首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pseudomonas chlororaphis subsp. aurantiaca SR1 was evaluated for control of Macrophomina phaseolina in vitro and in soybean plants, for growth promotion of soybean plants and for production of antifungal compounds. Strain SR1 caused a significant inhibition of M. phaseolina in vitro and reduced damping-off in the in vivo assays. In addition, strain SR1 significantly increased shoot and root length and shoot and root dry weight of soybean plants in M. phaseolina infested soil, as compared to control plants in infested soil. Fragments for the phenazine-1-carboxylic acid, pyrrolnitrin and hydrogen cyanide encoding genes were amplified from the DNA of strain SR1 after polymerase chain reaction (PCR) assays with specific primers. Thus, this study establishes that P. chlororaphis subsp. aurantiaca SR1 provides control of M. phaseolina in vivo and suggests that strain SR1 might be applied as an effective biocontrol agent to protect soybean plants from this phytopathogen.  相似文献   

2.
Aims: To determine whether glucose in growth medium affects secondary metabolite production and biocontrol efficacy of Pseudomonas chlororaphis O6. Methods and Results: The secondary metabolites pyrrolnitrin and phenazines antagonize phytopathogenic fungi. The expression of the prnA gene encoding tryptophan halogenase, the first step in pyrrolnitrin biosynthesis, required the stationary‐phase sigma factor, RpoS. Mutations in rpoS and prnA in Ps. chlororaphis O6 eliminated antifungal activity against Rhizoctonia solani and Fusarium graminearum. Pyrrolnitrin production was reduced by glucose in growth media, whereas phenazine levels were increased. The efficacy of Ps. chlororaphis O6 in the biocontrol of tomato late blight was reduced by addition of glucose to the growth medium. Conclusions: Regulation by glucose of pyrrolnitrin production influenced the efficacy of the biocontrol of tomato leaf blight. Significance and Impact of the Study: The nutritional regulation of secondary metabolite production from a soil pseudomonad may account, at least in part, for the variability of biocontrol under field conditions.  相似文献   

3.
4.
The GacS/GacA two-component system plays a central role in the regulation of a broad range of biological functions in many bacteria. In the biocontrol organism Pseudomonas chlororaphis, the Gac system has been shown to positively control quorum sensing, biofilm formation, and phenazine production, but has an overall negative impact on motility. These studies have been performed with strains originated from the rhizosphere predominantly. To investigate the level of conservation between the GacA regulation of biocontrol-related traits in P. chlororaphis isolates from different habitats, the studies presented here focused on the endophytic isolate G5 of P. chlororaphis subsp. aurantiaca. A gacA mutant deficient in the production of N-acylhomoserine lactones (AHLs) and phenazine was isolated through transposon mutagenesis. Further phenotypic characterization revealed that in strain G5, similar to other P. chlororaphis strains, a gacA mutation caused inability to produce biocontrol factors such as phenazine, HCN and proteases responsible for antifungal activity, but overproduced siderophores. LC-MS/MS analysis revealed that AHL production was also practically abolished in this mutant. However, the wild type exhibited an extremely diverse AHL pattern which has never been identified in P. chlororaphis. In contrast to other isolates of this organism, GacA in strain G5 was shown to negatively regulate biofilm formation and oxidative stress response whilst positively regulating cell motility and biosynthesis of indole-3-acetic acid (IAA). To gain a better understanding of the overall impact of GacA in G5, a comparative proteomic analysis was performed revealing that, in addition to some of the traits like phenazine mentioned above, GacA also negatively regulated lipopolysaccharide (LPS) and trehalose biosynthesis whilst having a positive impact on energy metabolism, an effect not previously described in P. chlororaphis. Consequently, GacA regulation shows a differential strain dependency which is likely to be in line with their niche of origin.  相似文献   

5.
6.
Pseudomonas chlororaphis strain PA23 has demonstrated excellent biocontrol in the canola phyllosphere. This bacterium produces the non-volatile antibiotics phenazine and pyrrolnitrin as well as the volatile antibiotics nonanal, benzothiazole and 2-ethyl-1-hexanol. In vitro experiments were conducted to study the effects of different mutations on the production of these three organic volatile antibiotics by PA23. In planta experiments in the greenhouse investigated the role of the non-volatile antibiotics on root colonization and biocontrol ability of PA23 against Sclerotinia sclerotiorum on sunflower. Analysis of phenazine- and pyrrolnitrin-deficient Tn mutants of PA23 revealed no differences in production of the three volatile antibiotics. On all sampling dates, PA23 applied alone or in combination with the mutants showed significantly higher (P = 0.05) root bacterial number and Sclerotinia wilt suppression (P = 0.05). Decline of the bacterial population seemed to be inversely proportional to/or negatively correlated with the number of antibiotics produced by PA23 but the relative importance of phenazine or pyrrolnitrin on root colonization and/or wilt suppression was not clear. In several cases, the strains producing at least one antibiotic maintained relatively higher bacterial numbers than non-producing strains. However, by 6 weeks after sowing, there was a rapid and significant (P = 0.05) increase in the proportion of introduced bacteria capable of producing at least one antibiotic over the total bacterial population. Furthermore, combining certain mutants with PA23 reduced the root colonization and biocontrol ability of PA23. Strain PA23-314 (gacS mutant) showed competitive colonization in comparison to the other mutants for most sampling dates.  相似文献   

7.
Antibiotic-producing Pseudomonas chlororaphis strains DF190 and PA23, Bacillus cereus strain DFE4 and Bacillus amyloliquefaciens strain DFE16 were tested for elicitation of induced systemic resistance (ISR) and direct antibiosis in control of blackleg in canola caused by the fungal pathogen Leptosphaeria maculans. Inoculation of bacteria 24 h and 48 h prior to the pathogen was crucial for disease control. In systemic induction studies, the bacteria and culture extracts had lower but significant suppression of the blackleg lesion. When inoculated at the same wound site as the pathogen pycnidiospores, the bacterial culture extracts had significantly higher reduction of blackleg lesion development. However, localized plant defense-related enzyme activity at the site of inoculation was not induced by all the bacteria. Direct antifungal activity at the infection site seems to be the dominant mechanism mediating control of L. maculans. A Tn5-gacS mutant of strain PA23 exhibited a complete loss of antifungal and biocontrol activity, which was restored upon addition of the gacS gene in trans. Interestingly, a phenazine-minus derivative of PA23 that produces elevated levels of pyrrolnitrin exhibited the same or higher blackleg disease suppression compared to the wild type. These findings suggest that direct antifungal activity, possibly mediated by pyrrolnitrin, and some low level of induced systemic resistance is involved in P. chlororaphis biocontrol of blackleg.  相似文献   

8.
绿针假单胞菌(Pseudomonas chlororaphis)是目前研究较多的生防菌种之一.19世纪初被Miguela首次分离,将其鉴定为假单胞菌(Pseudomonas),并将机会性病原菌绿脓杆菌作为其模式菌株,而后Peix于2007年重新将其分类为绿针假单胞菌(P.chlororaphis).目前该菌种已报道有4...  相似文献   

9.
In an attempt to obtain biologic control agents for grey mildew of tomato, a total of 628 bacterial strains were isolated from agricultural soil samples in Beijing, China, and screened for in vitro antibiosis toward Botrytis cinerea. Strain P94 exhibited the most obvious antagonistic activity. It P94 had no pathogenicity and was identified as Pseudomonas corrugata by the Biolog identification system combined with 16S rDNA sequence analysis and biochemical and physiologic characteristics. The specific products of polymerase chain reaction with two pairs of specific primers indicated that P94 belonged to P. corrugata genomic group II. Strain P94 inhibited the growth of a number of phytopathogenic fungal and bacterial species and showed inhibition activity to tomato grey mildew by tomato leaf testing in vitro. Strain P94 showed a positive reaction for HCN, protease, phosphatase, and indole acetic acid tests and a negative reaction for siderophore-, chitinase-, and cellulase-production tests. Therefore, the secondary metabolites producing novel P. corrugata strain P94 exhibited an innate potential of biocontrol activities in vitro.  相似文献   

10.
Mediated extracellular electron transfer (EET) might be a great vehicle to connect microbial bioprocesses with electrochemical control in stirred-tank bioreactors. However, mediated electron transfer to date is not only much less efficient but also much less studied than microbial direct electron transfer to an anode. For example, despite the widespread capacity of pseudomonads to produce phenazine natural products, only Pseudomonas aeruginosa has been studied for its use of phenazines in bioelectrochemical applications. To provide a deeper understanding of the ecological potential for the bioelectrochemical exploitation of phenazines, we here investigated the potential electroactivity of over 100 putative diverse native phenazine producers and the performance within bioelectrochemical systems. Five species from the genera Pseudomonas, Streptomyces, Nocardiopsis, Brevibacterium and Burkholderia were identified as new electroactive bacteria. Electron discharge to the anode and electric current production correlated with the phenazine synthesis of Pseudomonas chlororaphis subsp. aurantiaca. Phenazine-1-carboxylic acid was the dominant molecule with a concentration of 86.1 μg/ml mediating an anodic current of 15.1 μA/cm2. On the other hand, Nocardiopsis chromatogenes used a wider range of phenazines at low concentrations and likely yet-unknown redox compounds to mediate EET, achieving an anodic current of 9.5 μA/cm2. Elucidating the energetic and metabolic usage of phenazines in these and other species might contribute to improving electron discharge and respiration. In the long run, this may enhance oxygen-limited bioproduction of value-added compounds based on mediated EET mechanisms.  相似文献   

11.
The polymerase chain reaction (PCR) was used to identify and quantify all fungal pathogens of wheat (Triticum aestivum) stem bases in nine field experiments at three locations in England. The main aim was to apply quantitative PCR to provide robust data on the efficacy of new fungicides against the individual components of the stem‐base disease complex. Cyprodinil most effectively controlled eyespot by decreasing both pathogens, Tapesia yallundae and T. acuformis (the most widespread species), and sometimes contributed to increased yields. Prochloraz controlled eyespot less consistently, its effectiveness dependent mainly on the presence of T. yallundae or on rainfall events soon after application. Azoxystrobin contributed to yield increases most consistently. Although it decreased sharp eyespot and its pathogen, Rhizoctonia cerealis, these effects were insufficient to account for much of the yield increases. The effects of fungicides on eyespot were sometimes greatest on the most susceptible cultivars. Amounts of Tapesia DNA were usually consistent with cultivar susceptibility ratings. The only pathogens of brown foot rot present in significant amounts were Microdochium nivale vars nivale and majus. They appeared not to affect yield or to respond greatly to fungicides. The susceptibility of cultivars to these pathogens was sometimes similar to their susceptibility to eyespot, suggesting that they may respond to the same host resistance genes or may in some cases be secondary colonisers of eyespot‐infected plants.  相似文献   

12.
Rhizoctonia cerealis and Bipolaris maydis are fungal plant pathogens that cause enormous agricultural losses of wheat and maize.Bacillus amyloliquefaciens PEBA20 inhibited mycelial growth and spore germination of the pathogens and reduced fungal infections in wheat and maize, indicating its potential for application as a biocontrol agent.  相似文献   

13.
Strain Pseudomonas chlororaphis 449, an antagonist of a broad spectrum of phytopathogenic microorganisms isolated from the maize rhizosphere, was shown to produce three phenazine antibiotics: phenazine-1-carboxylic acid (PCA), 2-hydroxylphenazine-1-carboxylic acid (2-OH-PCA), and 2-hydroxylphenazine (2-OH-PHZ). Two Quorum Sensing (QS) systems of regulation were identified: Phz/R and CsaI/R. Genes phzI and csaI were cloned and sequenced. Cells of strain 449 synthesize at least three types of AHL: N-butanoyl-L-homoserine lactone (C4-AHL), N-hexanoyl-L-homoserine lactone (C6-AHL), and N-(3-oxo-hexanoyl)-L-homoserine lactone (30C6-AHL). Transposon mutagenesis was used to generate mutants of strain 449 deficient in synthesis of phenazines, which carried inactivated phzA and phzB genes of the phenazine operon and gene phzO. Mutations phzA ? and phzB ? caused a drastic reduction in the antagonistic activity of bacteria toward phytopathogenic fungi. Both mutants lost the ability to protect cucumber and leguminous plants against phytopathogenic fungi Rhizoctonia solani and Sclerotinia sclerotiorum. These results suggest a significant role of phenazines in the antagonistic activity of P. chlororaphis 449.  相似文献   

14.
Strains belonging to the Pseudomonas protegens and Pseudomonas chlororaphis species are able to control soilborne plant pathogens and to kill pest insects by producing virulence factors such as toxins, chitinases, antimicrobials or two-partner secretion systems. Most insecticidal Pseudomonas described so far were isolated from roots or soil. It is unknown whether these bacteria naturally occur in arthropods and how they interact with them. Therefore, we isolated P. protegens and P. chlororaphis from various healthy insects and myriapods, roots and soil collected in an agricultural field and a neighbouring grassland. The isolates were compared for insect killing, pathogen suppression and host colonization abilities. Our results indicate that neither the origin of isolation nor the phylogenetic position mirror the degree of insecticidal activity. Pseudomonas protegens strains appeared homogeneous regarding phylogeny, biocontrol and insecticidal capabilities, whereas P. chlororaphis strains were phylogenetically and phenotypically more heterogenous. A phenotypic and genomic analysis of five closely related P. chlororaphis isolates displaying varying levels of insecticidal activity revealed variations in genes encoding insecticidal factors that may account for the reduced insecticidal activity of certain isolates. Our findings point towards an adaption to insects within closely related pseudomonads and contribute to understand the ecology of insecticidal Pseudomonas.  相似文献   

15.
Fusarium head blight (scab), primarily caused by Fusarium graminearum, is a devastating disease of wheat (Triticum aestivum L.) worldwide. Wheat sharp eyespot, mainly caused by Rhizoctonia cerealis, is one of the major diseases of wheat in China. The defensin RsAFP2, a small cyteine-rich antifungal protein from radish (Raphanus sativus), was shown to inhibit growth in vitro of agronomically important fungal pathogens, such as F. graminearum and R. cerealis. The RsAFP2 gene was transformed into Chinese wheat variety Yangmai 12 via biolistic bombardment to assess the effectiveness of the defensin in protecting wheat from the fungal pathogens in multiple locations and years. The genomic PCR and Southern blot analyses indicated that RsAFP2 was integrated into the genomes of the transgenic wheat lines and heritable. RT-PCR and Western blot proved that the RsAFP2 was expressed in these transgenic wheat lines. Disease tests showed that four RsAFP2 transgenic lines (RA1–RA4) displayed enhanced resistance to F. graminearum compared to the untransformed Yangmai 12 and the null-segregated plants. Assays on Q-RT-PCR and disease severity showed that the express level of RsAFP2 was associated with the enhanced resistance degree. Two of these transgenic lines (RA1 and RA2) also exhibited enhanced resistance to R. cerealis. These results indicated that the expression of RsAFP2 conferred increased resistance to F. graminearum and R. cerealis in transgenic wheat.  相似文献   

16.
17.
Pseudomonas chlororaphis subsp. aureofaciens strain M71 was isolated from the root of a tomato plant and it was able to control in vivo Fusarium oxysporum f. sp. radicis-lycopersici responsible for the tomato crown and root rot. Recently, strain M71 was evaluated even for its efficacy in controlling Seiridium cardinale, the causal agent of bark canker of common cypress (Cupressus sempervirens L.). Strain M71 ability to persist on the tomato rhizosphere and on the aerial part of cypress plants could be related to the nature of the lipopolysaccharides (LPS) present on the outer membrane and in particular to the O-specific polysaccharide.A neutral O-specific polysaccharide was obtained by mild acid hydrolysis of the lipopolysaccharide from P. chlororaphis subsp. aureofaciens strain M71. By means of compositional analyses and NMR spectroscopy, the chemical repeating unit of the polymer was identified as the following linear trisaccharide.  相似文献   

18.
19.
In the present survey, quorum quenching activity was examined from a biocontrol point of view. Acyl-homoserine lactone (AHL) degrading bacteria were isolated from tomato rhizosphere using two standard bioreporter strains and different synthetic AHLs and then identified according to 16S rDNA sequences. Five isolates capable of inactivating both short and long 3oxo-substituted AHLs showed high similarity with the genera Bacillus, Microbacterium and Arthrobacter, and thereby Bacillus cereus U92 was determined as the most efficient quorum quencher strain. In the quantitative experiments, this strain remarkably inactivated all synthetic AHLs up to 80%. In the laboratory co-cultures, B. cereus U92 efficiently quenched QS-regulated phenotypes in Agrobacterium tumefaciens, Pseudomonas aeruginosa, Pseudomonas chlororaphis and Chromobacterium violaceum. The strain successfully reduced the frequency of Ti-plasmid conjugal transfer in A. tumefaciens by about 99% in the binary cultures. Meanwhile, in a more natural environment, this strain acted as a biocontrol agent, efficient in alleviating QS-regulated crown gall incidence on tomato roots (up to 90%) as well as attenuating Pectobacterium soft rot on potato tubers (up to 60%). On the other hand, reducing phenazine production in P. chlororaphis operated as a suppressor of its QS-regulated biocontrol activity and also inhibited pyocyanin production in P. aeruginosa, a plant growth-promoting bacterium, by 75%. In general, B. cereus U92 seems very promising in the biological control of pathogenic bacteria; however, its broad AHL-degrading activity has a detrimental role on beneficial microbes which should not be neglected.  相似文献   

20.
Effects of inoculation of wheat (Triticum aestivum L.) with the rhizobacterium Pseudomonas chlororaphis subsp. aurantiaca strain SR1 (termed SR1) were studied at an experimental field site in Río Cuarto, Argentina. Treatments involved SR1 inoculation with or without nitrogen/phosphorus fertilization. Inoculation produced a significant increase in plant height and root length in early growth stages. Inoculation plus fertilization with 40 kg ha−1 urea/30 kg ha−1 diamonic phosphate (“50% dose”) gave a yield increase of 636 kg ha−1 relative to control, and an increase of 472 kg ha−1 relative to fertilization with 80 kg ha−1 urea/60 kg ha−1 phosphate without inoculation. SR1 inoculation without fertilization, compared to control, produced increases of 6% in weight of 1,000 grains, 13% in number of spikes per plant, and 30% in number of grains per spike. Inoculation plus 50% dose fertilization also improved these parameters. Results of the study indicate that inoculation of wheat with SR1 improves various growth and yield parameters, and allows reduced dosage of nitrogen/phosphorus fertilizers in the field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号