共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Gui-Hai Huang Hui-Hui Tian Hai-Ying Liu Xian-Wei Fan Yu Liang You-Zhi Li 《International journal of phytoremediation》2013,15(10):991-1009
Plant-growth-promoting (PGP) bacteria especially with the resistance to multiple heavy metals are helpful to phytoremediation. Further development of PGP bacteria is very necessary because of the extreme diversity of plants, soils, and heavy metal pollution. A Burkholderia sp. strain, numbered LD-11, was isolated, which showed resistances to multiple heavy metals and antibiotics. It can produce indole-3-acetic acid, 1-aminocyclopropane-1-carboxylic acid deaminase and siderophores. Inoculation with the LD-11 improved germination of seeds of the investigated vegetable plants in the presence of Cu, promoted elongation of roots and hypocotyledonary axes, enhanced the dry weights of the plants grown in the soils polluted with Cu and/or Pb, and increased activity of the soil urease and the rhizobacteria diversity. Inoculation with the LD-11 significantly enhanced Cu and/or Pb accumulation especially in the roots of the plants grown in the polluted soils. Notably, LD-11 could produce siderophores in the presence of Cu. Conclusively, the PGP effects and concurrent heavy metal accumulation in the plant tissues results from combined effects of the above-mentioned multiple factors. Cu is an important element that represses production of the siderophore by the bacteria. Phytoremediation by synergistic use of the investigated plants and the bacterial strain LD-11 is a phytoextraction process. 相似文献
4.
胡杨是我国西北荒漠地区特有的、对多种非生物逆境具有高抗逆性的树种,但其相关微生物的生态和生理功能研究还比较缺乏.本文从新疆沙雅地区原始胡杨林根际土壤中分离出重金属抗性细菌共72株.其中具有单一重金属(Cu2+、Ni2+、Pb2+或Zn2+)抗性的细菌菌株50株,有三重以上重金属抗性的菌株9株.将其中5株多重重金属抗性细菌接种至生根的竹柳插条,进行重金属胁迫下的盆栽培养.结果表明: 在铜或锌胁迫下,5株多重重金属抗性细菌对竹柳的生长抑制有不同程度的缓解,其中假单胞菌Z30和贪铜菌N8菌对铜和锌两种胁迫下竹柳生物量的增长与不接菌对照相比均达到显著差异水平.说明在非重金属污染区生长的胡杨根际存在多样性的重金属抗性细菌,其中一些多重重金属抗性菌对改善重金属胁迫下植物的生长有显著作用,具有应用于木本植物-微生物联合修复环境重金属污染的价值. 相似文献
5.
Cadmium tolerance and antioxidative defenses in hairy roots of the cadmium hyperaccumulator,Thlaspi caerulescens 总被引:8,自引:0,他引:8
Plant species capable of hyperaccumulating heavy metals are of considerable interest for phytoremediation and phytomining. This work aims to identify the role of antioxidative metabolism in heavy metal tolerance in the Cd hyperaccumulator, Thlaspi caerulescens. Hairy roots of T. caerulescens and the non-hyperaccumulator, Nicotiana tabacum (tobacco), were used to test the effects of high Cd environments. In the absence of Cd, endogenous activities of catalase were two to three orders of magnitude higher in T. caerulescens than in N. tabacum. T. caerulescens roots also contained significantly higher endogenous superoxide dismutase activity and glutathione concentrations. Exposure to 20 ppm (178 microM) Cd prevented growth of N. tabacum roots and increased hydrogen peroxide (H(2)O(2)) levels by a factor of five relative to cultures without Cd. In contrast, growth was maintained in T. caerulescens, and H(2)O(2) concentrations were controlled to low, nontoxic levels in association with a strong catalase induction response. Treatment of roots with the glutathione synthesis inhibitor, buthionine sulfoximine (BSO), exacerbated H(2)O(2) accumulation in Cd-treated N. tabacum, but had a relatively minor effect on H(2)O(2) levels and did not reduce Cd tolerance in T. caerulescens. Lipid peroxidation was increased by Cd treatment in both the hyperaccumulator and non-hyperaccumulator roots. This work demonstrates that metal-induced oxidative stress occurs in hyperaccumulator tissues even though growth is unaffected by the presence of heavy metals. It also suggests that superior antioxidative defenses, particularly catalase activity, may play an important role in the hyperaccumulator phenotype of T. caerulescens. 相似文献
6.
7.
8.
The aim of the study was to determine the quality and quantity of siderophores produced by bacteria isolated from plants' roots. The second aim was to determine the effect of siderophores on plants growth (Festuca rubra L. and Brassica napus L.). The study was carried out using bacteria isolated from roots of: Arabidopsis thaliana L., F. rubra, and Agrostis capillaris L., growing on the heavy metals contaminated area. The chrome azurol sulfonate (CAS) test, Arnow's test for catechol siderophores, and Csaksy's test for hydroxamate siderophores were performed. Among the bacteria, 42 isolates (39%) had a positive result in the CAS. Endophytic bacteria were mostly producing the catechol siderophores. It was found that F. rubra is the plant which is linked with the highest number of siderophores producing bacteria. The highest concentration of siderophores was noted for ectorhizospheric bacteria associated with A. thaliana, hyperaccumulating plant. It was found that hydroxamate siderophores are mainly produced by ectorhizosphere and rhizoplane bacteria. The siderophores producing bacteria reduced the toxicity of metals and improved the phytoremediation. Siderophores treatment increased the growth of plants in the biological assay, growing on two different soils: one highly contaminated with heavy metals and the second strongly alkaline soil. 相似文献
9.
Effect of cadmium and calcium treatments on phytochelatin and glutathione levels in citrus plants 总被引:1,自引:0,他引:1
M. F. López‐Climent V. Arbona R. M. Pérez‐Clemente S. I. Zandalinas A. Gómez‐Cadenas 《Plant biology (Stuttgart, Germany)》2014,16(1):79-87
Industry residues, phosphate fertilisers and wastewater as a source of irrigation have considerably increased levels of heavy metals in the soil, mainly cadmium (Cd2+). To test the effects of a calcium (Ca2+) treatment on Cd2+ accumulation and plant tolerance to this heavy metal, plants of two citrus genotypes, Cleopatra mandarin (CM) and Carrizo citrange (CC), were watered with increasing concentrations of Cd2+, and phytochelatin (PC) and glutathione (GSH) content were measured. Both genotypes were able to synthesise PCs in response to heavy metal intoxication, although CM seems to be a better Cd2+ excluder than CC. However, data indicate that CC plants had a higher capacity for regenerating GSH than CM plants. In this context, the effects of Ca2+ treatment on Cd2+ accumulation, plant survival and PC, GSH and oxidised glutathione (GSSG) content were assessed. Data indicate that treatment with Ca2+ had two positive effects on citrus physiology: it reduced Cd+2 uptake into roots and also increased GSH content (even in the absence of Cd2+). Overall, the data indicate that although Cd2+ exclusion is a powerful mechanism to avoid heavy metal build‐up into photosynthetic organs, the capacity to maintain optimum GSH levels to feed PC biosynthesis could also be an important factor in stress tolerance. 相似文献
10.
Smyth EM McCarthy J Nevin R Khan MR Dow JM O'Gara F Doohan FM 《Journal of applied microbiology》2011,111(3):683-692
Aims: In this study, we set out to identify bacteria that can be used to promote the growth of cereals, while concurrently investigating the merits of using a range of such tests to preselect bacteria for glasshouse studies. Methods and Results: A panel of 15 strains isolated from the rhizosphere and phyllosphere of cereals was tested for the ability to improve the germination of wheat seeds and for production of a range of factors associated with plant growth promotion. In parallel, all bacteria were tested for their ability to improve biomass and grain yield when applied as a soil amendment in glasshouse trials. Conclusions: There was no significant correlation between growth promotion potential in the glasshouse and the results of either the phenotypic or the germination tests. Glasshouse tests identified that only one strain, Pseudomonas fluorescens strain MKB37, gave a significant increase in head weight and grain yield. Significance and Impact of the Study: While this study has identified a candidate for further field tests, it has also highlighted the fact that the modes of action for plant growth‐promoting bacteria (PGPB) are still not fully understood, and that there is no efficient and effective screening method for identifying PGPB by laboratory tests. 相似文献
11.
强化龙葵富集镉根际促生菌的分离、筛选与鉴定 总被引:1,自引:0,他引:1
【背景】植物-微生物联合修复土壤重金属污染日渐兴起,获取与超富集植物高效互作的微生物是实现联合修复技术进步的关键。龙葵在镉农田污染修复中广泛应用。【目的】筛选可促进龙葵生长及富集镉的耐镉根际促生菌。【方法】从龙葵根际土分离耐镉菌株,筛选具有良好促生特性的菌株,水培试验考察镉胁迫下菌株对植物生长及镉富集能力的影响,确定可促进龙葵生长及富集镉的微生物菌株,通过生理生化特性和16S rRNA基因序列分析进行菌株的初步鉴定。【结果】分离得到NT1、AXY1、AW2和AW1四株强化龙葵富集镉促生菌,经鉴定分别为Lysinibacillus sp.、Beijerinckia fluminensis、Achromobacter animicus和Herbaspirillum huttiense。上述菌株均可有效促进龙葵生长,增加其株高和干物质积累,提高地上部镉富集量。其中,NT1可使株高、地上部干重分别增加31.33%和62.65%,AW2可使地上部镉富集量增加37.29%。【结论】筛选所得菌株可为提高植物修复效率提供实践依据,为研制田间施用生态功能菌剂做铺垫,用于农田镉污染的微生物-龙葵联合原位修复。 相似文献
12.
南通沿海滩涂耐盐植物重金属抗性内生细菌的筛选及生物多样性 总被引:2,自引:0,他引:2
【目的】沿海滩涂耐盐植物重金属抗性内生细菌的筛选及其促生长潜在能力的研究有助于我们获得一些能够耐受并促进耐盐植物在被Cd2+、Pb2+、Hg2+、Cu2+,Zn2+等重金属离子污染的贫瘠的沿海滩涂上正常生长的菌株,达到既能够利用广袤的滩涂生物资源产生经济价值又能够净化生态环境的目的。【方法】以江苏南通沿海滩涂地区的4种耐盐植物为材料,采用稀释平板涂布法从中分离得到45株内生细菌,从中挑取23株代表性的菌株,对其进行抗重金属Cu2+、Pb2+、Cd2+、Zn2+,Hg2+的活性筛选;固氮、解磷、吲哚乙酸(IAA)的产生、1-氨基环丙烷-1-羧酸(ACC)脱氨酶活性等促生指标以及NaCl耐受能力的筛选。【结果】发现分离所得的大多数细菌能够耐受高浓度的Cu2+以及Pb2+,但是对Cd2+、Zn2+,Hg2+的耐受能力则较弱;26.1%的细菌具有固氮能力,21.7%的细菌具有解磷能力,60.9%的细菌能够产生IAA,39.1%的细菌含有ACC脱氨酶。对他们进行16S rRNA基因鉴定后发现,他们分属于芽胞杆菌属(Bacillus)、喜盐芽胞杆菌属(Halobacillus)、海洋芽胞杆菌属(Oceanobacillus)、微小杆菌属(Exiguobacterium)、沙雷氏菌属(Serratia)、短波单胞菌属(Brevundimonas)、弧菌属(Vibrio)、葡萄球菌属(Staphylococcus)共8个属,显示了丰富的多样性。其中菌株KLBMP 2432以及菌株KLBMP 2447为潜在的新种。【结论】沿海滩涂地区的耐盐植物内生细菌具有丰富多样的生物多样性以及促生长能力,且存在潜在的新种资源,并对重金属Cu2+,Pb2+具有较强的抗性。 相似文献
13.
14.
Impact of rhizobacterial inoculants on plant growth and enzyme activities in soil treated with contaminated bottom sediments 总被引:1,自引:0,他引:1
Sylwia Siebielec Magdalena Urbaniak Bożena Smreczak Emilia Grzęda Anna Wyrwicka 《International journal of phytoremediation》2019,21(4):325-333
The impact of contaminated bottom sediments on plant growth and soil enzyme activities was evaluated in a greenhouse pot study. The sediments were moderately contaminated with zinc and heavily contaminated with polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans. The sediments were mixed with soil and planted with either Festuca arundinacea or Tagetes patula. The capacity of two rhizobacterial strains (Massilia niastensis P87 and Streptomyces costaricanus RP92), previously isolated from contaminated soils, to improve plant growth under the chemical stress was tested. Application of sediments to soil was severely phytotoxic to T. patula and mildly to F. arundinacea. On the other hand, the addition of sediments enhanced the soil enzymatic activity. Inoculation with both bacterial strains significantly increased shoot (up to 2.4-fold) and root (up to 3.4-fold) biomass of T. patula. The study revealed that the selected plant growth-promoting bacterial strains were able to alleviate phytotoxicity of bottom sediments to T. patula resulting from the complex character of the contamination. 相似文献
15.
Gbotemi A. Adediran Bryne T. Ngwenya J. Frederick W. Mosselmans Kate V. Heal Barbra A. Harvie 《International journal of phytoremediation》2016,18(7):720-729
The effectiveness of plant growth promoting bacteria (PGPB) in improving metal phytoremediation is still limited by stunted plant growth under high soil metal concentrations. Meanwhile, mixed planting with leguminous plants is known to improve yield in nutrient deficient soils but the use of a metal tolerant legume to enhance metal tolerance of a phytoremediator has not been explored. We compared the use of Pseudomonas brassicacearum, Rhizobium leguminosarum, and the metal tolerant leguminous plant Vicia sativa to promote the growth of Brassica juncea in soil contaminated with 400 mg Zn kg–1, and used synchrotron based microfocus X-ray absorption spectroscopy to probe Zn speciation in plant roots. B. juncea grew better when planted with V. sativa than when inoculated with PGPB. By combining PGPB with mixed planting, B. juncea recovered full growth while also achieving soil remediation efficiency of >75%, the maximum ever demonstrated for B. juncea. μXANES analysis of V. sativa suggested possible root exudation of the Zn chelates histidine and cysteine were responsible for reducing Zn toxicity. We propose the exploration of a legume-assisted-phytoremediation system as a more effective alternative to PGPB for Zn bioremediation. 相似文献
16.
M. Shahid M.T. Javed S. Masood M.S. Akram M. Azeem Q. Ali R. Gilani F. Basit A. Abid S. Lindberg 《Journal of applied microbiology》2019,126(6):1708-1721
17.
Plant growth‐promoting Burkholderia species isolated from annual ryegrass in Portuguese soils 下载免费PDF全文
N. Castanheira A.C. Dourado S. Kruz P.I.L. Alves A.I. Delgado‐Rodríguez I. Pais J. Semedo P. Scotti‐Campos C. Sánchez N. Borges G. Carvalho M.T. Barreto Crespo P. Fareleira 《Journal of applied microbiology》2016,120(3):724-739
18.
Ekta Chaudhary 《International journal of phytoremediation》2019,21(3):279-286
Phytoremediation potential of Lemna gibba was evaluated for chromium (Cr) and cadmium (Cd) under laboratory conditions for variable metal load of 1?mg/l, 3?mg/l, 5mgl, 7?mg/l and 9?mg/l, respectively, for 7 and 15?days of treatment period. Effects of both metals on structural attributes of L. gibba were also analyzed by Scanning Electron Microscopic (SEM) study. The metal removal percentage by L. gibba for Cr metal was found in the range of 37.3% to 98.6% and for cadmium it was found within the range of 81.6% to 94.6%. Bio concentration factor (BCF) of L .gibba was observed within the range of 37 to 295 for Cr metal and for Cd metal it ranged from 237 to 1144, which shows that the plant is a hyper accumulator for Cd metal and moderate accumulator for Cr metal. Statistical analysis (Two-way ANOVA) was performed on experimental results to confirm the individual effect of metal concentration and treatment period as well as cumulative effect of both factors together on percentage metal removal and on BCF. Research studies indicated that with the progress of treatment period metal removal percentage increases but increasing metal load during experiment negatively co-relates the metal removal percentage and BCF. 相似文献
19.