首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The terminal d-galactopyranosyl residues of asialoglycopeptides isolated from human α1-acid glycoprotein were oxidized in nearly quantitative yield to the corresponding uronic acid residues by a two-step sequence employing d-galactose oxidase followed by treatment with Tollens reagent, Ag(NH3)2+. Mild acid hydrolysis of the oxidized glycopeptides led to the isolation of the corresponding aldobiuronic acid(s). Structural and colorimetric analysis revealed that only one aldobiuronic acid, 2-amino-2-deoxy-4-O-(β-d-galactopyranosyluronic acid)-d-glucose, was isolated from the oxidized glycopeptides of α1-acid glycoprotein. This method can readily distinguish between the (1→3), (1→4), and (1→6) isomers of the corresponding aldobiuronic acids.  相似文献   

2.
Glycoproteins were extracted with water from leaves of Cannabis sativa grown from seeds of Thailand origin. By ion exchange chromatography the material was separated into a neutral and an acidic fraction. Both glycoprotein fractions contained arabinose, galactose, glucose, mannose and xylose, and in addition rhamnose and galacturonic acid were present in the acidic fraction. The carbohydrate moieties were investigated by methylation analysis and Smith-degradation, whereas the glycopeptide linkage was studied by alkaline hydrolysis in the presence of NaBH4 and Na2SO3, respectively. This linkage was shown to be of the serine-O-galactoside type. The carbohydrate structure is highly branched, the majority of branches terminating in arabinofuranose end groups. Arabinose is also present in the chain, predominantly (1 → 4)- and/or (1 → 5)-linked. Galactose makes up most of the main chain as (1 → 3)-linked residues but also constitutes end groups and branch points, as do mannose and/or glucose. Xylose and rhamnose are present as (1 → 4)- and (1 → 2)-linked units, respectively. Galacturonic acid is assumed to be (1 → 4)- linked with some branching at 3 position. The amino acid hydroxyproline, present in the glycoprotein of South African Cannabis leaves, was absent in the corresponding Thailand material.  相似文献   

3.
Carbohydrate structures in the interior of a blood group A active substance (MSS) were exposed by one and by two Smith degradations. Reactivities of the original glycoprotein and its Smith degraded products with 13 different lectins and with anti-I Ma were studied by quantitative precipitin assay. MSS and its first Smith degraded product completely precipitated Ricinus communis hemagglutinin with five times less of the first Smith degraded glycoprotein being required for 50% precipitation. The second Smith degraded material precipitated only 90% of the lectin. MSS did not precipitate peanut lectin, whereas its first and second Smith degraded products completely precipitated the lectin. The first Smith degraded glycoprotein also reacted well with Wistaria floribunda, Maclura pomifera, Bauhinia purpurea alba, and Geodia lectins indicating that its carbohydrate moiety could contain dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc, dGalβ1 → 3dGlcNAcβ1 → 3dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc determinants at nonreducing ends. The second Smith degraded material precipitated well with Ricinus communis hemagglutinin, Arachis hypogaea, Geodia cydonium, Maclura pomifera, and Helix pomatia lectins showing that dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc residues at terminal nonreducing ends could be involved. Monoclonal anti-I Ma (group 1) serum reacted strongly with the first Smith degraded product indicating large numbers of anti-I Ma determinants, dGalβ1 → 4dGlcNAcβ1 → d 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc at nonreducing ends. The comparable activities of the native and Smith degraded products with wheat germ lectin indicate capacity to react with DGlcNAc residues at nonreducing ends and/or at positions in the interior of the chain. The totality of lectin reactivities indicates heterogeneity of the carbohydrate side chains. Oligosaccharides with 3H at their reducing ends released from the protein core of the first and second Smith degraded products were obtained by treatment with 0.05 m NaOH and 1 M NaB3H4 at 50 °C for 16 h (Carlson degradation). The liberated reduced oligosaccharides were fractionated by dialysis, followed by retardion, Bio-Gel P-2, P-4, and P-6 columns. They were further purified on charcoal-celite columns, and by preparative paper chromatography and high-pressure liquid chromatography. Their distribution by size was estimated by the yields on dialysis, Bio-Gel P-2, and Bio-Gel P-6 chromatography, and from the radioactivity of the reduced sugars. Of the oligosaccharide fractions from the first Smith degraded product, about 77% of the carbohydrate side chain residues contained from 1 to 6 sugars, 13% from 7 to perhaps 12 sugars, and 10% was nondialyzable (polysaccharides and glycopeptide fragments). Of the second Smith degraded product, approximately 82% of carbohydrate residues had from 1 to 6 sugars, 14% from 7 to perhaps 20 sugars and 4% was nondialyzable. The biological activity profile of the two Smith degraded products together with the size distributions of the oligosaccharides indicated that their carbohydrate side chains, comprised a heterogeneous population ranging in size from 1 to about 12 sugars. When most of these chains that are shorter than hexasaccharides are fully characterized it may be possible to reconstruct the overall structure of the carbohydrate moiety of the blood group substances and account for their biological activities.  相似文献   

4.
A unique, alkali-soluble polysaccharide has been isolated from the cell walls of the basidiomycete Coprinus macrorhizus microsporus. The polysaccharide, which is primarily a glucan, contains a large proportion of α-(1→4)-linked d-glucose residues and a smaller amount of β-(1→3) and (1→6) linkages, as suggested by methylation, partial acid hydrolysis, periodate oxidation, and enzymic studies. Hydrolysis of the methylated polysaccharide gave equimolar amounts of 2,4-di- and 2,3-di-O-methyl-d-glucose; no 2,6-di-O-methyl-d-glucose was identified, indicating the absence of branch points joined through O-1, O-3, and O-4. The isolation and identification of 2-O-α- glucopyranosylerythritol from the periodate-oxidized polysaccharide suggests that segments of the a-(1→4)-linked d-glucose residues are joined by single (1→3)-linkages. An extracellular enzyme-preparation from Sporotrichum dimorphosporum (QM 806) containing both β-(1→3)- and α-(1→4)-d-glucanohydrolase activity released 76% of the reducing groups from the polysaccharide. The polysaccharide also contains minor proportions of xylose, mannose, 2-amino-2-deoxyglucose, and amino acids.  相似文献   

5.
The O-glycosidically-linked carbohydrate units of glycophorin from bovine erythrocyte membrane were released by alkaline borohydride treatment. These oligosaccharides were separated into the neutral fractions and the acidic fractions by ion-exchange chromatography followed by gel filtration. The two acidic fractions (fractions 10 and 13) which have the smallest molecular weight in acidic oligosaccharides, were further purified by gel filtration on Bio-Gel P-4 column. Two acidic oligosaccharides (fractions 10-I and 10-II), heptasaccharides, were separated by gel filtration on a Bio-Gel P-4 column from fraction 10. These structures were determined by methylation analyses, nitrous acid deamination after hydrazinolysis and Smith degradation after desialylation. In addition, the structures were also analyzed by direct-probe mass spectrometry of the permethylated derivatives before and after desialylation. These studies indicated that one of them (fraction 10-I) was NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) GalNAcol and another heptasaccharide (fraction 10-II) was Galβ(1→4)GlcNAcβ(1→3)Galβ(1→3) [NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→6)]GalNAcol. Athough another acidic fraction (fraction 13) was obtained as a single peak on a Bio-Gel P-4 column, it appeared to be the mixture of a heptasaccharide, NeuNGcα(2→3)Galβ(1→4)GlcNAcβ(1→3 or 6)[Galβ(1→4)GlcNAcβ(1→6 or 3)]Galβ(1→3)GalNAcol and an oligosaccharide similar to fraction 10-II, by analysis of two products obtained by Smith degradation after desialylation.  相似文献   

6.
Gas chromatography-mass spectrometric identification of partially methylated aminosugars has been developed: (a) various kinds of O-methylated 2-deoxy-2-(N-methyl)-acetamidohexitols were prepared from partially O-(1-methoxy)-ethylated 2-deoxy-2-acetamidohexoses, and their gas chromatography-mass spectrometric patterns were determined; (b) permethylated glycolipids gave a satisfactory yield of 2-deoxy-2-N-methyl-amidohexoses by acetolysis with 0.5 n sulfuric acid in 95% acetic acid, followed by aqueous hydrolysis; (c) the resulting partially methylated aminosugars and neutral sugars were analyzed after borohydride reduction and acetylation according to the procedure of Lindberg and associates (Björndal, Lindberg and Svennson, 1967; Björndal, Hellerqvist, Lindberg and Svensson, 1970).This method was successfully applied to analysis of aminosugar linkages in blood group B-active ceramide pentasaccharide from rabbit erythrocytes and in Forssman antigen of equine spleen. The structure of blood group B-active glycolipid of rabbit erythrocyte was found to be Galα1 → 3Galβ1 → 4G1cNAcβ1 → 3Ga11 → 4Glc → Cer, and that of Forssman antigen to be GaNAcα1 → 3GalNAcβ1 → 3Galα1 → 4Ga11 → 4Glc → Cer.  相似文献   

7.
The combining site of the Bauhinia purpurea alba lectin was studied by quantitative precipitin and precipitin inhibition assays. Of 45 blood group substances, glycoproteins, and polysaccharides tested, 35 precipitated over 75% of the lectin. Precursor blood group substances with I activity (Cyst OG 10% from 20% and Cyst OG 20% from 10%), desialized fetuin, and desialized ovine salivary glycoprotein, in which more than 75% of the carbohydrate side chains have dGalN Ac linked through α1 → to the OH group of Ser or Thr of a protein core, completely precipitated the lectin. The poorly reactive blood group substances after mild acid hydrolysis or Smith degradation, as well as sialic acid-containing glycoproteins after removal of sialic acid, had substantially increased activity so that more than 80% of the lectin was precipitated. Precipitability with various blood group substances and glycoproteins is ascribable to the terminal nonreducing dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 3 or 4dGlcNAc, and dGalβ1 → 3 or 4dGlcNAcβ1 → 3dGal determinants on the carbohydrate moiety. Of the monosaccharides tested for inhibition of precipitation, dGalNAc and its p-nitrophenyl and methyl α-glycosides were best. These compounds were four to five times better than the corresponding dGal compounds but methyl βDGalNAcp was only about 40% more active than methyl βdGalp. The α-anomers of p-nitrophenyl DGalNAcp and dGalp, were twice as active as the corresponding β-anomers. Methyl αDGalNAcp was four times as active as the β-anomer but the inhibitory power of the methyl α- and β-anomers of dGal were about equal. Among the oligosaccharides tested, dGalβ1 → 3dGalNAc and its tosyl derivatives were most active, the tosyl glycosides being about twice as active as dGalβ1 → 3dGalNAc, which was somewhat more active than dGalNAcα1 → 6dGal and dGalNAc, and 2.5 and 5 times as active as dGalNAcα1 → 3dGalβ1 → 3dGlcNAc and dGalNAcαl → 3dGa1, respectively (blood group A specific). These findings suggest that a subterminal dGalNAc β-linked and substituted on carbon 3 plays an important role in binding. Consistent with this inference are the findings that dGalβ1 → 3dGlcNAc and dGalβ1 → 6dGal were poorer inhibitors although dGalβ1 → 3dGlcNAc was two to three times as active as glycosides of dGal. Oligosaccharides with terminal nonreducing dGal and subterminal α-linked dGal were as active or less active than dGal. dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc (lacto-N-tetraose) and dGalβ1 → 3dGlcNAcβ1 → 3dGal-β1-O-(CH2)8COOCH3 were equally active and 1.5 times as potent as dGalβ1 → 3dGlcNAc whereas dGalβ1 → 3dGlcNAcβ1 → 6dGal was only 40% as potent as dGalβ1 → 3dGlcNAc suggesting that a third sugar may be part of the determinant. Substitution of dGalβ1 → 3dGlcNAcβ1 → 3dGalβ1 → 4dGlc on the subterminal dGlcNAc by lFucα1 → 4 in lacto-N-fucopentaose II reduced activity fourfold; if the nonreducing dGal is substituted by lFucα1 → 3 as in lacto-N-fucopentaose I its activity is almost completely abolished. This suggests that a terminal nonreducing dGal as well as subterminal dGlcNAc are contributing to binding. The β → 3 linkage of the terminal dGal to the subterminal amino sugar is significant since dGalβ1 → 4dGlcNAc is a poorer inhibitor. Although the available data suggest that the combining site of the lectin Bauhinia purpurea alba may be most complementary to the structure dGalβ1 → 3dGalNAcβ1 → 3dGal, several other possibilities remain to be tested when suitable oligosaccharides become available.  相似文献   

8.
Phenol extraction of bovine milk fat globule membrane gave a glycoprotein fraction which, in sodium dodecyl sulphate electrophoresis, showed three major bands, all staining for both protein and carbohydrate. Alkaline borohydride treatment and desialylation of the glycoprotein fraction released the reduced disaccharide β-d-galactosyl(1 → 3)-N-acetyl-d-galactosamine (T-antigen), which was identified by gas chromatography using a standard. All of the disaccharide units in the native glycoprotein were shown to be substituted by sialic acid, and a tetrasaccharide containing the disaccharide plus two molecules of sialic acid was isolated following alkaline borohydride treatment of the glycoprotein and gel filtration. Periodate oxidation of native and desialylated glycoprotein, together with paper chromatography of alkali degraded oligosaccharide fragments, indicated that the major alkali-labile oligosaccharide of the glycoprotein fraction is a tetrasaccharide containing β-d-galactosyl(1 → 3)-N-acetyl-d-galactosamine substituted by sialic acid at position C3 of the galactosyl and position C6 of the N-acetyl-d-galactosamine residue. Evidence was also obtained for the presence of small amounts of unsubstituted alkali-labile N-acetyl-d-galactosamine linked directly to protein in the native glycoprotein.Serological evidence using agglutinins from Vicia graminea, Arachis hypogoea and human anti-T serum confirmed the presence in the native glycoprotein of a sialic acid substituted T-antigen. Similar evidence using agglutinins from Helix pomatia and Cepaea hortensis also confirmed the presence of terminal alkali-labile N-acetyl-d-galactosamine in the native glycoprotein.  相似文献   

9.
A sialic acid-binding lectin, named carcinoscorpin, has been isolated from the horseshoe crab Carcinoscorpius rotunda cauda. It is a glycoprotein of molecular-weight 420,000, having two subunits of molecular weight 27,000 and 28,000, both subunits responding to glycoprotein stain. Leucine was detected as the only NH2-terminal amino acid. The sedimentation constant of the native lectin was found to be 12.7 s. On digestion with trypsin, the lectin gave 18 soluble tryptic peptides. This lectin was found to be antigenically unrelated to another sialic acid-binding lectin, limulin, isolated from the horseshoe crab Limulus polyphemus. A lectin-specific disaccharide alcohol namely O-(N-acetylneuraminyl) (2 → 6)2-acetamido-2-deoxy-d-galactitol was found to quench the typical tryptophan fluorescence of the native lectin at 332 nm. The association constant for this interaction was determined spectrofluorimetrically and found to be 1.82 × 103m?1.  相似文献   

10.
Partial, acid hydrolysis of the extracellular polysaccharide from Xanthomonas campestris gave products that were identified as cellobiose, 2-O-(β-d-glucopyranosyluronic acid)-d-mannose, O(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-d-glucose, O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)]-d-glucose, and O-(β-d-glucopyranosyluronic acid)-(1→2)-O-α-d-mannopyranosyl-(1→3)-[O-β-d-glucopyranosyl-(1→4)-O-β-d-glucopyranosyl-(1→4)-d-glucose. This and other evidence supports the following polysaccharide structure (1) which has been proposed independently by Jansson, Kenne, and Lindberg:
  相似文献   

11.
《Carbohydrate research》1986,148(1):101-107
A novel method has been developed for the coupling of modified polysaccharides to proteins or other amines. Chloroacetaldehyde dimethyl acetal has been used for the introduction of O-(2,2-dimethoxyethyl) groups into amylose, dextran, and a linear (1→3)-β-d-glucan. In amylose and the (1→3)-β-d-glucan, these groups were attached preponderantly at O-6 and in dextran at O-2. Mild treatment with acid then gave polysaccharide derivatives substituted with aldehyde groups which were coupled in good yields to proteins and other amines by reductive amination with sodium cyanoborohydride in aqueous solution at pH 7. An aminated (1→3)-β-d-glucan derivative that induced antitumor activity in mouse macrophages in vitro is reported.  相似文献   

12.
A glucan of DPnca 80 has been isolated from the hypocotyls of mung bean plants (Phaseolus aureus). Methylation analysis and periodate oxidation studies showed that the glucan has (1 → 3) and (1 → 4) linked d-glucopyranosyl residues in the molar ratio 1·0:1·7. Oligosaccharides containing both β(1 → 3) and β(1 → 4) linked residues were isolated from partial hydrolysates.  相似文献   

13.
The polysaccharide of P. hymantophora has been shown to be composed of (1→4)-linked galactopyranosyl, (1→3)-linked galactopyranosyl, (1→3)-linked galactopyranosyl 2- and 4-sulphate and 2,6-disulphate residues. The (1→3)- and (1→4)-linked units are present in approximately equal amounts. The polysaccharide of P. hieroglyphica has been shown to possess (1→4)-linked galactopyranosyl, (1→3)-linked galactopyranosyl, and (1→3)-linked galactopyranosyl 2- and 4-sulphate residues. The (1→3)- and (1→4)-linked units are present in a 4:1 ratio. Both polysaccharides contain small proportions of non-reducing xylosyl end-groups.  相似文献   

14.
The carbohydrate contents of coronavirus glycoproteins E1 and E2 have been analyzed. E2 has complex and mannose-rich-type oligosaccharide side-chains, which are attached by N-glycosidic linkages to the polypeptide. Glycosylation of E2 is initiated at the co-translational level, and it is inhibited by tunicamycin, 2-deoxy-glucose, and 2-deoxy-2-fluoro-glucose. Thus, E2 belongs to a glycoprotein type found in many other enveloped viruses. E1, in contrast, represents a different class of glycoprotein. The following observations indicate that its carbohydrate side-chains have 0-glycosidic linkage. (1) The constituent sugars of E1 are N-acetylglucosamine, N-acetylgalactosamine, galactose, and neuraminic acid; mannose and fucose are absent. (2) The side-chains can be removed by β-elimination. (3) Glycosylation of E1 is not sensitive to the compounds interfering with N-glycosylation. E1 is the first viral glycoprotein analyzed that contains only 0-glycosidic linkages. Coronaviruses are therefore a suitable model system to study biosynthesis and processing of this type of glycoprotein.  相似文献   

15.
The structure of the antitumor polysaccharide from the actinomycete Microellobosporia grisea has been investigated. By methylation and periodate-oxidation studies, the polysaccharide was shown to consist of (nonreducing)d-mannosyl groups, (1→4)-linkedd-glucosyl residues, and 3,6-branched, (1→4)-linkedd-glucosyl residues in the approximate molar ratios of 2:1:1. Periodate oxidation of the polysaccharide, followed by borohydride reduction and mild hydrolysis with acid yielded glycerol, erythritol, 2-O-β-d-glucopyranosyl-d-erythritol, and 5-O-β-d-glucopyranosyl-2,4-bis(hydroxymethyl)-1,3-dioxane, which were isolated in the molar ratios of 2.0:0.14:0.74:0.35. Partial hydrolysis of the polysaccharide gave α-d-Man p-(1→6)-d-Glcp, β-d-Glcp-(1→4)-d-Glcp, α-d-Man p-(1→3)-d-Glcp, and β-d-Glcp-(1→4)-[α-d-Man p-(1→3)-]-d-Glcp. From these results, it is proposed that the polysaccharide is mainly composed of tetrasaccharide repeating-units having the following structure.  相似文献   

16.
The repeating unit of the specific capsular polysaccharide from the bacterium Rhizobium trifolii (TA)-1 has been shown to contain (a) terminal 4,6-O-(1-carboxyethylidene)-D-galactose (1 residue), (b) (1 → 3)-linked 4,6-O-(1-carboxyethylidene)-D-glucose (1 residue), (c) (1 → 4)-(1 → 6)-linked D-glucose (1 residue), (d) (1 → 4)-linked D-glucuronic acid (1 residue), and (e) (1 → 4)-linked D-glucose (4 residues). The pyruvylated sugars were shown to be positioned sequentially, and at least one other unit was interposed between them and the branch point.  相似文献   

17.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

18.
Periodate oxidation of LPG-1 established that N-acetylneuraminic acid residues are linked preponderantly α-(2→3) to D-galactose residues. The resistance of 2-acetamido-2-deoxyD-galactose residues to periodate oxidation suggests that they are linked at either O-3 or O-4 to D-galactose residues. After treatment of LPG-I with alkaline sulfite, ≈80% of 2-acetamido-2-deoxygalactose was recovered as the sulfonic acid derivative. The Gal→GalNAc disaccharide released from sialic-acid-free LPG-I by digestion with endo-2-acetamido-2-deoxy-α-D-galactosidase (which suggests an α-D-GalNAc→-L-Ser or -L-Thr linkage) gave a high color-yield in the Morgan—Elson reaction, indicating that 2-acetamido-2-deoxy-D-galactose residues are linked at C-3 to D-galactose residues. The migration of the released Gal-GalNAc disaccharide was the same as that of a standard sample of O-β-D-galactosyl-(1→3)-2-acetamido-2-deoxy-D-galactose. Treatment of sialic acid-free LPG-I with Streptococcus pneumoniae β-D-galactosidase, which hydrolyzes only galactosides linked β-D-(1→4) gave no free D-galactose, whereas treatment of LPG-I with bovine testes β-D-galactosidase released > 90% of D-galactose. These results provide evidence for β-D-Galp-(1→3)-α-D-GalNAcp-(1→3)-L-Ser or -L-Thr and α-NeuAc-(2→3)-β-D-Galp-(1→3)-α-D- GalNAcp-(1→3)-L-Ser or -L-Thr structures. The sensitivity of the methods used and the recovery of constituents following treatment of LPG-I do not rule out the occurrence of small amounts of other tri- or tetra-saccharide chains.  相似文献   

19.
The structure of lentinan, an anti-tumor polysaccharide from Lentinus edodes, has been further investigated. Periodate oxidation, Smith degradation, methylation analysis, and bioassay were the principal methods used. These studies showed that a branched molecule having a backbone of (1→3)-β-d-glucan and side chains of both β-d-(1→3)- and β-d-(1→6)-linked d-glucose residues, together with a few internal β-d-(1→6)-linkages, is present.  相似文献   

20.
The sugar chains of microsomal and lysosomal β-glucuronidases of rat liver were studied by endo-β-N-acetylglucosaminidase H digestion and by hydrazinolysis. Only a part of the oligosaccharides released from microsomal β-glucuronidase was an acidic component. The acidic component was not hydrolyzed by sialidase and by calf intestinal and Escherichia coli alkaline phosphatases, but was converted to a neutral component by phosphatase digestion after mild acid treatment indicating the presence of a phosphodiester group. The neutral oligosaccharide portion of microsomal enzyme was a mixture of five high mannose-type sugar chains: (Manα1 → 2)0~4 [Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc]. In contrast, lysosomal enzyme contains only Manα1 → 6 (Manα1 → 3) Manα1 → 6(Manα1 → 3) Manβ1 → 4GlcNAcβ1 → 4GlcNAc. The result indicates that removal of α1 → 2-linked mannosyl residues from (Manα1 → 2)4[Manα1 → 6(Manα1 → 3)Manα1 → 6(Manα1 → 3)Manβ1 → 4GlcNAcβ1 → 4GlcNAc → Asn] starts already in the endoplasmic reticulum of rat liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号