首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Potato virus Y (PVY) strains are transmitted by different aphid species in a non‐persistent, non‐circulative manner. Green peach aphid (GPA), Myzus persicae Sulzer, is the most efficient vector in laboratory studies, but potato aphid (PA), Macrosiphum euphorbiae Thomas (both Hemiptera: Aphididae, Macrosiphini), and bird cherry‐oat aphid (BCOA), Rhopalosiphum padi L. (Hemiptera: Aphididae, Aphidini), also contribute to PVY transmission. Studies were conducted with GPA, PA, and BCOA to assess PVY transmission efficiency for various isolates of the same strain. Treatments included three PVY strains (PVYO, PVYN:O, PVYNTN) and two isolates of each strain (Oz and NY090031 for PVYO; Alt and NY090004 for PVYN:O; N4 and NY090029 for PVYNTN), using each of three aphid species as well as a sham inoculation. Virus‐free tissue‐cultured plantlets of potato cv. Russet Burbank were used as virus source and recipient plants. Five weeks post inoculation, recipient plants were tested with quantitative DAS‐ELISA to assess infection percentage and virus titer. ELISA‐positive recipient plants were assayed with RT‐PCR to confirm presence of the expected strains. Transmission efficiency (percentage infection of plants) was highest for GPA, intermediate for BCOA, and lowest for PA. For all aphid species, transmission efficiency did not differ significantly between isolates within each strain. No correlations were found among source plant titer, infection percentage, and recipient plant titer. For both GPA and BCOA, isolates of PVYNTN were transmitted with greatest efficiency followed by isolates of PVYO and PVYN:O, which might help explain the increasing prevalence of necrotic strains in potato‐growing regions. Bird cherry‐oat aphid transmitted PVY with higher efficiency than previously reported, suggesting that this species is more important to PVY epidemiology than has been considered.  相似文献   

2.
Heritable bacterial endosymbionts are common in aphids (Hemiptera: Aphididae), and they can influence ecologically important traits of their hosts. It is generally assumed that their persistence in a population is dependent on a balance between the costs and benefits they confer. A good example is Hamiltonella defensa Moran et al., a facultative symbiont that provides a benefit by strongly increasing aphid resistance to parasitoid wasps, but becomes costly to the host in the absence of parasitoids. Regiella insecticola Moran et al. is another common symbiont of aphids and generally does not influence resistance to parasitoids. In the green peach aphid, Myzus persicae (Sulzer), however, one strain (R5.15) was discovered that behaves like H. defensa in that it provides strong protection against parasitoid wasps. Here we compare R5.15‐infected and uninfected lines of three M. persicae clones to test whether this protective symbiont is costly as well, i.e., whether it has any negative effects on aphid life‐history traits. Furthermore, we transferred R5.15 to two other aphid species, the pea aphid, Acyrthosiphon pisum (Harris), and the black bean aphid, Aphis fabae Scopoli, where this strain is also protective against parasitoids and where we could compare its effects with those of additional, non‐protective strains of R. insecticola. Negative effects of R5.15 on host survival and lifetime reproduction were limited and frequently non‐significant, and these effects were comparable or in one case weaker than those of R. insecticola strains that are not protective against parasitoid wasps. Unless the benefit of protection is counteracted by detrimental effects on traits that were not considered in this study, R. insecticola strain R5.15 should have a high potential to spread in aphid populations.  相似文献   

3.
Plants are exposed to microbial pathogens as well as herbivorous insects and their natural enemies. Here, we examined the effects of inoculation of potato plants, Solanum tuberosum L. (Solanaceae), with the late blight pathogen Phytophthora infestans (Mont.) de Bary (Peronosporales: Pythiaceae) on an aphid species commonly infesting potato crops and one of the aphid's major parasitoids. We observed the peach‐potato aphid, Myzus persicae Sulzer (Hemiptera: Aphididae), and its natural enemy, the biocontrol agent Aphidius colemani Viereck (Hymenoptera: Braconidae), on potato either inoculated with water or P. infestans. Population growth of the aphid, parasitism rate of its natural enemy, and other insect life‐history traits were compared on several potato genotypes, the susceptible cultivar Désirée and genetically modified (GM) isogenic lines carrying genes conferring resistance to P. infestans. Effects of P. infestans inoculation on the intrinsic rate of aphid population increase and the performance of the parasitoid were only found on the susceptible cultivar. Insect traits were similar when comparing inoculated with non‐inoculated resistant GM genotypes. We also tested how GM‐plant characteristics such as location of gene insertion and number of R genes could influence non‐target insects by comparing insect performance among GM events. Different transformation events leading to different positions of R‐gene insertion in the genome influenced aphids either with or without P. infestans infection, whereas effects of position of R‐gene insertion on the parasitoid A. colemani were evident only in the presence of inoculation with P. infestans. We conclude that it is important to study different transformation events before continuing with further stages of risk assessment of this GM crop. This provides important information on the effects of plant resistance to a phytopathogen on non‐target insects at various trophic levels.  相似文献   

4.
Aphids that colonize and reproduce on potato are some of the most efficient vectors of Potato virus Y (PVY) (Potyviridae: Potyvirus), and hence these aphids have been the focus of the majority of studies to date. However, other non‐colonizing aphids can also function as vectors. Mineral oil is the only product available to growers that effectively prevents the spread of PVY in potato seed production. Most previous studies focused on the effect of mineral oil on the behavior of aphids on their preferential host plant, and consequently there is a lack of information for non‐colonizing aphids on potato plants. The objective of this study was to determine the effect of spraying potatoes with one of two mineral oils, Superior 70 or Vazyl‐Y, on host selection and probing behavior of the non‐colonizing aphid Rhopalosiphum padi (L.) (Hemiptera: Aphididae). The electrical penetration graph (EPG) technique, combined with ethological observations, determined that there was no difference in R. padi behavior on potato plants treated with Superior 70. However, there were few significant changes in R. padi behavior on plants sprayed with Vazyl‐Y, including a delay in the initiation of stylet penetration and an increase in the duration of xylem sap ingestion. These new data support previous results and confirm that the mode of action of mineral oil in the reduction of the spread of PVY is not solely due to the modification of the behavior of aphids.  相似文献   

5.
Visual cues leading to host selection and landing are of major importance for aphids and evidence suggests that flight activity is very dependent on ultraviolet (UV)‐A radiation in the environment. At the same time research on insect plant hosts suggest that the UV‐B component can deter some pests via changes in secondary metabolite chemistry. Here, we examine the potential of UV (UV‐A/UV‐B) radiation to control insect pests in the glasshouse environment. We first examined artificial exposure to UV‐B and the potential to trigger morphological and biochemical modifications in pepper (Capsicum annuum L., Solanaceae) with implications for the fitness of green peach aphid, Myzus persicae Sulzer (Hemiptera: Aphididae). UV‐B caused accumulation of leaf secondary metabolites and soluble carbohydrates, and stimulated photosynthetic pigments. However, UV‐B did not impact on foliar protein content and aphid performance was unaffected. Next, we studied how altering the UV‐A/UV‐B ratio environment affected aphid orientation and spatial distribution over time, either directly or by exposing plants to supplemental UV before insect introduction. Aphids directly settled and dispersed on their host pepper plants more readily in the presence of supplemental UV‐A and UV‐B. In the control treatment with ambient glasshouse UV‐A and UV‐B, insects remained more aggregated. Furthermore, insects were less attracted to peppers pre‐exposed to supplemental UV‐A and UV‐B radiation. Our results suggest that suppression of UV‐A and UV‐B inside the protected environment reduces aphid colonization and dispersal. Furthermore, application of moderate exposure of young pepper plants to supplemental UV‐B radiation could aid in protection from the colonization by phytophagous insects.  相似文献   

6.
Asparagus virus 1 (AV‐1) infects Asparagus officinalis L. (Asparagaceae) in the field worldwide. However, various wild relatives of A. officinalis are resistant to AV‐1. Here we study the behavior of the green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), on 19 AV‐1‐resistant wild relatives of A. officinalis. We focus on behavior that is associated with regular cell penetration, relevant for inoculation of AV‐1, and sieve element penetration to check for vector resistance and its potential influence on AV‐1 transmission. Parameters, relevant for the transmission of non‐persistent viruses and host plant acceptance, were obtained by the electrical penetration graph technique. Furthermore, phylloclade architecture of A. officinalis and its wild relatives was examined to study its influence on aphid behavior. Behavior of M. persicae displays many cell penetrations and long ingestion periods on A. officinalis, compared to the generally shorter cell penetrations (reduced potential for virus transmission) and reduced or no ingestion (phloem‐located aphid resistance) on wild relatives. Because effects on aphid behavior are not consistent throughout the group of the tested wild relatives of A. officinalis, with some wild relatives being susceptible to M. persicae, a common genetic background for AV‐1 and aphid resistance appears to be unlikely. However, the reduced potential of virus transmission as well as aphid resistance shown by some wild relatives may be useful for future breeding programs.  相似文献   

7.
Many plant viruses depend on aphids and other phloem‐feeding insects for transmission within and among host plants. Thus, viruses may promote their own transmission by manipulating plant physiology to attract aphids and increase aphid reproduction. Consistent with this hypothesis, Myzus persicae (green peach aphids) prefer to settle on Nicotiana benthamiana infected with Turnip mosaic virus (TuMV) and fecundity on virus‐infected N. benthamiana and Arabidopsis thaliana (Arabidopsis) is higher than on uninfected controls. TuMV infection suppresses callose deposition, an important plant defense, and increases the amount of free amino acids, the major source of nitrogen for aphids. To investigate the underlying molecular mechanisms of this phenomenon, 10 TuMV genes were over‐expressed in plants to determine their effects on aphid reproduction. Production of a single TuMV protein, nuclear inclusion a‐protease domain (NIa‐Pro), increased M. persicae reproduction on both N. benthamiana and Arabidopsis. Similar to the effects that are observed during TuMV infection, NIa‐Pro expression alone increased aphid arrestment, suppressed callose deposition and increased the abundance of free amino acids. Together, these results suggest a function for the TuMV NIa‐Pro protein in manipulating the physiology of host plants. By attracting aphid vectors and promoting their reproduction, TuMV may influence plant–aphid interactions to promote its own transmission.  相似文献   

8.
9.
Aphids are dependent on the phloem sap of plants as their only source of nutrients. Host‐plant resistance in lettuce, Lactuca sativa L. (Asteraceae), mediated by the Nr gene is used to control the lettuce aphid Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae). The resistance is located in the phloem; however, the exact mechanism of resistance is unknown. In this study, we investigated whether the resistance factor (or factors) is synthesized in the root or in the shoot. The feeding behavior and performance of avirulent N. ribisnigri were studied on grafts of resistant and susceptible lettuce. In addition, the persistence of resistance in excised lettuce tissue was measured, by studying the feeding behavior and performance of N. ribisnigri on detached leaves and leaf disks of resistant lettuce. It appears that the resistance factor encoded by the Nr gene is produced in the shoots: aphid feeding was reduced on resistant shoots grafted on susceptible roots, whereas aphids were able to feed on grafts of susceptible shoots on resistant roots. Partial loss of resistance was observed after detachment of leaves and excision of leaf disks from resistant plants. Aphids fed longer on excised resistant plant tissue compared with intact resistant plants; however, compared with excised plant tissue of the susceptible cultivar, the time spent on feeding was shorter, indicating resistance was not completely lost. Our findings caution against the use of excised leaf material for aphid resistance bioassays.  相似文献   

10.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   

11.
Tobacco viruses transmitted by green peach aphids, Myzus persicae (Sulzer) (Hemiptera: Aphididae), cause severe disease in flue‐cured tobacco, Nicotiana tabacum L. (Solanaceae), in China and throughout the world. Field experiments were conducted in 2016 and 2017 in Longyan City, Fujian Province, China, to determine whether M. persicae and aphid‐transmitted virus diseases are affected by intercropping of oilseed rape, Brassica napus L. (Brassicaceae), in tobacco fields. The results showed that, compared with those in monocultured fields, the densities of M. persicae and winged aphids in intercropped fields significantly decreased in both 2016 and 2017. In particular, the appearance of winged aphids was delayed by ca. 7 days. Moreover, the densities of Aphidius gifuensis Ashmead (Hymenoptera: Aphidiidae), a parasitoid of the aphid, significantly increased in 2016 and 2017. Accordingly, the incidence rates of aphid‐transmitted virus diseases (those caused by the cucumber mosaic virus, potato virus Y, and tobacco etch virus) significantly decreased in the intercropped fields in 2016 and 2017. Tobacco yields and monetary value significantly increased in 2016 (by 10–25 and 14–29%, respectively) and 2017 (by 17–22 and 22–34%, respectively). Consequently, our results suggest that intercropping oilseed rape in tobacco fields is a good approach to regulating and controlling aphids and tobacco mosaic viruses, for example potyvirus, and this intercropping can help control aphid‐transmitted virus diseases in tobacco.  相似文献   

12.
Green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), an important pest of potato (Solanum tuberosum L.) (Solanaceae), preferentially settles on Potato leafroll virus (PLRV)‐infected potato plants as compared with non‐infected ones, primarily in response to volatile organic compounds (VOCs) released by the plants. In this study, we examined the dynamics of these effects, measuring arrestment of apterous M. persicae in response to VOC from upper, middle, and lower leaflets of PLRV‐infected potato plants at the same stage in disease progression (4 weeks after inoculation), but inoculated at 1, 3, or 5 weeks after transplanting (WAT). Sham‐inoculated plants were used as controls and VOC were collected and quantified. Aphid arrestment was greater on PLRV‐infected plants inoculated at 1 and 3 WAT as compared with sham‐inoculated plants, but this preference was reversed in plants inoculated at 5 WAT. Relative arrestment of M. persicae by infected plants and VOC release was greater for lower and middle leaflets than for upper leaflets at 1 and 3 WAT compared to sham‐inoculated plants. The reverse was observed in plants inoculated at 5 WAT. Findings indicate that aphid preference is influenced by VOC release from PLRV‐ or sham‐inoculated potato plants and that VOC emissions and aphid preference depend upon the age at inoculation and leaf position within the potato plants. The implications of these dynamics in vector behavior for spread of PLRV in the field in natural and managed systems are discussed.  相似文献   

13.
14.
Phytophagous insects have to contend with a wide variation in food quality brought about by a variety of factors intrinsic and extrinsic to the plant. One of the most important factors is infection by plant pathogenic fungi. Necrotrophic and biotrophic plant pathogenic fungi may have contrasting effects on insect herbivores due to their different infection mechanisms and induction of different resistance pathways, although this has been little studied and there has been no study of their combined effect. We studied the effect of the biotrophic rust fungus Uromyces viciae‐fabae (Pers.) Schroet (Basidiomycota: Uredinales: Pucciniaceae) and the necrotrophic fungus Botrytis cinerea Pers. (Ascomycota: Helotiales: Sclerotiniaceae) singly and together on the performance of the aphid Aphis fabae Scopoli (Hemiptera: Aphididae) on Vicia faba (L.) (Fabaceae). Alone, botrytis had an inhibitory effect on individual A. fabae development, survival, and fecundity, whereas rust infection consistently enhanced individual aphids' performance. These effects varied in linear relation to lesion or pustule density. However, whole‐plant infection by either pathogen resulted in a smaller aphid population of smaller aphids than on uninfected plants, indicating a lowering of aphid carrying capacity with infection. When both fungi were applied simultaneously to a leaf they generally cancelled the effect of each other out, resulting in most performance parameters being similar to the controls, although fecundity was reduced. However, sequential plant infection (pathogens applied 5 days apart) led to a 70% decrease in fecundity and 50% reduction in intrinsic rate of increase. The application of rust before botrytis had a greater inhibitory effect on aphids than applying botrytis before rust. Rust infection increased leaf total nitrogen concentration by 30%, whereas infection by botrytis with or without rust led to a 38% decrease. The aphids' responses to the two plant pathogens individually is consistent with the alteration in plant nutrient content by infection and also the induction of different plant defence pathways and the possible cross‐talk between them. This is the first demonstration of the complex effects of the dual infection of a plant by contrasting pathogens on insect herbivores.  相似文献   

15.
Cannibalism (CANN) and intraguild predation (IGP) may provide energy and nutrients to individuals and eliminate potential competitors. These negative competitive interactions could also affect the coexistence of predatory species. The co‐occurrence of aphidophagous ladybird species in crops creates opportunities for CANN and IGP, especially when aphids become scarce. The Lotka–Volterra model predicts the coexistence of two species if intraspecific competition is stronger than interspecific interference interactions. Cycloneda sanguinea L. and Eriopis connexa (Germar) (both Coleoptera: Coccinellidae) coexist in sweet pepper crops in La Plata (Argentina) consuming mainly Myzus persicae (Sulzer) (Hemiptera: Aphididae). The present study used laboratory experiments to estimate levels of CANN and IGP by adults and larvae on eggs, and by adults on larvae, in both the presence and absence of prey (i.e., M. persicae), to explain the effect of prey on coexistence of these two predators. Levels of CANN by C. sanguinea and E. connexa were high in the absence of aphids, and decreased when prey was present. Intraguild predation was bidirectional and asymmetric. Adults and larvae of E. connexa were more voracious IG predators of C. sanguinea than vice versa, the former being the stronger IG predator and interference competitor. Eriopis connexa always won when larvae of the same instar were compared, whereas the larger larva always won when larvae were of different instars, regardless of species. In the presence of prey, CANN by both species decreased, but IGP by E. connexa on C. sanguinea remained high, suggesting that E. connexa could displace C. sanguinea via interspecific interference competition. Other factors potentially affecting the coexistence of C. sanguinea and E. connexa in sweet pepper crops are discussed.  相似文献   

16.
The simple gaseous compound ethylene (ET) has long been recognized as a common component of plant responses to insect feeding and pathogen attack. However, it is presently uncertain whether it plays a role in host–plant resistance to piercing–sucking insects such as aphids. In these experiments, we investigated the expression of key ET‐associated genes in resistant and susceptible interactions in two model systems: the tomato‐MiMacrosiphum euphorbiae (Thomas) (Hemiptera: Aphididae: Macrosiphini) system and the melon‐virus aphid transmission gene (Vat)‐Aphis gossypii Glover (Hemiptera: Aphididiae: Aphidini) system. We examined expression patterns of genes associated with ET synthesis, perception, signal transduction, and downstream response. When compared with control plants, plants infested with aphids showed marked differences in gene expression. In particular, ET signaling pathway genes and downstream response genes were highly upregulated in the resistant interaction between A. gossypii and Vat+, indicating ET may play a role in Vat‐mediated host–plant resistance. A key integrator between the ET and jasmonic acid pathways (Cm‐ERF1) showed the strongest response.  相似文献   

17.
Thiamethoxam (TMX) is one of the most effective neonicotinoid insecticides for the control of green peach aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae), and various side effects can be expected in its natural enemies. The multicolored Asian lady beetle or harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), is an important predator against M. persicae in greenhouses and fields. In this study, we evaluated the toxicity of TMX to H. axyridis and the effect on the functional response of this predator to M. persicae through three routes of exposure. Acute toxicity bioassays indicated that LC50 values of TMX on H. axyridis through direct residual contact (‘contact’), systemic application (‘systemic’), and leaf‐dip treatment (‘leaf‐dip’) were 18.99, 21.26, and 15.39 mg a.i. l?1, respectively. The hazard quotient indicated a potential hazard of this agrochemical regardless of the exposure routes. The mortality caused by the lowest rate, 2 mg a.i. l?1, was not significantly different compared with the control group. For the three routes of sublethal TMX exposure, the type‐II functional response was a good fit to the prey consumption of H. axyridis. Predation was most affected by leaf‐dip treatment, followed by contact and systemic treatments, which had similar effect. For all exposure routes, the predation capacity of the predator recovered quickly after transfer to untreated cabbage leaves. Thiamethoxam applied systemically was the least toxic to H. axyridis and did not affect the functional response of the predator. However, the sublethal effects of TMX through both contact and leaf‐dip application may reduce the population growth of H. axyridis and consequently impair the biological control of M. persicae by this predator. These results illustrate that the assessment of potential effects of TMX on H. axyridis is crucial to develop effective integrated pest management programs for M. persicae in China.  相似文献   

18.
The selection of a host of high nutritional quality is of great importance to the development of offspring of larvipositing aphids, as is the avoidance of natural enemies. Little is known, however, about their ability to select host plants based on these factors. This article tests the preference of aphids Sitobion avenae (Fabricius) and Rhopalosiphum padi (L.) (both Hemiptera: Aphididae) for different winter wheat cultivars, Triticum aestivum (L.) (Poaceae), and their ability to detect and avoid predators in sacrifice of their most preferred host. In both species a preference was observed for nutritionally superior hosts. The preference of both species then exhibited a change towards a nutritionally inferior host after infestations of the harlequin ladybird, Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae), that had been consuming conspecific aphids. This investigation opens the door to the interesting prospect of the ability of aphids to make complex decisions regarding a compromise between high‐quality nutrition and avoidance of predation.  相似文献   

19.
Plants can respond to damage by pests with both induced direct defences and indirect defences by the attraction of their natural enemies. Foliar application of several plant-derived chemicals, such as salicylic acid and oxalic acid, can induce these defence mechanisms. The effect of acetylsalicylic acid and oxalic acid on the aphid Myzus persicae Sulzer (Homoptera: Aphididae) and its parasitoid Aphidius colemani Viereck (Hymenoptera: Aphidiidae) was investigated. Experiments were carried out with direct application of acetylsalicylic and oxalic acids on these insects, as well as choice and no-choice tests using foliar application of both chemicals on Brussels sprouts plants, Brassica oleracea var. gemmifera L. (Brassicaceae). Parasitoids were given a choice between treated and untreated plants for oviposition, and the effects of the chemicals on aphid and parasitoid development were determined. Although direct application of both chemicals increased aphid mortality, their foliar application did not induce resistance against aphids. The foliar application of such compounds, even in low concentration as shown in the choice tests, has the potential to induce indirect plant defences against aphids by encouraging aphid parasitisation. Although the direct application of both chemicals reduced parasitoid emergence from their hosts, the foliar application of acetylsalicylic acid and low concentrations of oxalic acid did not have a negative effect on parasitoid emergence ability. However, 10 m m oxalic acid reduced the number of emerged parasitoids in no-choice experiments. This study shows that foliar application of acetylsalicylic and oxalic acids has the potential to encourage aphid parasitisation, but care is needed as high concentrations of oxalic acid can have a negative effect on these beneficial organisms.  相似文献   

20.
Many aphid species have become virulent to host‐plant resistance, which limits the sustainability of insect resistance breeding. However, when this adaptation to resistant plants is associated with fitness costs for the aphids, virulence can be lost in the absence of resistant plants. For two populations of the lettuce aphid, Nasonovia ribisnigri (Mosely) (Hemiptera: Aphididae), we evaluated whether virulence to Nr‐gene‐based resistance was lost on a susceptible lettuce, Lactuca sativa L. (Asteraceae), and assessed possible costs of virulence. The feeding behaviour and performance of these aphids, reared and tested on susceptible and resistant lettuce, were investigated. The rearing plant affected feeding behaviour and performance of the aphids. Temporary reduction and long‐term loss of virulence were found. The total duration of phloem intake was shorter after being reared on susceptible lettuce and tested on resistant lettuce. In addition, one population had a lower survival on resistant lettuce after being reared on susceptible lettuce. There were also indications of fitness costs of the virulence in both populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号