首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Procedures were developed for the isolation and culture of an anucleate protoplast system from cotton fibers actively undergoing secondary wall synthesis. Because the fibers at this stage are elongated single cells (30 m × 1–2 cm), most of the cellular vesicles released in the process of isolation are anucleate. After purification, the protoplast population was nuclei-free. When transferred to culture medium, the anucleate protoplasts (cytoplasts) synthesized starch, hydrolyzed fluorescene diacetate for up to 9 days and formed cell wall material for at least 7 days. The composition of the regenerated cell walls was dependent upon the substrate supplied in the medium: -1,3-linked glucans were predominantly synthesized when 1 mM UDP[14C]glucose was supplied; -1,4-linked glucans were predominantly synthesized when 1 mM [14C]-glucose was supplied. Thus the composition of the regenerated cell walls formed by the anucleate protoplasts was similar to the secondary cell wall synthesized by intact cotton fibers under the same culture conditions.  相似文献   

2.
Heterogeneity of human natural killer cell populations.   总被引:1,自引:0,他引:1  
Natural killing (NK) in human donors was determined by the ability of peripheral blood subpopulations to lyse the myeloid target, K562, in a 2 to 4 hr 51Cr release assay. The most active cell was a non-T cell which passed through nylon columns (representing 10 to 25% of column passed cells). A second column passed cell population, with characteristics of T lymphocytes (75 to 90% of column passed cells), was also capable of mediating natural killing. Non-T cells which were retained by the nylon columns (45 to 55% of adherent cells) lacked NK activity. However, nylon adherent T cells (45 to 55% of adherent cells) were consistently active in NK assays, illustrating an important subset of NK effector cell often overlooked. Both column passed and adherent T cells were further separated according to their ability to bind IgG or IgM immune complexes, showing that those mediating NK have receptors for IgG (Tγ+) but not for IgM (Tμ+).  相似文献   

3.
The ion content of compartments within cortical cells of mature roots of the halophyte Suaeda maritima grown at 200 mol·m-3 NaCl has been studied by X-ray microanalysis of freeze-substituted thin sections. Sodium and Cl were found in the vacuoles at about four-times the concentration in the cytoplasm or cell walls, whereas K was more concentrated in the cell walls and cytoplasm than in vacuoles. The vacuolar Na concentration was 12- to 13-times higher than that of K. The Na concentration of cell walls of cortical cells was about 95 mol·m-3 of analysed volume. The cytoplasmic K concentration within the mature cortical cells was estimated to be 55 mol·m-3 of analysed volume.  相似文献   

4.
Rat nylon wool nonadherent bone marrow cells were propagated for up to 75 days in co-culture with stromal cells derived from either spleen or bone marrow. Interleukin (IL) 1 enhanced the ability of spleen stroma to support the long-term culture of natural killer (NK) cells, ostensibly by inducing these support cells to synthesize other cytokines. Flow cytometry studies indicated that the nylon wool separation procedure enriched the concentrations of mature NK cells from 7.9% to 38.1% for splenocytes and from 3.8% to 19.5% for bone marrow cells. Analyses of the adherent zones of suspended nylon screen NK cell cultures revealed substantial numbers of large granular lymphocytes that expressed NK 323+/MOM/3F12/F2- phenotypes. The presence of both mature and immature cells of the NK lineage in this matrix was inferred by the presence of both IL-2 receptor (IL-2R) positive and IL-2R negative, and OX-8+ and OX-8- NK 323+ cells over the greater than 4-month experimental period. Suspended nylon screen cultures displayed a greater potential for producing cytolytic cells than either co-cultures of bone marrow nonadherent cells on stroma monolayers or suspension cultures. The large granular lymphocytes produced in suspended nylon screen cultures could be transformed into active killers of YAC-1 targets by IL-2. In contrast to bone marrow nonadherent cells, more splenic nylon-wool-passed cells displayed a mature NK phenotype, but their proliferative potential and ability to be transformed into cytolytic cells by IL-2 decreased rapidly in culture. In the suspended nylon screen culture system, NK cells migrate from the underlying stroma in stages as they mature, retain their cytolytic potential, and manifest a capacity for self-renewal. Cultured cells were routinely dissociated into single cell suspensions via enzyme treatment and were reinoculated onto "fresh" nylon screen/stromal cell templates after passage through nylon wool columns. These co-cultures continued to generate cytolytic cells in numbers greater than those of the initial inoculum.  相似文献   

5.
The partial purification and characterization of cell wall polysaccharides isolated from suspension-cultured Douglas fir (Pseudotsuga menziesii) cells are described. Extraction of isolated cell walls with 1.0 m LiCl solubilized pectic polysaccharides with glycosyl-linkage compositions similar to those of rhamnogalacturonans I and II, pectic polysaccharides isolated from walls of suspension-cultured sycamore cells. Treatment of LiCl-extracted Douglas fir walls with an endo-α-1,4-polygalacturonase released only small, additional amounts of pectic polysaccharide, which had a glycosyl-linkage composition similar to that of rhamnogalacturonan I. Xyloglucan oligosaccharides were released from the endo-α-1,4-polygalacturonase-treated walls by treatment with an endo-β-1,4-glucanase. These oligosaccharides included hepta- and nonasaccharides similar or identical to those released from sycamore cell walls by the same enzyme, and structurally related octa- and decasaccharides similar to those isolated from various angiosperms. Finally, additional xyloglucan and small amounts of xylan were extracted from the endo-β-1,4-glucanase-treated walls by 0.5 n NaOH. The xylan resembled that extracted by NaOH from dicot cell walls in that it contained 2,4- but not 3,4-linked xylosyl residues. In this study, a total of 15% of the cell wall was isolated as pectic material, 10% as xyloglucan, and less than 1% as xylan. The noncellulosic polysaccharides accounted for 26% of the cell walls, cellulose for 23%, protein for 34%, and ash for 5%, for a total of 88% of the cell wall. The cell walls of Douglas fir were more similar to dicot (sycamore) cell walls than to those of graminaceous monocots, because they had a predominance of xyloglucan over xylan as the principle hemicellulose and because they possessed relatively large amounts of rhamnogalacturonan-like pectic polysaccharides.  相似文献   

6.
Wilson , Brayton F. (U. California, Berkeley). Increase in cell wall surface area during enlargement of cambial derivatives in Abies eoncolor . Amer. Jour. Bot. 50(1): 95–102. Illus. 1963.— Dimensions of fusiform cells (tracheids and sieve cells) and ray cells were measured from samples of the 1960 xylem and phloem increment of 5 trees felled at monthly intervals from April through July, 1960. Calculations using these measurements gave the magnitude, direction and rate of increase in cell wall surface area during enlargement. Although 14 times more tracheids than sieve cells were produced, both cell types enlarged mostly in a radial direction (up to 400%) at the same rate (20–33 × 103μ2 wall surface area/day) to the same final size. Fusiform cambial cells doubled their wall area between successive periclinal divisions. Calculations showed that ⅞ of this increase was in the radial walls of the daughter cells at a rate comparable to that in enlarging tracheids and sieve cells; the other ⅞ was from cell plate formation at an estimated rate of 187–327 × 103μ2/day. Enlargement of derivatives in the radial direction largely determined the amount of increase in wall area. Besides radial enlargement, tracheids also elongated (up to 13%) and phloem cells enlarged tangentially (sieve cells up to 36%; pholem ray cells up to 60%). The relationships of enlarging tracheids and xylem ray cells are discussed, and it is suggested that slippage may occur between the developing walls.  相似文献   

7.
Various populations of bovine adrenal chromaffin cells were isolated first by successive digestions with collagenase (original cell preparation) followed by sedimentation through a stepwise bovine serum albumin gradient (cell layers I, II and III). At the fine structural level, the ratios between the number of adrenaline-cells and noradrenaline-cells were 1.9 in the original cell preparation and 0.9, 2.0 and 4.6 in cell layers I, II and III, respectively. The catecholamine content of each cell population was also measured by spectrofluorometry. The original cell preparation contained 20.1 and 12.2 nmol per 106 cells of adrenaline and noradrenaline, respectively. Each cell layer had similar total amount of catecholamines (from 38.3 to 40 nmol per 106 cells) but their adrenaline/noradrenaline content ratios varied from 0.6 in cell layer 1 to 1.3 and 3.3 in cell layers II and III, respectively. Incubation of the cells in the presence of acetylcholine (50 μM) induced a release of catecholamines which was proportional to the cell content of each amine. However, the percentage of total cell content released was much higher in cell layer I (20%) than in cell layers II (8%) and III (5%). Finally, each cell population was also analyzed for its ability to respond to a muscarinic stimulation of cyclic GMP level and to bind [3H]etorphine, a highly potent opiate agonist. Acetylcholine induced 3.15-, 2.15- and 4.21-fold increases in the levels of cyclic GMP in the original cell preparation, cell layers II and III, respectively, but not in cell layer I. Conversely, the high affinity opiate binding site for [3H]etorphine was almost exclusively confined to cell layer III (Bmax of 28.4 fmol per 106 cells as compared with 2.8–7.5 fmol in the other cell preparations). These results indicate that bovine adrenal chromaffin cells can be separated according to their content in adrenaline and noradrenaline and their response to nicotinic, muscarinic and opiate stimuli.  相似文献   

8.
9.
Anatomical and physiological responses to drought stress were compared in two Microseris species differing in DNA content and originating from contrasting habitats relative to water availability (M. bigelovii, DNA = 2.6 pg nucleus–1, more xeric; M. laciniata, DNA = 6.8 pg nucleus–1, mesic). Leaf mesophyll cell volume was positively correlated with DNA content and negatively correlated with tissue elasticity, i.e., low ϵ̄ and thin cell walls. Drought stress increased leaf tissue elasticity (lower ϵ̄, thinner cell walls). Cell volume, cell wall thickness, cell number, and leaf area were decreased most by drought stress in M. laciniata. Osmotic adjustment with a 20% increase in total solutes (mostly amino acids) after stress was observed in both species, but their estimated contribution to the change in osmotic potential was larger in M. bigelovii. These findings indicate that the Microseris species studied respond to low water availability by maintaining turgor with 1) small cell volumes, 2) elastic tissues (low ϵ̄, thin cell walls), and 3) osmotic adjustment. Both enhanced tissue elasticity and small cell volume appear to be inherent characteristics in M. bigelovii and drought-induced responses in M. laciniata. These data are compatible with the hypothesis that natural selection may influence DNA content through differential sensitivity of cell growth to environmental stress.  相似文献   

10.
Summary Suspensions of Haplopappus gracilis cells, containing about 80% free cells, were obt ained from log-phase cultures by filtration through 3 nylon sieves having decreasing mesh widths from 297, 210 and 88 m. From the free cell suspensions, 75 to 90% of the cells developed into visible colonies when the plating procedure was divided into two steps: a) plating the cells at high concentration in soft agar on feeder agar; b) replating the resulting aggregations at appropriate concentrations on fresh feeder agar. From the results, it is inferred that, in the replating step, the volume of the inoculum is the deciding factor which influences the resulting plating efficiency.  相似文献   

11.
The circadian movement of the lamina of primary leaves of Phaseolus coccineus L. is mediated by antagonistic changes in the length of the extensor and flexor cells of the laminar pulvinus. The cortex of the pulvinus is a concentric structure composed of hexagonal disc-like cells, arranged in longitudinal rows around the central stele. Observations with polarization optics indicate that the cellulose microfibrils are oriented in a hoop-like fashion in the longitudinal walls of the motor cells. This micellation is the structural basis of the anisotropic properties of the cells: tangential sections of the extensor and flexor placed in hypotonic mannitol solutions showed changes only in length. As a consequence a linear correlation between length and volume was found in these sections. Based on the relationship between the water potential (which is changed by different concentrations of mannitol) and the relative volume of the sections and on the osmotic pressure at 50% incipient plasmolysis, osmotic diagrams were constructed for extensor and flexor tissues (cut during night position of the pulvinus). The bulk moduli of extensibility, , were estimated from these diagrams. Under physiological conditions the values were rather low (in extensor tissue below 10 bar, in flexor tissue between 10 to 15 bar), indicating a high extensibility of the longitudinal walls of the motor cells. They are strongly dependent on the turgor pressure at the limits of the physiological pressure range.In well-watered plants, the water potentials of the extensor and flexor tissues were surprisingly low,-12 bar and-8 bar, respectively. This means that the cells in situ are by no means fully turgid. On the contrary, the cell volume in situ is similar to the volume at the point of incipient plasmolysis: the cell volumes of extensor and flexor cells in situ were only 1.01 times and 1.1 times larger, respectively, than at the point of incipient plasmolysis, whereas at full turgidity (cells in water) the corresponding factors were 1.8 and 1.5. It is suggested that the high elasticity of the longitudinal walls, the anisotropy of the cell walls, and the low water potential of the sections which is correlated with slightly stretched cell walls in situ, are favourable and effective for converting osmotic work in changes in length of the pulvinus cells, and thus for the up and down movement of the leaf.Symbols volumetric elastic modulus - i instantaneous volumetric elastic modulus - i stationary volumetric elastic modulus - weight-averaged stationary bulk modulus of extensibility - 0 osmotic pressure of the vacuole of a cell at the point of incipient plasmolysis - weight-averaged osmotic pressure of the vacuoles of the tissue at 50% incipient plasmolysis - water potential  相似文献   

12.
J. Schönherr  H. Ziegler 《Planta》1980,147(4):345-354
The water permeability of periderm membranes stripped from mature trees of Betula pendula Roth was investigated. The diffusion of water was studied using the system water/membrane/water, and transpiration was measured using the system water/membrane/water vapor. Betula periderm consists of successive periderm layers each made up of about 5 heavily suberized cell layers and a varying number of cell layers that are little suberized, if at all. It is shown that these layers act as resistances in series. The permeability coefficient of the diffusion of water (P d) can be predicted with 79% accuracy from the reciprocal of the membrane weight (x in mg cm-2) by means of the linear equation P d=14.69·10-7 x-0.73·10-7. For example, the P d of a periderm membrane having a weight of 10 mg cm-2 (approx. 250 m thick) is 7.4·10-8 cm s-1, which is comparable to the permeability of cuticles. This comparison shows that on a basis of unit thickness, Betula periderm is quite permeable to water as cuticles have the same resistance with a thickness of only 0.5 to 3 m. It is argued that this comparatively high water permeability of birch periderm is due to the fact that middle lamellae and the primary walls of periderm cells are not at all, or only incompletely suberized and, therefore, form a hydrophilic network within which the water can flow. This conclusion is based on the following observations: (1) Middle lamellae and primary walls stain strongly with toluidine blue, which shows them to be polar. (2) If silver ions are added as tracer for the flow of water, they are found only in the middle lamellae, primary walls, and in plasmodesmata, while no silver can be detected in the suberized walls. (3) Permeability coefficients of transpiration strongly depend on water activity. This shows conclusively that water flows across Betula periderm via a polar pathway. It is further argued that liquid continuity is likely to be maintained under all physiological conditions in the network formed by middle lamellae and primary walls. On the other hand, the lumina of periderm cells, intercellular air spaces in the lenticels, and even the pores in the suberized walls (remainders of plasmodesmata) will drain at a humidity of 95% and below. Due to the presence of intercellulars the permeability coefficient of lenticels is much greater than that of the periderm. A substantial amount of the total water, therefore, flows as vapor through lenticels even though they cover only 3% of the surface.Abbreviations PM perideron membrane - P d permeability coefficient for diffusion of water - P tt permeability coefficient of transpiration - MES (N-morpholino)ethane sulfonic acid  相似文献   

13.
Effects of metal ions, protein-denaturants and enzyme treatments on flocculation of cell walls of Beer Yeast IFO 2018 were investigated. Cell walls from flocculent cells grown in a complete medium were able to form flocs as were whole cells, but cell walls from non-flocculent cells, such as “Mg2+-deficient” cells, “early-phase” cells and “low-pH” cells, were not. The cell walls dispersed in distilled water reflocculated in solutions containing Ca2+ or other metal ions. Of the alkali metal ions tested, only Na+ inhibited flocculation of flocculent cell walls at a concentration more than 0.1 M. Ca2+ or Sn4+ was absolutely required for flocculation of cell walls in the physiological saline (NaCl, 150 mM), but the effect of Sn4+ seems rather non-specific, because it promoted flocculation of non-flocculent cell walls as well. Sr2+ and Ba2+ were antagonistic to Ca2+ and inhibited flocculation. Flocculation of cell walls was also depressed by high concentrations of protein-denaturants, e.g. urea and guanidine·HCl. Treatment with proteolytic enzymes deprived cell walls of floc-forming ability. Effect of metal ions, protein-denaturants and treatment with enzymes on the flocculation of intact cells was investigated as control. Since flocculating properties of cell walls were very similar to those of intact cells, flocculation must be an inherent property of cell walls.  相似文献   

14.
15.
E. Vogt  J. Schönherr  H. W. Schmidt 《Planta》1983,158(4):294-301
The fine structure and water permeability of potato tuber periderm have been studied. Periderm membranes (PM) were isolated enzymatically using pectinase and cellulase. They were composed of, about six layers of phellem cells arranged in radial rows. The walls of phellem cells consist of cellulosic primary and tertiary walls and suberized secondary walls which are lamellated. Middle lamellae and primary walls contain lignin. Since the PM did not disintegrate during enzymatic isolation it appears that lignin also extends into the secondary suberized walls. The water permeability of PM was low, ranging from 1–3·10-10 m s-1. This low water permeability developed only during storage of tubers in air. Periderm membranes from freshly harvested tubers had a relatively high permeability. The low permeability of PM from stored tubers is attributed to soluble lipids associated with suberin since: (1) extraction of soluble lipids from PM increased permeability by more than 100-fold, (2) a phase transition of soluble lipids was observed between 46 and 51° C, and (3) only the permeability of PM decreased during storage while the permeability of extracted PM remained unchanged. Evidence is presented that two pathways for water movement exist in parallel. Pathway 1 is represented by middle lamellae and primary walls extending in radial direction across the membranes. This pathway has a relatively high specific permeability. Pathway 2 is represented by a polylaminated structure made up of tangential walls of phellem cells which are orientated normal to the direction of water flow. This pathway has a low specific permeability because of the properties of secondary walls incrusted with soluble lipids. It is calculated that about 10% of the water flows across pathway 1 and 90% across pathway 2 which has a volume fraction of 0.995.  相似文献   

16.
A novel method to quantify cell migration through potential tissue engineering 3-d scaffolds is described. The migration assay uses a dot-blotting apparatus into which the tissue engineering matrix is placed on top of a nitrocellulose membrane. This assay was used to evaluate human dermal fibroblast migration through four porcine collagen matrices with varying pore diameters and pitch lengths. Fibroblasts were placed on the matrix surface, at between 1 ×103–3 × 103 cells mm–2, and left for 18 h to allow migration. The nitrocellulose membrane was stained with haematoxylin, the membrane digitised and the pixel intensity of the stained cells quantified. We showed that for all matrix variants, migration was more effective with a higher initial seeding density. The application of varying initial cell densities resulted in the greatest extent of cell migration through the matrix variant with pores of 30 m diameter and 400 m pitch length (i.e. 10.3% migration at 1 ×103 cells mm–2). This method was coupled with confocal microscopy to evaluate the depth of cell migration within the matrix. At a depth of 20 m cell numbers were similar to those on the matrix surface: at a depth of 100 m only a few cells were observed.  相似文献   

17.
Cell walls from the crayfish parasite Aphanomyces astaci strongly enhanced phenol oxidase activity in crayfish blood or cell-free serum. The activation was not very specific since bacteria, cells, and cell walls of some algae, fungi, and higher plants also activated the enzyme strongly. Only cell walls from one fungus lacked this property. Laminaran, a purified glucan found in many plant cell walls, activated the enzyme as well, but cellulose, chitin, or nylon did not. On the other hand, attachment of the enzyme to the wall surfaces and subsequent strong local melanization was much more specific and occurred only on a few fungi but not on other plant cell walls, bacteria, or other solid, enzyme-activating or nonactivating material. The mechanism of activation and attachment is discussed.  相似文献   

18.
Mesophyll cells isolated from Zinnia elegans L. cv. Canary Bird were cultured for 96 h in a liquid medium containing 0.1 mg l-1 -naphthaleneacetic acid and 1 mg l-1 benzyladenine in which both differentiation of tracheary elements (TE) and cell division were induced, or in a medium containing 0.1 mg l-1 -naphthaleneacetic acid and 0.001 mg l-1 benzyladenine, in which cell division was induced but TE differentiation was not. Lignification was found to occur only in the former medium, fairly synchronously after 76 h of culture, 5 h later than the onset of visible secondary wall thickening. Changes in the soluble phenolics were not correlated with TE differentiation. Of three important enzymes which have been reported to play a role in TE differentiation, the activity of phenylalanine ammonia-lyase (EC 4.3.1.5) in the TE-inductive culture was higher than that in the control culture between 72 and 96 h of culture, when TE differentiation progressed and lignin was synthesized actively. O-Methyltransferase (EC 2.1.1.6) activity was higher in the control culture than in the TE-inductive culture, indicating that this enzyme was not a marker enzyme of TE differentiation. The activities of peroxidases (EC 1.11.1.7), one extractable and the other nonextractable, with CaCl2 from the cell walls, reached peaks at 72 h (just before lignification) and 84 h of culture (active lignin synthesis), respectively, in the TE-inductive culture only, whereas the activity of soluble peroxidase showed a similar pattern of increase in the TE-inductive to the control culture. These results indicate that phenylalanine ammonia-lyase and peroxidase bound to the cell walls can be marker proteins for the differentiation of TE.Abbreviations OMT O-methyltransferase - PO peroxidase - PAL phenylalanine ammonia-lyase - TE tracheary element(s)  相似文献   

19.
A survey of charophycean green algal and bryophyte taxa revealed the frequent occurrence of vegetative cell walls that were characterized by a specific form of autofluorescence and resistance to high temperature acid treatment (acetolysis). The time of production and the location of resistant, autofluorescent cell walls varied among charophyte and bryophyte taxa in patterns that suggest that bryophytes inherited the capacity to produce such walls from charophyte ancestors. A number of charophytes produced resistant walls in response to desiccation stress, suggesting an evolutionarily early adaptive response. Coleochaete was unique among charophytes, but similar to all bryophytes tested in that sexual reproduction induced autofluorescence in cell walls of well-hydrated tissues at the placental junction. Maternal tissues in apical portions of the pseudoseta bearing Sphagnum sporophytes were characterized by autofluorescent, acetolysis-resistant cell walls similar to those observed in maternal cells adjacent to Coleochaete zygotes. These observations suggest that cell–cell stimulus–response interactions regulate deposition of autofluorescent compounds in placental cell walls, and that this characteristic may have been shared by the earliest embryophytes and their charophyte ancestors. Various bryophytes deposit autofluorescent, acid-resistant compounds at other adaptively significant sites including sporangial epidermis, spiral thickenings of elaters, rhizoids, and leaves in the special case of Sphagnum moss. Sphagnum and liverwort sporangial epidermis, which had been subjected to acetolysis or strong acid procedures commonly used to release microfossils from rock matrices, resembled published photographs of Ordovician–Devonian microfossils consisting of cellular scraps that have been attributed to earliest land plants. Our work suggests that at least some of these fossils, previously thought to represent “dispersed cuticles,” could be reinterpreted as earliest known remains of plant sporophytic tissues, and that they may be homologous with resistant sporangial epidermis of modern bryophytes. In general, the patterns of occurrence of resistant, autofluorescent cell walls in charophytes and bryophytes suggest repeated exaptation. Regulation of deposition appears to have been modified through time, so that resistant wall compounds have had a sequence of functions: desiccation resistance and/or microbial resistance in lower charophytes, a role in embryogenesis in Coleochaete and embryophytes, and finally, decay resistance in innovative structures that characterize bryophytes, such as rhizoids, sporangial epidermis, and elaters.  相似文献   

20.
The primary cell walls of six suspension-cultured monocots and of a single suspension-cultured gymnosperm have been investigated with the following results: (a) the compositions of all six monocot cell walls are remarkably similar, despite the fact that the cell cultures were derived from diverse tissues; (b) the cell walls of suspension-cultured monocots differ substantially from those of suspension-cultured dicots and from the suspension-cultured gymnosperm; (c) an arabinoxylan is a major component (40% or more by weight) of monocot primary cell walls; (d) mixed β-1,3; β-1,4-glucans were found only in the cell wall preparations of rye grass endosperm cells, and not in the cell walls of any of the other five monocot cell cultures nor in the walls of suspension-cultured Douglas fir cells; (e) the monocot primary cell walls studied contain from 9 to 14% cellulose, 7 to 18% uronic acids, and 7 to 17% protein; (f) hydroxyproline accounts for less than 0.2% of the cell walls of monocots. Similar data on the soluble extracellular polysaccharides secreted by these cells are included.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号