首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Str2 gene encodes a cystathionine γ‐synthase that is a key enzyme in methionine (Met) biosynthesis in Saccharomyces cerevisiae. Met plays a critical role in protein synthesis and diverse cellular processes in both eukaryotes and prokaryotes. In this study, we characterized the Str2 orthologue gene BcStr2 in Botrytis cinerea. The BcStr2 mutant was unable to grow on minimal medium (MM). In addition, conidia of the mutant were unable to germinate in water–agar medium within 15 h of incubation. Supplementation with 1 mm Met or 0.5 mg/mL homocysteine, but not 1 mm cysteine or 0.5 mg/mL glutathione, rescued the defect in mycelial growth of the BcStr2 deletion mutant. These results indicate that the enzyme encoded by BcStr2 is involved in the conversion of cysteine into homocysteine. The mutant exhibited decreased conidiation and impaired sclerotium development. In addition, the BcStr2 mutant exhibited increased sensitivity to osmotic and oxidative stresses, cell wall‐damaging agents and thermal stress. The mutant demonstrated dramatically decreased virulence on host plant tissues. All of the defects were restored by genetic complementation of the mutant with wild‐type BcStr2. Taken together, the results of this study indicate that BcStr2 plays a critical role in the regulation of various cellular processes in B. cinerea.  相似文献   

2.
A number of interesting features, phenotypes, and potential clinical applications have recently been ascribed to the type 2C family of protein phosphatases. Thus far, 16 different PP2C genes have been identified in the human genome, encoding (by means of alternative splicing) for at least 22 different isozymes. Virtually ever since their discovery, type 2C phosphatases have been predominantly linked to cell growth and to cellular stress signaling. Here, we provide an overview of the involvement of type 2C phosphatases in these two processes, and we show that four of them (PP2Calpha, PP2Cbeta, ILKAP, and PHLPP) can be expected to function as tumor suppressor proteins, and one as an oncoprotein (PP2Cdelta /Wip1). In addition, we demonstrate that in virtually all cases in which they have been linked to the stress response, PP2Cs act as inhibitors of cellular stress signaling. Based on the vast amount of experimental evidence obtained thus far, it therefore seems justified to conclude that type 2C protein phosphatases are important physiological regulators of cell growth and of cellular stress signaling.  相似文献   

3.
4.
5.
Activation of extracellular signal-regulated kinase (ERK) is known to be regulated by cell adhesion, namely "anchorage dependence". Most studies on the anchorage-dependent regulation have focused on the upstream activating components. We previously reported that the focal adhesion protein vinexin beta can induce the anchorage-independent activation of ERK2. We show here that vinexin beta-induced anchorage-independent activation of ERK2 involves prevention of the dephosphorylation of ERK2, but not the promotion of MEK1 or Raf1 activity. Furthermore, knockdown of vinexin beta resulted in a faster dephosphorylation of ERK2 in A549 cells. Moreover, the coexpression of MKP3/rVH6, an ERK2 specific phosphatase, suppressed the anchorage-independent activation of ERK2 induced by vinexin beta. These results suggest that vinexin beta can prevent the dephosphorylation of ERK2 stimulated by cell detachment, leading to the anchorage-independent activation of ERK2. Furthermore, we found that phosphatase activity directed against activated ERK2 was higher in suspended cells than in adherent cells. In addition, orthovanadate efficiently induces anchorage-independent activation of ERK2 without marked activation of MEK1 in NIH3T3 cells. These observations suggest that the anchorage dependence of ERK1/2 activation is regulated not only by upstream kinases, Raf1 and MEK, but also by phosphatases acting against ERK1/2 and that vinexin beta can induce anchorage-independent activation of ERK by preventing the inactivation of ERK1/2.  相似文献   

6.
Sequence homologies between type 1 and type 2A protein phosphatases   总被引:1,自引:0,他引:1  
The Mr = 33,000 catalytic fragment of rabbit skeletal muscle type 1 protein phosphatase was digested with trypsin after reduction and alkylation. The resulting peptides were isolated, subjected to automated Edman degradation, and their sequences compared to the deduced peptide sequence of the bovine type 2A protein phosphatase cDNA. Of 10 tryptic peptides from the type 1 phosphatase that were sequenced, nine showed a high degree of homology with the type 2A phosphatase. This provides the first direct sequence comparison suggesting that the type 1 and type 2 protein phosphatases, distinguished functionally by their substrate specificities and sensitivity to inhibitors, make up part of a family of closely related gene products with similar structures.  相似文献   

7.
The structure, role, and regulation of type 1 protein phosphatases.   总被引:18,自引:0,他引:18  
Type 1 protein phosphatases (PP-1) comprise a group of widely distributed enzymes that specifically dephosphorylate serine and threonine residues of certain phosphoproteins. They all contain an isoform of the same catalytic subunit, which has an extremely conserved primary structure. One of the properties of PP-1 that allows one to distinguish them from other serine/threonine protein phosphatases is their sensitivity to inhibition by two proteins, termed inhibitor 1 and inhibitor 2, or modulator. The latter protein can also form a 1:1 complex with the catalytic subunit that slowly inactivates upon incubation. This complex is reactivated in vitro by incubation with MgATP and protein kinase FA/GSK-3. In the cell the type 1 catalytic subunit is associated with noncatalytic subunits that determine the activity, the substrate specificity, and the subcellular location of the phosphatase. PP-1 plays an essential role in glycogen metabolism, calcium transport, muscle contraction, intracellular transport, protein synthesis, and cell division. The activity of PP-1 is regulated by hormones like insulin, glucagon, alpha- and beta-adrenergic agonists, glucocorticoids, and thyroid hormones.  相似文献   

8.
9.
10.
Normal functioning of the brain is dependent upon a complex web of communication between numerous cell types. Within neuronal networks, the faithful transmission of information between neurons relies on an equally complex organization of inter- and intra-cellular signaling systems that act to modulate protein activity. In particular, post-translational modifications (PTMs) are responsible for regulating protein activity in response to neurochemical signaling. The key second messenger, cyclic adenosine 3′,5′-monophosphate (cAMP), regulates one of the most ubiquitous and influential PTMs, phosphorylation. While cAMP is canonically viewed as regulating the addition of phosphate groups through its activation of cAMP-dependent protein kinases, it plays an equally critical role in regulating removal of phosphate through indirect control of protein phosphatase activity. This dichotomy of regulation by cAMP places it as one of the key regulators of protein activity in response to neuronal signal transduction throughout the brain. In this review we focus on the role of cAMP in regulation of the serine/threonine phosphatases protein phosphatase 1 (PP1) and protein phosphatase 2A (PP2A) and the relevance of control of PP1 and PP2A to regulation of brain function and behavior.  相似文献   

11.
Small GTPases of the Ras superfamily are highly conserved proteins that are involved in various cellular processes, in particular morphogenesis, differentiation, and polar growth. Here we report on the analysis of RAS1 and RAC homologues from the gray mold fungus Botrytis cinerea. We show that these small GTPases are individually necessary for polar growth, reproduction, and pathogenicity, required for cell cycle progression through mitosis (BcRAC), and may lie upstream of the stress-related mitogen-activated protein kinase (MAPK) signaling pathway. bcras1 and bcrac deletion strains had reduced growth rates, and their hyphae were hyperbranched and deformed. In addition, both strains were vegetatively sterile and nonpathogenic. A strain expressing a constitutively active (CA) allele of the BcRAC protein had partially similar but milder phenotypes. Similar to the deletion strains, the CA-BcRAC strain did not produce any conidia and had swollen hyphae. In contrast to the two deletion strains, however, the growth rate of the CA-BcRAC strain was normal, and it caused delayed but well-developed disease symptoms. Microscopic examination revealed an increased number of nuclei and disturbance of actin localization in the CA-BcRAC strain. Further work with cell cycle- and RAC-specific inhibitory compounds associated the BcRAC protein with progression of the cell cycle through mitosis, possibly via an effect on microtubules. Together, these results show that the multinucleate phenotype of the CA-BcRAC strain could result from at least two defects: disruption of polar growth through disturbed actin localization and uncontrolled nuclear division due to constitutive activity of BcRAC.  相似文献   

12.
Serine/threonine protein phosphatases are ubiquitous enzymes in all eukaryotes but many of their physiological roles in plants remain unknown. The available results have demonstrated critical functions for these enzymes in the regulation of adaptive stress responses, and recent studies have directed attention to the functional roles of Ser/Thr phosphatases type 2A (PP2A) as components of stress signaling pathways. This review is focused primarily on plant PP2As and their participation in the control of biotic and abiotic stress responses.Key words: protein phosphatases type 2A, PP2A, biotic stress, abiotic stress, signaling, okadaic acid  相似文献   

13.
Fournier E  Giraud T  Albertini C  Brygoo Y 《Mycologia》2005,97(6):1251-1267
In micro-organisms biodiversity is often underestimated because relevant criteria for recognition of distinct evolutionary units are lacking. Phylogenetic approaches have been proved the most useful in fungi to address this issue. Botrytis cinerea, a generalist fungus causing gray mold, illustrates this problem. It long has been thought to be a single variable species. Recent population genetics studies have shown that B. cinerea is a species complex. However conflicting partitions were proposed. To identify the most relevant partitions within the B. cinerea complex we used a multiple-gene genealogies approach. We sequenced portions of four nuclear genes, of which genealogies congruently clustered into two well supported groups corresponding to Groups I and II previously described, indicating that they represent phylogenetic species. Estimates of migration rates and genetic differentiation showed that these groups had been isolated for a long time, without detectable gene flow. This was confirmed by the high number of polymorphic sites fixed within each group. The genetic diversity was lower within Group I, as revealed by DNA polymorphism and vegetative incompatibility tests. Groups I and II exhibited phenotypic differences in their phenology, host range, size of asexual spores and vegetative compatibility. All these morphological and molecular aspects suggest that B. cinerea Groups I and II may be different cryptic species, isolated for a long time. Phylogenies and molecular analyzes of variance revealed no genetic structure according to the other suggested partitions for the B. cinerea complex (i.e., among host plants, between strains with and without transposable elements, nor between strains responsible for noble rot and gray mold. This suggests that recombination regularly occurs, or occurred until recently, within B. cinerea Group II. This also was supported by recombination rates at each locus. Multiple-gene genealogies showed their utility by providing a relevant partition criterion for the B. cinerea complex.  相似文献   

14.
The two recently discovered forms of protein phosphatase 2C, termed 2C1 and 2C2, were digested with CNBr or trypsin, and several peptides corresponding to two regions of the protein were sequenced. These studies revealed close homology between the two enzymes with 49 identities over the 62 residues that could be compared directly. The results establish that protein phosphatases 2C1 and 2C2 are the products of different genes. The C-terminus of protein phosphatase 2C2 has also been identified.  相似文献   

15.
Type 1 phosphoprotein Ser/Thr phosphatases (PP1) are highly conserved enzymes found in all eukaryotes. These enzymes have multiple functions in fungal and animal cells but little is known of their function and regulation in plants. Previous studies in our laboratory indicated that maize and Arabidopsis contain a family of PP1 genes and/or pseudogenes. In this study, we report the isolation of five distinct Arabidopsis cDNA clones (TOPP1, TOPP2, TOPP3, TOPP4 and TOPP5) which encode the catalytic subunit (PP1c) of type 1 protein phosphatases. Genomic Southern blot analyses indicate that these clones are the products of five distinct genes and that an additional 2–3 PP1c genes and/or pseudogenes may be present in the Arabidopsis genome. The derived amino acid sequences of the TOPP clones are very similar to published sequences of PP1c from animals, fungi and plants. Four of the TOPP amino acid sequences show unique structural features not observed in other PP1c sequences from fungi or animals. All of the TOPP genes are expressed in Arabidopsis roots, rosettes and flowers, although TOPP1, TOPP2 and TOPP3 appear to be expressed at higher levels in these tissues than TOPP4 and TOPP5.  相似文献   

16.
Protein phosphatase type 1 and type 2 activities (designated PP-1 and PP-2, respectively) from rabbit reticulocyte lysates have been identified and characterized based on criteria previously established for similar activities in rabbit skeletal muscle and rabbit liver. These include (a) chromatographic separation on DEAE-cellulose, (b) substrate specificity toward glycogen phosphorylase a and the alpha- and beta-subunits of phosphorylase kinase, (c) differential sensitivity to the heat-stable protein phosphatase inhibitors-1 and -2, and (d) sensitivity to MgATP. When total lysate phosphatases are assayed in the presence of 1 mM MnCl2, protein phosphatase type 2 represents 84% of lysate phosphorylase phosphatase activity. However, when phosphatase assays are carried out with MgATP concentrations similar to those in the lysate, type 2 activity is diminished, and the levels of type 1 (41%) and type 2 (59%) phosphatase activities are comparable. A small proportion (6%) of total lysate phosphatase is tightly bound to the ribosomes, where type 1 phosphatase predominates. At least five species of protein phosphatases can be identified in lysates. These constitute two forms of protein phosphatase type 1, one of which (designated FC) is dependent on MgATP and a lysate activator protein FA; both FC and FA have been identified previously in skeletal muscle. Three species of protein phosphatase type 2 have been identified and designated PP-2B, PP-2A1, and PP-2A2 based on criteria recently established for rabbit skeletal muscle and rabbit liver phosphatases, which display similar phosphatase profiles. Lysate protein phosphatases types 1, FC, 2A1, and 2A2 can all act on phosphorylase a and the alpha- (type 2) or beta-(type 1) subunit of phosphorylase kinase. PP-2B, a Ca2+/calmodulin-dependent phosphatase, specifically dephosphorylates the alpha-subunit of phosphorylase kinase, but does not act on phosphorylase alpha. The heat-stable protein phosphatase inhibitor-2 from skeletal muscle completely blocks the activity of the two type 1 phosphatases (PP-1, FC), but has no effect on the three species of type 2 protein phosphatase. A preliminary assay of the two heat-stable phosphatase inhibitors in lysates indicates significant levels of inhibitor-2, but little or no detectable inhibitor-1.  相似文献   

17.
To get a better insight into the relationship between cell wall integrity and pathogenicity of the fungus Botrytis cinerea, we have constructed chitin synthase mutants. A 620 bp class I chitin synthase gene fragment (Bcchs1) obtained by PCR amplification was used to disrupt the corresponding gene in the genome. Disruption of Bcchs1 occurred at a frequency of 8%. Nine independent mutants were obtained and the Bcchs1 mutant phenotype compared to that of transformants in which the gene was not disrupted. These disruption mutants were dramatically reduced in their in vitro Mg2+, Mn2+, and Co2+-dependent chitin synthase activity. Chitin content was reduced by 30%, indicating that Bcchs1p contributes substantially to cell wall composition. Enzymatic degradation by a cocktail of glucanases revealed cell wall weakening in the mutant. Bcchs1 was transcribed at a constant level during vegetative exponential growth, suggesting that it was necessary throughout hyphal development. Bcchs1 mutant growth was identical to undisrupted control transformant growth, however, the mutant exhibited reduced pathogenicity on vine leaves. It can be assumed that disruption of Bcchs1 leads to cell wall weakening which might slow down in planta fungal progression.  相似文献   

18.
Botrytis cinerea, the fungus causing gray mould disease, is usually controlled by cultural and chemical methods. It would be interesting to see if mycoviruses were a feasible method for reducing fungal virulence thus controlling the disease, but first more has to be understood of the RNA silencing mechanism and whether mycoviruses can combat such defences. Analysis of the B. cinerea genome data identified two Dicer genes: dcr1 and dcr2. In other fungi, mutation or deletion of dcr2 usually leads to impaired gene silencing. Targeted gene disruption created two independent B. cinerea Δdcr2 mutants in a ku70 background. When the Δdcr2 mutants were transformed with an argininosuccinate synthetase (bcass1) silencing cassette, many of these transformants displayed arginine auxotrophy, suggesting that silencing was still functional in a Δdcr2 mutant. Transfection of the wild-type and dcr2-disrupted B. cinerea lines with Botrytis virus F (BVF) gave no readily detectable alteration in fungal growth rate or virulence. Expression of dcr2, but not dcr1, was suppressed in the wild-type at 7 days post infection with BVF, whereas in a Δdcr2 mutant, dcr1 expression was suppressed. By 28 days post BVF-infection, dcr1 and dcr2 were expressed to the elevated levels typically observed when gene silencing is induced. This shows that whilst dcr2 is not essential for gene silencing or for controlling mycovirus such as BVF, it would appear that the mycovirus BVF is able to suppress the normal expression of genes involved in the silencing pathway, at least during early stages of infection of B. cinerea.  相似文献   

19.
《The Journal of cell biology》1989,109(6):3347-3354
Specific inhibition of types 1 and 2A protein phosphatases by microinjection of okadaic acid (OA) into starfish oocytes induced germinal vesicle breakdown and activation of M phase-promoting factor (MPF) and histone H1 kinase. The effects were evident in immature oocytes arrested at first meiotic prophase as well as in fully mature oocytes arrested at the pronucleus stage. In addition, MPF and histone H1 kinase were stabilized for several hours and protected from inactivation by inhibition of type 1 protein phosphatases with either OA or specific anti-phosphatase antibodies. Microinjection of okadaic acid was associated with unusual changes of the microtubule network, including the disappearance of spindles and extension of the cytoplasmic array of microtubules. MPF activation after OA injection was associated with dephosphorylation of phosphothreonine and phosphoserine residues in cdc2, showing that neither type 1 nor 2A protein phosphatases catalyzes these dephosphorylations. The effects of OA on MPF activation and inactivation appeared to involve the cyclin subunit. OA did not induce MPF activation in the absence of protein synthesis and it prevented degradation of cyclin. Therefore protein phosphatases types 1 and 2A appear to be involved in activation and inactivation of MPF involving mechanisms that operate after cyclin synthesis and before its degradation.  相似文献   

20.
The grey mould fungus Botrytis cinerea produces two major phytotoxins, the sesquiterpene botrydial, for which the biosynthesis gene cluster has been characterized previously, and the polyketide botcinic acid. We have identified two polyketide synthase (PKS) encoding genes, BcPKS6 and BcPKS9, that are up-regulated during tomato leaf infection. Gene inactivation and analysis of the secondary metabolite spectra of several independent mutants demonstrated that both BcPKS6 and BcPKS9 are key enzymes for botcinic acid biosynthesis. We showed that BcPKS6 and BcPKS9 genes, renamed BcBOA6 and BcBO9 (for B. cinerea botcinic acid biosynthesis), are located at different genomic loci, each being adjacent to other putative botcinic acid biosynthetic genes, named BcBOA1 to BcBOA17. Putative orthologues of BcBOA genes are present in the closely related fungus Sclerotinia sclerotiorum, but the cluster organization is not conserved between the two species. As for the botrydial biosynthesis genes, the expression of BcBOA genes is co-regulated by the Gα subunit BCG1 during both in vitro and in planta growth. The loss of botcinic acid production does not affect virulence on bean and tomato leaves. However, double mutants that do not produce botcinic acid or botrydial (bcpks6Δbcbot2Δ) exhibit markedly reduced virulence. Hence, a redundant role of botrydial and botcinic acid in the virulence of B. cinerea has been demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号