首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The emergence of diseases and mortalities in aquaculture and development of antibiotics resistance in aquatic microbes, has renewed a great interest towards alternative methods of prevention and control of diseases. Nanoparticles have enormous potential in controlling human and animal pathogens and have scope of application in aquaculture. The present investigation was carried out to find out suitable nanoparticles having antimicrobial effect against aquatic microbes. Different commercial as well as laboratory synthesized metal and metal oxide nanoparticles were screened for their antimicrobial activities against a wide range of bacterial and fungal agents including certain freshwater cyanobacteria. Among different nanoparticles, synthesized copper oxide (CuO), zinc oxide (ZnO), silver (Ag) and silver doped titanium dioxide (Ag–TiO2) showed broad spectrum antibacterial activity. On the contrary, nanoparticles like Zn and ZnO showed antifungal activity against fungi like Penicillium and Mucor species. Since CuO, ZnO and Ag nanoparticles showed higher antimicrobial activity, they may be explored for aquaculture use.  相似文献   

2.
Actinomycetes‐mediated biogenic synthesis of metal nanoparticles and their antimicrobial activities are well documented. Actinomycetes facilitate both intracellular and extracellular metal nanoparticles synthesis and are efficient candidates for the production of polydispersed, stable and ultra‐small size metal nanoparticles. Secondary metabolites and new chemical entities derived from Actinomycetes have not been extensively studied for the synthesis of metal/metal oxide nanoparticles. The present review focuses on biogenic synthesis of metal nanoparticles from Actinomycetes and the scope for exploring Actinomycetes‐derived compounds (enzymes, organics acids and bioactive compounds) as metal and metal oxide reducing agents for the synthesis of desired nanoparticles. This review also focuses on challenges faced in the applications of nanoparticles and the methods to synthesize biogenic metal nanoparticles with desired physiochemical properties such as ultra‐small size, large surface to mass ratio, high reactivity etc. Methods to evade their toxicity and unique interactions with biological systems to improve their chance as an alternative therapeutic agent in medical and pharmaceutical industry are also discussed.  相似文献   

3.
The reduction of atmospheric sulphur dioxide pollution is causing increasing problems of sulphur deficiency in sulphur‐demanding crop plants in northern Europe. Elemental sulphur and many sulphur containing compounds such as cysteine‐rich antifungal proteins, glucosinolates (GSL) and phytoalexins play important roles in plant disease resistance. The aim of this work was to analyse the effect of inadequate sulphur supply on disease resistance of oilseed rape (Brassica napus). Compared with fertilized oilseed rape, healthy looking S‐deficient plants showed increased susceptibility to the blackleg fungus Leptosphaeria maculans, to the generalist necrotroph Botrytis cinerea and to the oomycete Phytophthora brassicae. To analyse possible causes of the increased disease susceptibility of S‐deficient plants, protein extracts and methanolic extracts of secondary metabolites of plants grown with and without adequate sulphur supply were tested for antimicrobial activity. None of the protein extracts showed antimicrobial activity. However, extracts containing secondary metabolites from normally grown plants showed a strong antimicrobial activity in in vitro tests with various fungal and bacterial pathogens. This activity was almost totally lost in extracts derived from S‐deficient plants. The antimicrobial activity did not appear to be based on the activity of phytoalexins because it was present in healthy plants and was not increased by a previous inoculation with Botrytis cinerea. The loss of antifungal activity in S‐deficient plants correlated with a strong reduction of various GSL, thus suggesting a reduced level of GSL as a possible cause of the reduced antimicrobial potential. However, limited tests of commercially available GSL or their degradation products did not demonstrate a causal link. Our results show that S‐deficiency of oilseed rape negatively affects disease resistance and suggest that this effect is at least partially caused by a reduction of sulphur‐dependent phytoanticipins.  相似文献   

4.
Aims: To develop novel polypropylene composite materials with antimicrobial activity by adding different types of copper nanoparticles. Methods and Results: Copper metal (CuP) and copper oxide nanoparticles (CuOP) were embedded in a polypropylene (PP) matrix. These composites present strong antimicrobial behaviour against E. coli that depends on the contact time between the sample and the bacteria. After just 4 h of contact, these samples are able to kill more than 95% of the bacteria. CuOP fillers are much more effective eliminating bacteria than CuP fillers, showing that the antimicrobial property further depends on the type of copper particle. Cu2+ released from the bulk of the composite is responsible for this behaviour. Moreover, PP/CuOP composites present a higher release rate than PP/CuP composites in a short time, explaining the antimicrobial tendency. Conclusions: Polypropylene composites based on copper nanoparticles can kill E. coli bacteria depending on the release rate of Cu2+ from the bulk of the material. CuOP are more effective as antimicrobial filler than CuP. Significance and Impact of the Study: Our findings open up novel applications of these ion‐copper‐delivery plastic materials based on PP with embedded copper nanoparticles with great potential as antimicrobial agents.  相似文献   

5.
The nature and physicochemical characteristics of nanomaterials affect their biological activity. Sulfur microparticles and sulphur nanoparticles have different levels of activity against bacterial, fungal, and animal cells. The cytotoxicity and genotoxicity of sulfur nanoparticles (SNPs) of about 70 nm in size were examined on the L5178Y mouse lymphoma cell culture. The concentration of SNPs causing 50% cell death is 0.078–0.312 mg/mL. The micronucleus assay revealed no mutagenic properties of SNPs. Metabolic activation of SNPs by the rat liver microsomal fraction does not affect the toxicity. It is assumed that the mechanism of cytotoxic action is associated with the interaction of elemental sulfur with sulfhydryl groups of molecules inside the cell.  相似文献   

6.
The role of soil microbes in plant sulphur nutrition   总被引:1,自引:0,他引:1  
Chemical and spectroscopic studies have shown that in agricultural soils most of the soil sulphur (>95%) is present as sulphate esters or as carbon-bonded sulphur (sulphonates or amino acid sulphur), rather than inorganic sulphate. Plant sulphur nutrition depends primarily on the uptake of inorganic sulphate. However, recent research has demonstrated that the sulphate ester and sulphonate-pools of soil sulphur are also plant-bioavailable, probably due to interconversion of carbon-bonded sulphur and sulphate ester-sulphur to inorganic sulphate by soil microbes. In addition to this mineralization of bound forms of sulphur, soil microbes are also responsible for the rapid immobilization of sulphate, first to sulphate esters and subsequently to carbon-bound sulphur. The rate of sulphur cycling depends on the microbial community present, and on its metabolic activity, though it is not yet known if specific microbial species or genera control this process. The genes involved in the mobilization of sulphonate- and sulphate ester-sulphur by one common rhizosphere bacterium, Pseudomonas putida, have been investigated. Mutants of this species that are unable to transform sulphate esters show reduced survival in the soil, indicating that sulphate esters are important for bacterial S-nutrition in this environment. P. putida S-313 mutants that cannot metabolize sulphonate-sulphur do not promote the growth of tomato plants as the wild-type strain does, suggesting that the ability to mobilize bound sulphur for plant nutrition is an important role of this species.  相似文献   

7.
In the present scenario, pharmaceutical and biomedical sectors are facing the challenges of continuous increase in the multidrug-resistant (MDR) human pathogenic microbes. Re-emergence of MDR microbes is facilitated by drug and/or antibiotic resistance, which is acquired way of microbes for their survival and multiplication in uncomfortable environments. MDR bacterial infections lead to significant increase in mortality, morbidity and cost of prolonged treatments. Therefore, development, modification or searching the antimicrobial compounds having bactericidal potential against MDR bacteria is a priority area of research. Silver in the form of various compounds and bhasmas have been used in Ayurveda to treat several bacterial infections since time immemorial. As several pathogenic bacteria are developing antibiotic resistance, silver nanoparticles are the new hope to treat them. This review discusses the bactericidal potential of silver nanoparticles against the MDR bacteria. This multiactional nanoweapon can be used for the treatment and prevention of drug-resistant microbes.  相似文献   

8.
Nanotechnology is an emerging branch of science, which has potential to solve many problems in different fields. The union of nanotechnology with other fields of sciences including physics, chemistry, and biology has brought the concept of synthesis of nanoparticles from their respective metals. Till date, many types of nanoparticles have been synthesized and being used in different fields for various applications. Moreover, copper nanoparticles attract biologists because of their significant and broad-spectrum bioactivity. Due to the large surface area to volume ratio, copper nanoparticles have been used as potential antimicrobial agent in many biomedical applications. But the excess use of any metal nanoparticles increase the chance of toxicity to humans, other living beings, and environment. In this article, we have critically reviewed the bioactivities and cytotoxicity of copper nanoparticles. We have also focused on possible mechanism involved in its interaction with microbes.  相似文献   

9.
10.
Nanoparticles have been attracted attention in poultry research due to their low toxicity, higher bio-availability, high surface area with sustained drug release. Dietary supplementation with selenium nanoparticles (Se-NPs) plays a regulatory role in maintaining growth performance, feed conversion ratio (FCR), antioxidant defense as well as microbial control. Se-NPs have emerging importance in modulating intestinal health through the maintenance of beneficial microbes (microflora) as well as the production of short-chain fatty acids (SCFA). Se-NPs regulate intrinsic redox status by scavenging free radicals. The antioxidant potentiality of Se-NPs is influenced by the activation of the seleno-enzymes such as thioredoxin reductase and glutathione peroxidase family (GPx) involved in scavenging of Reactive Oxygen Species (ROS). The emerging significance of Se-NPs on antimicrobial activity has been exploited due to their bio-accumulative effects and biocompatibility potentiality in the cellular systems against poultry pathogens. The present review highlights on growth performance, antioxidant defense, and anti-bacterial potentiality of Se-NPs in poultry and also provide insight into its significance in the poultry industry.  相似文献   

11.
Today the use of silver nanoparticles is becoming increasingly widespread due to their wide applications as antimicrobial agent. Green synthesis of silver nanoparticles (SNPs) using the petal extract of saffron (Crocus sativus) as a reducing agent from 5 mM AgNO3 has been investigated in this work. Diverse petal extracts quantities and reaction times were used for the synthesis of SNPs. The resulting SNPs were characterized by means of UV–Vis, XRD and FTIR techniques. SNPs were synthesized rapidly within 30 min of incubation period and synthesized SNPs showed an absorption peak at 380-400 nm in the UV-Vis spectrum. XRD spectrum confirmed the formation of metallic silver, too. Green synthesized SNPs were used as antimicrobial agent against three bacterial genera of Bacillus, Pseudomonas and Acinetobacter which contaminate preservative solution of cut-flowers, too. According to the results biosynthesized SNPs using saffron petals successfully controlled these bacteria and have made them promising candidates as new generation of antimicrobials. This route is rapid, simple without any hazardous chemicals and economical to synthesized SNPs.  相似文献   

12.
Metal nanoparticles were being used in different processes of developmental sectors like agriculture, industry, medical and pharmaceuticals. Nano-biotechnology along with sustainable organic chemistry has immense potential to reproduce innovative and key components of the systems to support surrounding environment, human health, and industry sustainably. Different unconventional methods were being used in green chemistry to synthesize gold and silver nanoparticles from various microbes. So, we reviewed different biological processes for green synthesis of metal nanoparticles. We also studied the mechanism of the synthesis process and procedures to characterize them. Some metallic nanoparticles have shown their potential to act as antimicrobial agent against plant pathogens. Here, we outlined green nanoparticles synthesized from microbes and highlighted their role against plant disease management.  相似文献   

13.
Aims: To investigate the synergetic effect of pH and biochemical components on bacterial community structure during mesophilic anaerobic degradation of solid wastes with different origins, and under acidic or neutral conditions. Methods and Results: The bacterial community in 16 samples of solid wastes with different biochemical compositions and origins was evaluated during mesophilic anaerobic degradation at acidic and neutral pH. Denaturing gradient gel electrophoresis (DGGE) and single‐strand conformation polymorphism (SSCP) were used to compare the communities. Multivariate analysis of the DGGE and SSCP results revealed that most of the dominant microbes were dependent on the content of easily degradable carbohydrates in the samples. Furthermore, the dominant microbes were divided into two types, those that preferred an acid environment and those that preferred a neutral environment. A shift in pH was found to change their preference for medium substrates. Although most of the substrates with similar origin and biochemical composition had similar microbial diversity during fermentation, some microbes were found only in substrates with specific origins. For example, two microbes were only found in substrate that contained lignocellulose and animal protein without starch. These microbes were related to micro‐organisms that are found in swine manure, as well as in other intestinal or oral niches. In addition, the distribution of fermentation products was less sensitive to the changes in pH and biochemical components than the microbial community. Conclusions: Bacterial diversity during anaerobic degradation of organic wastes was affected by both pH and biochemical components; however, pH exerted a greater effect. Significance and Impact of the Study: The results of this study reveal that control of pH may be an effective method to produce a stable bacterial community and relatively similar product distribution during anaerobic digestion of waste, regardless of variation in the waste feedstocks.  相似文献   

14.
The present study investigated the extracellular biosynthesis of antimicrobial silver nanoparticles by Escherichia coli AUCAS 112 and Aspergillus niger AUCAS 237 derived from coastal mangrove sediment of southeast India. Both microbial species were able to produce silver nanoparticles, as confirmed by X-ray diffraction spectrum. The nanoparticles synthesized were mostly spherical, ranging in size from 5 to 20 nm for E. coli and from 5 to 35 nm for A. niger, as evident by transmission electron microscopy. Fourier transform spectroscopy revealed prominent peaks corresponding to amides I and II, indicating the presence of a protein for stabilizing the nanoparticles. Electrophoretic analysis revealed the presence of a prominent protein band with a molecular mass of 45 kDa for E. coli and 70 kDa for A. niger. The silver nanoparticles inhibited certain clinical pathogens, with antibacterial activity being more distinct than antifungal activity. The antimicrobial activity of E. coli was more pronounced than that of A. niger and was enhanced with the addition of polyvinyl alcohol as a stabilizing agent. This work highlighted the possibility of using microbes of coastal origin for synthesis of antimicrobial silver nanoparticles.  相似文献   

15.
A green, simple, and effective approach was performed to synthesize potent silver nanoparticles (SNPs) using bacterial exopolysaccharide as both a reducing and stabilizing agent. The synthesized SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier-transform-infrared spectra analyses. The SNPs varied in shape and were multidispersed with a mean diameter of 10 nm ranging from 2 to 15 nm and were stable up to 2 months at room temperature. The antimicrobial activity of the SNPs was analyzed against bacterial and fungal pathogens using the agar well diffusion method. Dose dependent inhibition was observed for all bacterial pathogens. The multidrug resistant pathogens P. aeruginosa and K. pneumonia were found to be more susceptible to the SNPs than the food borne pathogen L. monocytogenes. The fungi Aspergillus spp. exhibited a maximum zone of inhibition compared to that of Penicillum spp. These results suggest that exopolysaccharide-stabilized SNPs can be used as an antimicrobial agent for various biomedical applications.  相似文献   

16.
Silver nanoparticles: partial oxidation and antibacterial activities   总被引:4,自引:0,他引:4  
The physical and chemical properties of silver nanoparticles that are responsible for their antimicrobial activities have been studied with spherical silver nanoparticles (average diameter approximately 9 nm) synthesized by the borohydride reduction of Ag+ ions, in relation to their sensitivity to oxidation, activities towards silver-resistant bacteria, size-dependent activities, and dispersal in electrolytic solutions. Partially (surface) oxidized silver nanoparticles have antibacterial activities, but zero-valent nanoparticles do not. The levels of chemisorbed Ag+ that form on the particle's surface, as revealed by changes in the surface plasmon resonance absorption during oxidation and reduction, correlate well with the observed antibacterial activities. Silver nanoparticles, like Ag+ in the form of AgNO3 solution, are tolerated by the bacteria strains resistant to Ag+. The antibacterial activities of silver nanoparticles are related to their size, with the smaller particles having higher activities on the basis of equivalent silver mass content. The silver nanoparticles aggregate in media with a high electrolyte content, resulting in a loss of antibacterial activities. However, complexation with albumin can stabilize the silver nanoparticles against aggregation, leading to a retention of the antibacterial activities. Taken together, the results show that the antibacterial activities of silver nanoparticles are dependent on chemisorbed Ag+, which is readily formed owing to extreme sensitivity to oxygen. The antibacterial activities of silver nanoparticles are dependent on optimally displayed oxidized surfaces, which are present in well-dispersed suspensions.  相似文献   

17.
Nanoscale particles have become promising materials in many fields, such as cancer therapeutics, diagnosis, imaging, drug delivery, catalysis, as well as biosensors. In order to stimulate and facilitate these applications, there is an urgent need for the understanding of the interaction mode between the nano-particles and proteins. In this study, we investigate the orientation and adsorption between several enzymes (cytochrome c, RNase A, lysozyme) and 4 nm/11 nm silica nanoparticles (SNPs) by using molecular dynamics (MD) simulation. Our results show that three enzymes are adsorbed onto the surfaces of both 4 nm and 11 nm SNPs during our MD simulations and the small SNPs induce greater structural stabilization. The active site of cytochrome c is far away from the surface of 4 nm SNPs, while it is adsorbed onto the surface of 11 nm SNPs. We also explore the influences of different groups (-OH, -COOH, -NH2 and CH3) coated onto silica nanoparticles, which show significantly different impacts. Our molecular dynamics results indicate the selective interaction between silicon nanoparticles and enzymes, which is consistent with experimental results. Our study provides useful guides for designing/modifying nanomaterials to interact with proteins for their bio-applications.  相似文献   

18.
Plant diseases are among the main constraints affecting the production and productivity of crops both in terms of quality and quantity. Use of chemicals continues to be the major tactic to mitigate the menace of crop diseases. However, because of the environmental concerns, health conscious attitude of human beings and other hazards associated with the use of chemicals, use of bio agents to suppress the disease-causing activity of plant pathogens is gaining importance. With the emergence and increase of microbial organisms resistant to multiple antibiotics, and the continuing emphasis on health-care costs, many researchers have tried to develop new and effective antimicrobial reagents that do not stimulate resistance and are less expensive. Nanoscale materials have emerged as novel antimicrobial agents owing to their high surface area to volume ratio and the unique chemical and physical properties, which increases their contact with microbes and their ability to permeate cells. Since silver displays multiple modes of inhibitory action to micro-organisms, it may be used for controlling various plant pathogens in a relatively safer way compared to synthetic fungicides. Development of reliable and eco-friendly processes for synthesis of metallic nanoparticles is an important step in the field of application of nanotechnology. One of the options to achieve this objective is to use synthesis of nanoparticles of silver by reduction of aqueous Ag+ ions with the culture supernatant of Pseudomonas fluorescens CHA0. In this study, P. fluorescens CHA0 that has a medium impact on Gaeumannomyces graminis var. tritici was selected. Then, P. fluorescens CHA0 was used for the synthesis of silver nanoparticles. The morphology of the nanoparticles was characterised by Transmission Electron Microscopy and UV–vis spectroscopy. The silver nanoparticles of approximate size 50 nm were observed. The process of reduction is extracellular which makes it an easier method for the synthesis of silver nanoparticles.  相似文献   

19.
Novel properties of antimicrobial peptides   总被引:7,自引:0,他引:7  
Endogenous peptide antibiotics are known as evolutionarily old components of innate immunity. Due to interaction with cell membrane these peptides cause permeabilization of the membrane and lysis of invading microbes. However, some studies proved that antimicrobial peptides are universal multifunctional molecules and their functions extend far beyond simple antibiotics. In this review we present an overview of the general mechanism of action of antimicrobial peptides and discuss some of their additional properties, like antitumour activity, mitogenic activity, role in signal transduction pathways and adaptive immune response.  相似文献   

20.
The aim of this study was to examine the antimicrobial efficiency and color changes of cotton fabrics loaded with colloidal silver nanoparticles which were synthesized without using any stabilizer. The influence of colloidal concentration and consequently, the amount of silver deposited onto the fabric surface, on antimicrobial activity against Gram-negative bacterium Escherichia coli, Gram-positive bacterium Staphylococcus aureus and fungus Candida albicans as well as laundering durability of obtained effects were studied. Although cotton fabrics loaded with silver nanoparticles from 10 ppm colloid exhibited good antimicrobial efficiency, their poor laundering durability indicated that higher concentrated colloids (50 ppm) must be applied for obtaining long-term durability. Additionally, the influence of dyeing with C.I. Direct Red 81 on antimicrobial activity of cotton fabrics loaded with silver nanoparticles as well as the influence of their presence on the color change of dyed fabrics were evaluated. Unlike color change, the antimicrobial efficiency was not affected by the order of dyeing and loading of silver nanoparticles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号