors abrogated this phosphorylation and inhibited fMLP activation of the oxidase. The fMLP concentrations employed also caused a rapid increase in cytosolic Ca2+ but chelation negated the effects, including the cytosolic Ca2+ flux, oxidase activation, and the tyrosine phosphorylation of Rel-1. Conversely, chelation of extracellular Ca2+ decreased the fMLP-mediated Ca2+ flux, had no affect on the oxidase, and augmented tyrosine phosphorylation of Rel-1. Phosphorylation of Rel-1 was inhibited when PMNs were preincubated with a p38 MAP kinase (MAPK) inhibitor (SB203580). In addition, fMLP elicited rapid activation of p38 MAPK which was abrogated by chelation of cytosolic Ca2+. Thus, fMLP concentrations that prime or activate the oxidase cause a rapid Ca2+-dependent tyrosine phosphorylation of Rel-1 involving p38 MAPK activation.  相似文献   

11.
Urocotins (Ucns) are newly discovered members of the corticotropin-releasing factor (CRF) neuropeptide family. Ucn 2 is expressed in the adrenal medulla, and its receptor, CRF2 receptor, is also expressed in the adrenal gland. To predict the physiological significance of Ucn 2 expression in the adrenal medulla, we examined the effects of Ucn 2 on catecholamine secretion and intracellular signaling using PC12 cells, a rat pheochromocytoma cell line. PC12 cells were found to express CRF2 receptor, but not CRF1 receptor. Treatment with Ucn 2 increased noradrenaline secretion and induced phosphorylation of PKA and Erk1/2. Tyrosine hydroxylase (TH), a rate-limiting enzyme for catecholamine synthesis, was also phosphorylated by Ucn 2. Pretreatment with a PKA inhibitor blocked Ucn 2-induced NA secretion, and Erk1/2 and TH phosphorylation. Pretreatment with a MEK inhibitor did not block Ucn 2-induced noradrenaline secretion or PKA phosphorylation, although TH phosphorylation was blocked. Thus, Ucn 2 induces noradrenaline secretion and TH phosphorylation through the PKA pathway and the PKA-Erk1/2 pathway, respectively. These results suggest Ucn 2 in the adrenal gland may be involved in the regulation of catecholamine release and synthesis.  相似文献   

12.
Ligand-mediated perturbation of the T-cell antigen receptor (TCR) triggers a rapid increase in phosphoinositide-specific phospholipase C (PLC) activity in resting T-cells. Although the mechanism by which TCR ligation regulates PLC activity is unknown, recent studies suggest that coupling of this receptor complex to PLC activity is dependent on an intermediate protein tyrosine phosphorylation event(s). In the present study, we demonstrate that antibody-mediated TCR cross-linkage results in the tyrosine phosphorylation of PLC-gamma 1. Stimulation of the TCR for 30 s induced a 4-5-fold increase in the level of PLC activity recovered in anti-phosphotyrosine (Tyr(P)) antibody immunoprecipitates from stimulated Jurkat cells. The appearance of PLC activity in the immunoprecipitates preceded the onset of phosphoinositide hydrolysis in vivo, which began 30-60 s after TCR ligation. Furthermore, the TCR-mediated increase in anti-Tyr(P) antibody-bound PLC activity was inhibited by staurosporine at drug concentrations identical with those required for in vivo inhibition of TCR-dependent phosphoinositide breakdown. Immunoblot analyses demonstrated that TCR ligation dramatically increased the level of tyrosine-phosphorylated PLC-gamma 1 present in anti-Tyr(P) antibody immunoprecipitates from stimulated Jurkat cells. These results strongly suggest that the TCR complex expressed by Jurkat cells is functionally coupled to the phosphoinositide-dependent signaling pathway through the tyrosine phosphorylation of PLC-gamma 1.  相似文献   

13.
Anaplasma phagocytophilum, an obligate intracellular pathogen that persists within polymorphonuclear leucocytes, is the second most common tick-borne agent in North America. We now show that infection of a promyelocytic cell line and neutrophils with A. phagocytophilum results in pathogen-specific tyrosine phosphorylation of ROCK1. Phosphorylation is associated with PSGL-1 and Syk, because PSGL-1 blocking antibodies and siRNA targeting Syk interfere with ROCK1 phosphorylation in A. phagocytophilum-infected cells. Knockdown of either Syk or ROCK1 also markedly impaired A. phagocytophilum infection. These data demonstrate a role for A. phagocytophilum-mediated ROCK1 phosphorylation in infection, and suggests that inhibiting this pathway may lead to new, non-antibiotic strategies to treat human granulocytic anaplasmosis.  相似文献   

14.
Suppressor of cytokine signaling (SOCS) proteins were originally described as cytokine-induced molecules involved in negative feedback loops. We have shown that SOCS-3 is also a component of the insulin signaling network (). Indeed, insulin leads to SOCS-3 expression in 3T3-L1 adipocytes. Once produced, SOCS-3 binds to phosphorylated tyrosine 960 of the insulin receptor and inhibits insulin signaling. Now we show that in 3T3-L1 adipocytes and in transfected COS-7 cells insulin leads to SOCS-3 tyrosine phosphorylation. This phosphorylation takes place on Tyr(204) and is dependent upon a functional SOCS-3 SH2 domain. Purified insulin receptor directly phosphorylates SOCS-3. However, in intact cells, a mutant of the insulin receptor, IRY960F, unable to bind SOCS-3, was as efficient as the wild type insulin receptor to phosphorylate SOCS-3. Importantly, IRY960F is as potent as the wild type insulin receptor to activate janus-activated kinase (Jak) 1 and Jak2. Furthermore, expression of a dominant negative form of Jak2 inhibits insulin-induced SOCS-3 tyrosine phosphorylation. As transfected Jaks have been shown to cause SOCS-3 phosphorylation, we propose that insulin induces SOCS-3 phosphorylation through Jak activation. Our data indicate that SOCS-3 belongs to a class of tyrosine-phosphorylated insulin signaling molecules, the phosphorylation of which is not dependent upon a direct coupling with the insulin receptor but relies on the Jaks.  相似文献   

15.
A O Morla  G Draetta  D Beach  J Y Wang 《Cell》1989,58(1):193-203
Tyrosine phosphorylation of cdc2 is regulated in the cell cycle of mouse 3T3 fibroblasts. Phosphotyrosine in cdc2 is detectable at the onset of DNA synthesis and becomes maximal in the G2 phase of the cell cycle. Quantitative tyrosine dephosphorylation of cdc2 occurs during entry into mitosis and no phosphotyrosine is detected during the G1 phase of the cell cycle. While increasing tyrosine phosphorylation of cdc2 correlates with the formation of a cdc2/p62 complex, the tyrosine phosphorylated cdc2 is inactive as a histone H1 kinase. cdc2 is fully dephosphorylated in its most active mitotic form, yet specific tyrosine dephosphorylation of interphase cdc2 in vitro is insufficient to activate the kinase. In vivo inhibition of tyrosine dephosphorylation by exposure of cells to a phosphatase inhibitor is associated with G2 arrest, which is reversible upon the removal of the phosphatase inhibitor. Tyrosine dephosphorylation of cdc2 may be one of a number of obligatory steps in the mitotic activation of the kinase.  相似文献   

16.
We have investigated tyrosine phosphorylation of cellular proteins at different cell densities. A tyrosine-phosphorylated protein of 120 kDa was detected when cells were plated sparsely. The phosphorylation level of the protein gradually declined as the cells were plated at higher densities or when the sparsely plated cells approached confluence. This density-dependent phosphorylation was also associated with cell attachment since it disappeared when the cells were detached from plates or when the cells were cultured in suspension. Immunoblotting and immunoprecipitation analyses with specific antibodies revealed that the 120-kDa protein corresponded to the focal adhesion kinase (FAK) and the protein level of FAK was not altered at different cell densities. In vitro kinase assays demonstrated that the kinase activity of FAK decreased with increasing cell densities in parallel with its dephosphorylation. Cell density also affects localization of FAK associated with rearrangement of actin stress fibers. At low cell densities, FAK and actin stress fiber are distributed around the periphery of cells while they are dispersed over the ventral surface in high-density cells. Finally, the density-regulated tyrosine phosphorylation and localization of FAK appeared to be mediated by an insoluble factor produced by high-density cells.  相似文献   

17.
Oncostatin M is a polypeptide cytokine produced by activated and transformed T lymphocytes that has diverse biologic effects, including growth inhibition of tumor cells and induction of IL-6 expression in cultured human endothelial cells (HEC). HEC are highly responsive to oncostatin M and express high levels of oncostatin M receptors relative to other cell types. Oncostatin M has previously been found to bind a specific receptor of 150 to 160 kDa. We have found through the use of anti-phosphotyrosine immunoblotting that oncostatin M induces tyrosine phosphorylation in HEC. Anti-phosphotyrosine antibodies specifically immunoprecipitated labeled oncostatin M cross-linked to its receptor, demonstrating that the oncostatin M receptor is either directly phosphorylated on tyrosine after ligand binding or is tightly associated with a phosphotyrosyl protein in these cells. The tyrosine kinase inhibitor herbimycin A blocked the induction of IL-6 by oncostatin M in HEC. In addition, immune complex kinase assays showed that oncostatin M markedly increased the activity of the p62yes tyrosine kinase with a small increase in p59fyn but no increase in p56lyn tyrosine kinase activity in HEC. We conclude that oncostatin M utilizes a tyrosine phosphorylation signal transduction pathway in HEC involving the activation of the p62yes tyrosine kinase, and that this tyrosine phosphorylation pathway leads to the induction of IL-6 expression.  相似文献   

18.
Tumor-promoting phorbol esters have been found to bind and activate phospholipid/Ca2+-dependent or C-kinase, and several of their effects, including proliferative responses in lymphocytes, have been assumed to be related to activity of this enzyme. However, phorbol esters have also recently been found to stimulate tyrosine phosphorylation in certain other cell types, and we therefore studied tyrosine kinase activity in normal and chronic lymphocytic leukemia (CLL) peripheral blood B lymphocytes stimulated with phorbol ester. High levels of tyrosine labeling were observed in unstimulated cells with major endogenous substrates of 75K, 66K, 43K, and 28K in Triton-soluble material, and of 56K to 61K in Triton-insoluble material; this profile was essentially similar in normal and CLL B cells. Treatment with phorbol ester for time periods varying from 20 min to 48 hr led to qualitative increases in tyrosine labeling of these phosphoproteins, as measured both in vitro and in intact cells "in vivo." Although the relative abundance of tyrosine phosphorylation as a percentage of total labeling was variable due to concomitant enhancement of serine and threonine phosphorylation, exogenous peptide substrate assays confirmed the increased tyrosine kinase activity quantitatively. Enhanced tyrosine phosphorylation was succeeded or accompanied in both normal and abnormal B cells by cellular activation, as judged by increased [3H]thymidine uptake, and terminal differentiation of CLL cells. These findings provide further evidence implicating tyrosine kinases in B lymphocyte activation.  相似文献   

19.
20.
Caveolin 1, a component of caveolae, regulates signalling pathways compartmentalization interacting with tyrosine kinase receptors and their substrates. The role of caveolin 1 in the Insulin Receptor (IR) signalling has been well investigated. On the contrary, the functional link between caveolin 1 and IGF-I Receptor (IGF-IR) remains largely unknown. Here we show that (1) IGF-IR colocalizes with caveolin 1 in the lipid rafts enriched fractions on plasmamembrane in R-IGF-IR(WT) cells, (2) IGF-I induces caveolin 1 phosphorylation at the level of tyrosine 14, (3) this effect is rapid and results in the translocation of caveolin 1 and in the formation of membrane patches on cell surface. These actions are IGF-I specific since we did not detect caveolin 1 redistribution in insulin stimulated R(-) cells overexpressing IRs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号