首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
3,4,6-Tri-O-acetyl-d-galactal, on treatment in 1,2-dichloroethane with alcohols and stannic chloride as catalyst, readily undergoes allylic rearrangement-substitution, forming alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-threo-hex-2-enopyranosides in yields of 43-92%. Alkyl 3,4,6-tri-O-acetyl-2-deoxy-αβ-d-lyxo-hexopyranosides are formed as side-products in yields of 2-14 %. Stannic chloride-catalysis is also useful in allylic rearrangement of 3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-d-arabino- hex-l-enitol (3,4,6-tri-O-acetyl-d-glucal) which, with methanol or ethanol, affords the corresponding alkyl 4,6-di-O-acetyl-2,3-dideoxy-α-d-erythro-hex-2-enopyranosides in yields of 83 and 94%.  相似文献   

2.
Methyl 4,6-O-methylene-D-glycopyranosides having the α-D-altro, α- and β-D-gluco, α-D-manno, and α-D-galacto configurations were prepared in 3.4 to 27.4% yields by condensing formaldehyde from 1,3,5-trioxane with the methyl glucosides in anhydrous 1,4-dioxane at 95° with boron trifluoride as the catalyst. A crystalline methyl 2,3:4,6-di-O-methylene-α-D-mannopyranoside was also isolated. Crystalline methyl 4,6-O-methylene 2,3-di-O-p-tolylsulfonyl-α-D-galacto- and α-D-glucopyranosides were prepared in 78 and 54.4% yields. N.m.r. coupling constants of the 2,3-di-O-acetyl derivatives of the 4,6-O-methylene glycosides were used to establish the Cl(D) conformation for each derivative.  相似文献   

3.
An approach to stereoselective synthesis of α- or β-3-C-glycosylated l- or d-1,2-glucals starting from the corresponding α- or β-glycopyranosylethanals is described. The key step of the approach is the stereoselective cycloaddition of chiral vinyl ethers derived from both enantiomers of mandelic acid. The preparation of 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-l-arabino-hex-1-enitol, 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)methyl]-d-arabino-hex-1-enitol, and 1,5-anhydro-4,6-di-O-benzyl-2,3-dideoxy-3-C-[(2,3,4-tri-O-benzyl-α-l-fucopyranosyl)methyl]-d-arabino-hex-1-enitol serves as an example of this approach.  相似文献   

4.
Acid-catalysed condensation of methyl β-d-glycero-l-manno-heptopyranoside with cyclohexanone yielded an approximately 3:1 mixture of the 2,3:6,7- and 2,3:4,7-di-O-cyclohexylideneheptosides (1 and 2), which could be separated either as their benzoates (3 and 4) or as their methyl ethers (5 and 6). The latter compounds afforded the 4- and 6-methyl ethers (7 and 8) of d-glycero-l-manno-heptitol.  相似文献   

5.
A series of O-alkyl derivatives of cyclodextrin: heksakis[2,3,6-tri-O-(2′-methoxyethyl)]-α-cyclodextrin; heksakis(2,3-di-O-methyl)-α-cyclodextrin; heptakis(2,3-di-O-methyl)-β-cyclodextrin; heksakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-α-cyclodextrin; heptakis[2,3-di-O-methyl-6-O-(2′-methoxyethyl)]-β-cyclodextrin; heksakis[2,3-di-O-(2′-methoxyethyl)]-α-cyclodextrin and heptakis[2,3-di-O-(2′-methoxyethyl)]-β-cyclodextrin have been synthesized. Purity and composition of the obtained substances were examined. The cyclodextrin derivatives listed above as well as (2-hydroxypropyl)-α-cyclodextrin and (2-hydroxypropyl)-β-cyclodextrin, the two commercially available ones, have been investigated as the additives in the course of enzymatic decomposition of l-tryptophan by l-tryptophan indole-lyase. It has been found that each of cyclodextrin derivatives causes the inhibition of enzymatic process, both competitive and non-competitive. The competitive inhibition is connected with the formation of inclusion complexes between cyclodextrins and l-tryptophan, related to the geometry of these complexes. The mechanism of the non-competitive inhibition is not so evident; it could be related to the formation of the cyclodextrin complexes on the surface of the enzyme, leading to the change in the flexibility of the enzyme molecule.  相似文献   

6.
Condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-benzyl-1-O-(N-methyl)acetimidoyl-β-D-glucopyranose gave benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-4-O-(2,3,4,6-tetra-O-benzyl-α-D-glucopyranosyl)-α-D-glucopyranoside which was catalytically hydrogenolysed to crystalline 2-acetamido-2-deoxy-4-O-α-D-glucopyranosyl-α-D-glucopyranose (N-acetylmaltosamine). In an alternative route, the aforementioned imidate was condensed with 2-acetamido-3-O-acetyl-1,6-anhydro-2-deoxy-β-D-glucopyranose, and the resulting disaccharide was catalytically hydrogenolysed, acetylated, and acetolysed to give 2-acetamido-1,3,6-tri-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl)-α-D-glucopyranose Deacetylation gave N-acetylmaltosamine. The synthesis of 2-acetamido-2-deoxy-4-O-β-D-glucopyranosyl-α-D-glucopyranose involved condensation of benzyl 2-acetamido-3,6-di-O-benzyl-2-deoxy-α-D-glucopyranoside with 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl bromide in the presence of mercuric bromide, followed by deacetylation and catalytic hydrogenolysis of the condensation product.  相似文献   

7.
The reaction of d-glucitol with acetone-zinc chloride gave a mixture of isopropylidene derivatives, from which the 2,3:5,6-diacetal (12) could be separated as its 1,4-dimesylate (13) or 1,4-ditosylate (14). The structure of 12 was proved by converting 14, via the 1-mono-iodide, into the known 1-deoxy-d-glucitol, and by mass-spectrometric investigation of the 1-deoxy-4-O-methyl diacetal. The terminally situated acetal group in 12 can be selectively hydrolyzed, and, on treatment with base, the 5,6-dihydroxy derivative obtained gives a d-galactitol 4,5-epoxide derivative.  相似文献   

8.
Allyl 4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di-O-benzyl-α-d- galactopyranoside was O-deallylated to give the 1-hydroxy derivative, and this was converted into the corresponding 1-O-(N-phenylcarbamoyl) derivative, treatment of which with dry HCl produced the α-d-galactopyranosyl chloride. This was converted into the corresponding 2,2,2-trifluoroethanesulfonate, which was coupled to allyl 2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside, to give crystalline allyl 4-O-[4-O-(4-O-acetyl-2-O-benzoyl-3,6-di-O-benzyl-β-d-galactopyranosyl)-2-O-benzoyl-3,6-di- O-benzyl-β-d-galactopyranosyl]-2-O-benzoyl-3,6-di-O-benzyl-α-d-galactopyranoside (15) in 85% yield, no trace of the α anomer being found. The trisaccharide derivative 15 was de-esterified with 2% KCN in 95% ethanol, and the product O-debenzylated with H2-Pd, to give the unprotected trisaccharide. Alternative sequences are discussed.  相似文献   

9.
The unambiguous syntheses of methyl 3,4,6-tri-O-methyl-α-d-mannopyranoside (6) and methyl 3,4-di-O-methyl-α-d-mannopyranoside (10) were performed by routes involving methyl 3-O-benzoyl-4,6-O-benzylidene-α-d-mannopyranoside (1) to form methyl 2-O-p-tolylsulfonyl-d-mannopyranoside (4). Compound 4 directly led to 6, and, via a 6-trityl derivative, to 10.  相似文献   

10.
The reaction of methyl 2,3:4,6-di-O-benzylidene-α-D-mannopyranoside (5) with N-bromosuccinimide gave mainly three, isomeric dibromo dibenzoates, identified as the 3,6-dibromo-altro (1), 3,6-dibromo-manno (2), and 4,6-dibromo-ido (3) derivatives by subsequent chemical transformation and by extended n.m.r.-spectral studies. The reaction of methyl 2,3:4,6-O-benzylidene-α-D-allopyranoside (22) with N-bromosuccinimide gave two isomeric dibromo dibenzoates, the 2,6-dibromo-altro (23) and 3,6-dibromo-gluco (24) products, and their structures were similarly assigned. A similar reaction-sequence with methyl 2,3:4,6-di-O-benzylidene-α-D-glucopyranoside (32), however, yielded two isomeric monobenzoates 33 and 34, which could be identified straightforwardly. The results are consistent with the intermediate formation of benzoxonium ions that undergo favored axial attack. Thus the observed products and their ratios in reactions of 5 and of 22 with N-bromo-succinimide are explicable. Compound 32, however, does not appear to react by way of an intermediate, five-membered 2,3-trans benzoxonium ion.  相似文献   

11.
The reaction of N-acetyl-α-d-glucofuranosylamine with 2,2-dimethoxypropane, catalyzed by p-toluenesulfonic acid, gave 1-acetamido-2,3:5,6-di-O-isopropylidene-1-O-methyl-d-glucitol (65.6%), 1-acetamido-2,3-O-isopropylidene-1-O-methyl-d-glucitol (3.7%), and N-acetyl-5,6-O-isopropylidene-α-d-glucofuranosylamine (3.2% yield). The structures of these compounds were determined by chemical and spectroscopic methods, and their relation to the pattern of n.m.r. resonances of the isopropylidene methyl groups is discussed.  相似文献   

12.
Anti-Markovnikov hydration of the olefinic bond of 5,6-dideoxy-1,2-O-isopropylidene-3-O-p-tolylsulfonyl-α- d-xylo-hex-5-enofuranose (4) and methyl 5,6-dideoxy-2,3-di-O-p-tolylsulfonyl-α-l-arabino-hex-5-enofuranoside (11) by the addition of iodine trifluoroacetate, followed by hydrogenation in the presence of a Raney nickel catalyst in ethanol containing triethylamine, afforded 5-deoxy-1,2-O-ísopropylidene-3-O-p-tolylsulfonyl-α-d-xylo-hexofuranose (6) and methyl 5-deoxy-2,3-di-O-p-tolylsulfonyl-α-d-arabino-hexofuranoside (14), respectively. 5-deoxy-d-xylo-hexose and 5-deoxy-l-arabino-hexose were prepared from 6 and 14, respectively, by photolytic O-detosylation and acid hydrolysis. Syntheses of 9-(5-deoxy-β-d-xylo-hexofuranosyl)-adenine and 9-(5-deoxy-α-l-arabino-hexofuranosyl)adenine are also described. Application of the sodium naphthalene procedure, for O-detosylation, to 11 is reported in connection with an alternative synthetic route to methyl 5-deoxy-α-l-arabino- hexofuranoside.  相似文献   

13.
(+)-Pinpollitol, a new cyclitol recently isolated from the pollen of Pinus radiata, was found in the needles of this species. (+)-Pinpollitol was found to be a di-O-methyl ether Of d-(+)-chiro-inositol, and tentative isomeric structures have been proposed for the cyclitol. (+)-Pinpollitol is the first di-O-methyl inositol to be found in a gymnosperm and is one of only three di-O-methyl inositols yet found in nature.  相似文献   

14.
The transformation of (5R)-2,6-di-O-benzyl-5-C-methoxy-β-d-galactopyranosyl-(1→4)-2,3:5,6-di-O-isopropylidene-aldehydo-d-glucose dimethyl acetal (8) into partially protected derivatives of d-xylo- and l-lyxo-aldohexos-5-ulose has been reported, applying appropriate epimerisation methods to its 3′-O- and 4′-O-protected alcoholic derivatives.  相似文献   

15.
In an attempt to gain information about one or more components of the brassin complex, fatty acid esters of d-glucose and d-galactose were prepared and tested for growth regulator activity in a bean hypocotyl bioassay. 4-O-Acyl-d-glucoses and, perhaps, 1-O-acyl- d-galactoses had a similar qualitative activity to that of the brassin complex. 3-O-Acyl- d-galactoses inhibited elongation of bean hypocotyls and stimulated rooting. 3- And 6-O- acyl-d-glucoses both stimulated and inhibited elongation, depending on the source of fatty acids; in both cases, stimulation was observed when safflower oil was used as the source of fatty acids and inhibition was observed when peanut oil was used as the source of fatty acids. Fatty alkyl β-d-galactopyranosides were inactive.  相似文献   

16.
The 3,4-O- and 1,2:3,4-di-O-isopropylidene derivatives (7 and 8) of l-dendroketose [4-C-(hydroxymethyl)-l-glycero-pentulose] (1) have been synthesized stereo-specifically from 4-C-(hydroxymethyl)-1,2:3,4-di-O-isopropylidene-l-erythro-pentitol (2).  相似文献   

17.
Three efficient routes to 3-azido-3-deoxy-β-d-galactopyranosides were developed relying on a double inversion protocol at C3. Two of the routes were demonstrated to work with both O- and S-glycosides. In all three routes, the 2-O-acetyl-3-azido-4,6-O-benzylidene-3-deoxy-β-d-galactopyranosides were obtained by an azide inversion of the key intermediates 2-O-acetyl-4,6-O-benzylidene-3-O-trifluoromethanesulfonyl-β-d-gulopyranosides. The intermediate gulopyranosides were in turn obtained from 2-O-acetyl-4,6-O-benzylidene-3-O-trifluoromethanesulfonyl-β-d-galactopyranosides, installed in one pot from the 4,6-O-benzylidene-β-d-galactopyranosides, by inversion with nitrite or acetate. For O-glycosides, the gulopyranoside configuration could alternatively be obtained from the 4,6-O-benzylidene-β-d-galactopyranoside by elimination to give the 2,3-dianhydro derivative followed by a highly stereoselective cis-dihydroxylation.  相似文献   

18.
Hydrolysis of 1,2-O-isopropylidene-3,5-di-O-methyl-α-d-glucofuranose by strong acid yielded 3,5-di-O-methyl-d-glucofuranose (6) and its 1,6-anhydride (10). The mechanism of the reaction giving 10 is discussed. On treatment with a catalytic amount of sodium methoxide, 1,2,6-tri-O-acetyl-3,5-di-O-methyl-d-glucofuranose (8) gives the 6-O-acetyl derivative, whereas complete deacetylation, and subsequent isomerization to the d-fructose derivative 16, takes place in the presence of 0.1m sodium methoxide. The structure of 16 was proved both chemically and spectroscopically. Reduction of 6 or 8 with a borohydride afforded 3,5-di-O-methyl-d-glucitol.2  相似文献   

19.
Partial benzylation of methyl 2,3-di-O-benzyl-α-D-galactopyranoside gave methyl 2,3,6-tri-O-benzyl-α-D-galactopyranoside as the major product, whereas the isomeric 2,6-di-O-benzyl ether gave a mixture of products in which the ratio of methyl 2,4,6- to methyl 2,3,6-tri-O-benzyl-α-D-galactopyranoside was ≈4:1. The proportion of unreacted starting-material was low in both cases, whereas after a similar reaction of methyl 2,6-di-O-benzyl-β-D-galactopyranoside more than 50% of the dibenzyl ether was recovered unchanged. In this case also, considerably higher reactivity was exhibited by the hydroxyl group at C-4 than that at C-3. Acid hydrolysis of the methyl glycosides of the tribenzyl ethers afforded crystalline 2,4,6-tri-O-benzyl-α-D-galactose and syrupy 2,3,6-tri-O-benzyl-D-galactose. Structures of intermediates were established by acetylation, examination of their n.m.r. spectra, and conversion into the known 3-O and 4-O-methyl-D-galactose.  相似文献   

20.
The 4-O-methanesulphonyl (and toluene-p-sulphonyl), 3,4-di-O-methanesulphonyl (and toluene-p-sulphonyl), and 3,4-di-O-benzoyl-2-O-methanesulphonyl derivatives of N-acetyl-N-p-methoxyphenyl- and N-acetyl-N-p-chlorophenyl-β-d-xylopyranosylamine have been synthesised together with the N-acetyl-N-p-methoxyphenyl and N-acetyl-N-p-chlorophenyl derivatives of 3,4-di-O-benzoyl-2-O-methanesulphonyl-β-d-lyxopyranosylamine. The relative reactivity of the hydroxyl groups of the N-acetyl-N-aryl-β-d-xylopyranosylamines towards sulphonylation has been established. On heating the 2- and 4-mesylates of N-acetyl-N-aryl-β-d-xylopyranosylamines and the 2-mesylate of N-acetyl-N-aryl-β-d-lyxopyranosylamines with sodium azide in N,N-dimethylformamide or acetonitrile, either nucleophilic replacement of the mesyl groups of their solvolysis with participation of the N-acetyl group occurred. In this way, β-d-xylo compounds were converted into α-l-arabino and β-d-lyxo derivatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号