首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibrosis is one of the most common pathological alterations in heart failure, and fibroblast migration is an essential process in the development of cardiac fibrosis. Experimental autoimmune myocarditis (EAM) is a model of inflammatory heart disease characterized by inflammatory cell infiltration followed by healing without residual fibrosis. However, the precise mechanisms mediating termination of inflammation and nonfibrotic healing remain to be elucidated. Microarray analysis of hearts from model mice at multiple time points after EAM induction identified several secreted proteins upregulated during nonfibrotic healing, including the anti-inflammatory cathelicidin antimicrobial peptide (CAMP). Treatment with LL-37, a human homolog of CAMP, activated MAP kinases in fibroblasts but not in cardiomyocytes, indicating that fibroblasts were the target of CAMP activity. In addition, LL-37 decreased fibroblast migration in the in vitro scratch assay. P2X7 receptor (P2X7R), a well-known receptor for LL-37, was involved in LL-37 mediated biological effect on cardiac fibroblasts. Stimulation of BzATP, a P2X7R agonist, activated MAPK in fibroblasts, whereas the P2X7R antagonist, BBG, as well as P2X7R deletion abolished both LL-37-mediated MAPK activation and LL-37-induced reduction in fibroblast migration. These results strongly suggest that CAMP upregulation during myocarditis prevents myocardial fibrosis by restricting fibroblast migration via activation of the P2X7R−MAPK signaling pathway.  相似文献   

2.
Fas ligation via the ligand FasL activates the caspase‐8/caspase‐3‐dependent extrinsic death pathway. In so‐called type II cells, an additional mechanism involving tBid‐mediated caspase‐9 activation is required to efficiently trigger cell death. Other pathways linking FasL–Fas interaction to activation of the intrinsic cell death pathway remain unknown. However, ATP release and subsequent activation of purinergic P2X7 receptors (P2X7Rs) favors cell death in some cells. Here, we evaluated the possibility that ATP release downstream of caspase‐8 via pannexin1 hemichannels (Panx1 HCs) and subsequent activation of P2X7Rs participate in FasL‐stimulated cell death. Indeed, upon FasL stimulation, ATP was released from Jurkat cells in a time‐ and caspase‐8‐dependent manner. Fas and Panx1 HCs colocalized and inhibition of the latter, but not connexin hemichannels, reduced FasL‐induced ATP release. Extracellular apyrase, which hydrolyzes ATP, reduced FasL‐induced death. Also, oxidized‐ATP or Brilliant Blue G, two P2X7R blockers, reduced FasL‐induced caspase‐9 activation and cell death. These results represent the first evidence indicating that the two death receptors, Fas and P2X7R connect functionally via caspase‐8 and Panx1 HC‐mediated ATP release to promote caspase‐9/caspase‐3‐dependent cell death in lymphoid cells. Thus, a hitherto unsuspected route was uncovered connecting the extrinsic to the intrinsic pathway to amplify death signals emanating from the Fas receptor in type II cells. J. Cell. Physiol. 228: 485–493, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
During human immunodeficiency virus (HIV)‐1 infection, perturbations in neuron–glia interactions may culminate in neuronal damage. Recently, purinergic receptors have been implicated in the promotion of virus‐induced neurotoxicity and supporting the viral life cycle at multiple stages. The astrocytes robustly express purinergic receptors. We therefore sought to examine if P2X7R, a P2X receptor subtype, can mediate HIV‐1 Tat‐induced neuronal apoptosis. Tat augmented the expression of P2X7R in astrocytes. Our data reveal the involvement of P2X7R in Tat‐mediated release of monocyte chemoattractant protein (MCP‐1) /chemokine (C‐C motif) ligand 2 (CCL2) from the astrocytes. P2X7R antagonists, such as the oxidized ATP, A438079, brilliant blue G, and broad spectrum P2 receptor antagonist suramin, attenuated Tat‐induced CCL2 release in a calcium‐ and extracellular signal‐regulated kinase (ERK)1/2‐dependent manner. Calcium chelators, (1,2‐bis(o‐aminophenoxy) ethane‐N,N,N',N'‐tetraacetic acid) acetoxymethyl ester and EGTA, and ERK1/2 inhibitor U0126 abolished chemokine (C‐C motif) ligand 2 release from astrocytes. Furthermore, in human neuronal cultures, we demonstrated P2X7R involvement in Tat‐mediated neuronal death. Importantly, in the TUNEL assay, the application of P2X7R‐specific antagonists or the knockdown of P2X7R in human astrocytes reduced HIV‐Tat‐induced neuronal death significantly, underlining the critical role of P2X7R in Tat‐mediated neurotoxicity. Our study provides novel insights into astrocyte‐mediated neuropathogenesis in HIV‐1 infection and a novel target for therapeutic management of neuroAIDS.

  相似文献   


4.
Neural progenitor cells (NPCs) are capable of self-renewal and differentiation into neurons, astrocytes and oligodendrocytes, and have been used to treat several animal models of CNS disorders. In the present study, we show that the P2X7 purinergic receptor (P2X7R) is present on NPCs. In NPCs, P2X7R activation by the agonists extracellular ATP or benzoyl ATP triggers opening of a non-selective cationic channel. Prolonged activation of P2X7R with these nucleotides leads to caspase independent death of NPCs. P2X7R ligation induces NPC lysis/necrosis demonstrated by cell membrane disruption accompanied with loss of mitochondrial membrane potential. In most cells that express P2X7R, sustained stimulation with ATP leads to the formation of a non-selective pore allowing the entry of solutes up to 900 Da, which are reportedly involved in P2X7R-mediated cell lysis. Surprisingly, activation of P2X7R in NPCs causes cell death in the absence of pore formation. Our data support the notion that high levels of extracellular ATP in inflammatory CNS lesions may delay the successful graft of NPCs used to replace cells and repair CNS damage.  相似文献   

5.
The P2X7 receptor/channel responds to extracellular ATP and is associated with neuronal death and neuroinflammation in spinal cord injury and amyotrophic lateral sclerosis. Whether activation of P2X7 directly causes motor neuron death is unknown. We found that cultured motor neurons isolated from embryonic rat spinal cord express P2X7 and underwent caspase‐dependent apoptosis when exposed to exceptionally low concentrations of the P2X7 agonist 2′(3′)‐O‐(4‐Benzoylbenzoyl)‐ATP. The P2X7 inhibitors BBG, oATP, and KN‐62 prevented 2′(3′)‐O‐(4‐Benzoylbenzoyl)‐ATP‐induced motor neuron death. The endogenous P2X7 agonist ATP induced motor neuron death at low concentrations (1‐100 μM). High concentrations of ATP (1 mM) paradoxically became protective due to degradation in the culture media to produce adenosine and activate adenosine receptors. P2X7‐induced motor neuron death was dependent on neuronal nitric oxide synthase‐mediated production of peroxynitrite, p38 activation, and autocrine FAS signaling. Taken together, our results indicate that motor neurons are highly sensitive to P2X7 activation, which triggers apoptosis by activation of the well‐established peroxynitrite/FAS death pathway in motor neurons.  相似文献   

6.
In human and rodent macrophages, activation of the P2X7 nucleotide receptor stimulates interleukin-1beta processing and release, apoptosis, and killing of intracellular Mycobacterium tuberculosis. Signaling pathways downstream of this ionotropic ATP receptor are poorly understood. Here we describe the rapid activation of the stress-activated protein kinase (SAPK)/JNK pathway in BAC1 murine macrophages stimulated by extracellular ATP. Brief exposure of the cells to ATP (10-30 min) was sufficient to trigger a rapid accumulation of activated SAPK that was then sustained for >120 min. Several observations indicated that the P2X7 receptor mediated this effect. 1) ATP and 3'-O-(4-benzoyl)benzoyl-ATP were the only agonistic nucleotides. 2) The effect was inhibited by oxidized ATP and the isoquinoline KN-62, two known P2X7 receptor antagonists. 3) ATP-induced SAPK activation could be recapitulated in P2X7 receptor-transfected HEK293 cells, but not in wild-type HEK293 cells. Because P2X7 receptor stimulation can rapidly activate caspase family proteases that have been implicated in the induction of the SAPK pathway, we investigated whether ATP-dependent SAPK activation involved such proteases. Brief exposure of BAC1 macrophages to extracellular ATP induced DNA fragmentation, alpha-fodrin breakdown, and elevated levels of caspase-3-type activity. Asp-Glu-Val-Asp-cho, a caspase-3 inhibitor, inhibited ATP-induced DNA fragmentation and alpha-fodrin proteolysis, but had no effect on ATP-induced SAPK activation. Tyr-Val-Ala-Asp-chloromethyl ketone, a caspase-1 inhibitor, prevented ATP-induced release of processed interleukin-1beta, but not ATP-dependent SAPK activity. We conclude that activation of ionotropic P2X7 nucleotide receptors triggers a strong activation of SAPK via a pathway independent of caspase-1- or caspase-3-like proteases.  相似文献   

7.
Zhu  Yuyou  Zhang  Siping  Wu  Yuanbo  Wang  Juan 《Molecular and cellular biochemistry》2021,476(9):3461-3468
Molecular and Cellular Biochemistry - Postherpetic neuralgia (PHN) is the most common complication of acute herpes zoster. The treatment of PHN remains a challenge for clinical pain management. The...  相似文献   

8.
Vessey KA  Fletcher EL 《PloS one》2012,7(1):e29990
The P2X7 receptor (P2X7-R) is expressed in the retina and brain and has been implicated in neurodegenerative diseases. However, whether it is expressed by neurons and plays a role as a neurotransmitter receptor has been the subject of controversy. In this study, we first show that the novel vesicular transporter for ATP, VNUT, is expressed in the retina, verifying the presence of the molecular machinery for ATP to act as neurotransmitter at P2X7-Rs. Secondly we show the presence of P2X7-R mRNA and protein in the retina and cortex and absence of the full length variant 1 of the receptor in the P2X7-R knock out (P2X7-KO) mouse. The role of the P2X7-R in neuronal function of the retina was assessed by comparing the electroretinogram response of P2X7-KO with WT mice. The rod photoreceptor response was found to be similar, while both rod and cone pathway post-photoreceptor responses were significantly larger in P2X7-KO mice. This suggests that activation of P2X7-Rs modulates output of second order retinal neurons. In line with this finding, P2X7-Rs were found in the outer plexiform layer and on inner retinal cell classes, including horizontal, amacrine and ganglion cells. The receptor co-localized with conventional synapses in the IPL and was expressed on amacrine cells post-synaptic to rod bipolar ribbon synapses. In view of the changes in visual function in the P2X7-KO mouse and the immunocytochemical location of the receptor in the normal retina, it is likely the P2X7-R provides excitatory input to photoreceptor terminals or to inhibitory cells that shape both the rod and cone pathway response.  相似文献   

9.
Mounting evidence supports the hypothesis that inflammation modulates sympathetic sprouting after myocardial infarction (MI). The myeloid P2X7 signal has been shown to activate the nucleotide‐binding and oligomerization domain‐like receptor family pyrin domain‐containing 3 (NLRP3) inflammasome, a master regulator of inflammation. We investigated whether P2X7 signal participated in the pathogenesis of sympathetic reinnervation after MI, and whether NLRP3/interleukin‐1β (IL‐1β) axis is involved in the process. We explored the relationship between P2X7 receptor (P2X7R) and IL‐1β in the heart tissue of lipopolysaccharide (LPS)‐primed naive rats. 3′‐O‐(4‐benzoyl) benzoyl adenosine 5′‐triphosphate (BzATP), a P2X7R agonist, induced caspase‐1 activation and mature IL‐1β release, which was further neutralized by a NLRP3 inhibitor (16673‐34‐0). MI was induced by coronary artery ligation. Following infarction, a marked increase in P2X7R was localized within infiltrated macrophages and observed in parallel with an up‐regulation of NLRP3 inflammasome levels and the release of IL‐1β in the left ventricle. The administration of A‐740003 (a P2X7R antagonist) significantly prevented the NLRP3/IL‐1β increase. A‐740003 and/or Anakinra (an IL‐1 receptor antagonist) significantly reduced macrophage infiltration as well as macrophage‐based IL‐1β and NGF (nerve growth factor) production and eventually blunted sympathetic hyperinnervation, as assessed by the immunofluorescence of tyrosine hydroxylase (TH) and growth‐associated protein 43 (GAP 43). Moreover, the use of Anakinra partly attenuated sympathetic sprouting. This indicated that the effect of P2X7 on neural remodelling was mediated at least partially by IL‐1β. The arrhythmia score of programmed electric stimulation was in accordance with the degree of sympathetic hyperinnervation. In vitro studies showed that BzATP up‐regulated secretion of nerve growth factor (NGF) in M1 macrophages via IL‐1β. Together, these data indicate that P2X7R contributes to neural and cardiac remodelling, at least partly mediated by NLRP3/IL‐1β axis. Therapeutic interventions targeting P2X7 signal may be a novel approach to ameliorate arrhythmia following MI.  相似文献   

10.
P2X7 receptors (P2X7R) are extracellular ATP‐gated ion channels expressed in the immune effector cells that carry out critical protective responses during the early phases of microbial infection or acute tissue trauma. P2X7R‐positive cells include monocytes, macrophages, dendritic cells and T cells. Given its presence in all host and pathogen cell types, ATP can be readily released into extracellular compartments at local sites of tissue damage and microbial invasion. Thus, extracellular ATP and its target receptors on host effector cells can be considered as additional elements of the innate immune system. In this regard, stimulation of P2X7R rapidly triggers a key step of the inflammatory response: induction of NLRP3/caspase‐1 inflammasome signalling complexes that drive the proteolytic maturation and secretion of the proinflammatory cytokines interleukin‐1β (IL‐1β) and interleukin‐18 (IL‐18). IL‐1β (and IL‐18) lacks a signal sequence for compartmentation within the Golgi and classical secretory vesicles and the proIL‐1β precursor accumulates within the cytosol following translation on free ribosomes. Thus, ATP‐induced accumulation of the mature IL‐1β cytokine within extracellular compartments requires non‐classical mechanisms of export from the cytosolic compartment. Five proposed mechanisms include: (i) exocytosis of secretory lysosomes that accumulate cytosolic IL‐1β via undefined protein transporters; (ii) release of membrane‐delimited microvesicles derived from plasma membrane blebs formed by evaginationsof the surface membrane that entrap cytosolic IL‐β; (iii) release of membrane‐delimited exosomes secondary to the exocytosis of multivesicular bodies formed by invaginations of recycling endosomes that entrap cytosolic IL‐β; (iv) exocytosis of autophagosomes or autophagolysosomes that accumulate cytosolic IL‐1β via entrapment during formation of the initial autophagic isolation membrane or omegasome and (v) direct release of cytosolic IL‐1β secondary to regulated cell death by pyroptosis or necroptosis. These mechanisms are not mutually exclusive and may represent engagement of parallel or intersecting membrane trafficking responses to P2X7R activation.  相似文献   

11.
Knee osteoarthritis (KOA) is a chronic joint disorder involving the articular cartilage and tissues around the synovial joint. The key objective of this study was to determine the effect of miR-186-5p administration on the expression of pathogenic signalling in the chondrocytes using a surgical destabilization of the medial meniscus (DMM) model of KOA, and to testify the mechanism of P2X7-mediated regulation of RUNX2/ADAMTS5 axis by miR-186 in the KOA rats. After eight weeks of intra-articular injection of the miR-186-5p and negative control lentivirus samples, the knee cartilage tissues were subjected to histopathological analysis Safranin-O/Fast green staining. Further, the articular chondrocytes were separated and analysed for various proteins including P2X7, cathepsin-K, RUNX2 and ADAMTS5 using Western blotting method. We observed that the protein expressions of P2X7, cathepsin-K/RUNX2/ADAMTS5, and also MMP-13 were upmodulated in the KOA rats, while intra-articular miR-186-5p lentivirus administration prevented these aberrations.Hence, the study concludes that miR-186 orchestrates P2X7 expression and the P2X7-mediated cathepsin-K/RUNX2/ADAMTS5 axis and regulates the pathogenesis of KOA. In light of this evidence, we propose that molecular therapeutic interventions targeting miR-186 activation might attenuate osteoarthritic cartilage degeneration.  相似文献   

12.
Fingolimod (FTY720) is used as an immunosuppressant for multiple sclerosis. Numerous studies indicated its neuroprotective effects in stroke. However, the mechanism remains to be elucidated. This study was intended to investigate the mechanisms of phosphorylated FTY720 (pFTY720), which was the principle active molecule in regulating astrocyte‐mediated inflammatory responses induced by oxygen‐glucose deprivation (OGD). Results demonstrated that pFTY720 could protect astrocytes against OGD‐induced injury and inflammatory responses. It significantly decreased pro‐inflammatory cytokines, including high mobility group box 1 (HMGB1) and tumour necrosis factor‐α (TNF‐α). Further, studies displayed that pFTY720 could prevent up‐regulation of Toll‐like receptor 2 (TLR2), phosphorylation of phosphoinositide 3‐kinase (PI3K) and nuclear translocation of nuclear factor kappa B (NFκB) p65 subunit caused by OGD. Sphingosine‐1‐phosphate receptor 3 (S1PR3) knockdown could reverse the above change. Moreover, administration of TLR2/4 blocker abolished the protective effects of pFTY720. Taken together, this study reveals that pFTY720 depends on S1PR3 to protect astrocytes against OGD‐induced neuroinflammation, due to inhibiting TLR2/4‐PI3K‐NFκB signalling pathway.  相似文献   

13.
The effects ofmaitotoxin (MTX) on plasmalemma permeability are similar to thosecaused by stimulation of P2Z/P2X7ionotropic receptors, suggesting that1) MTX directly activatesP2Z/P2X7 receptors or2) MTX andP2Z/P2X7 receptor stimulationactivate a common cytolytic pore. To distinguish between these twopossibilities, the effect of MTX was examined in1) THP-1 monocytic cells before andafter treatment with lipopolysaccharide and interferon-, a maneuverknown to upregulate P2Z/P2X7receptor, 2) wild-type HEK cells andHEK cells stably expressing theP2Z/P2X7 receptor, and3) BW5147.3 lymphoma cells, a cellline that expresses functional P2Z/P2X7 channels that are poorlylinked to pore formation. In control THP-1 monocytes, addition of MTXproduced a biphasic increase in the cytosolic freeCa2+ concentration([Ca2+]i);the initial increase reflects MTX-inducedCa2+ influx, whereas the secondphase correlates in time with the appearance of large pores and theuptake of ethidium. MTX produced comparable increases in[Ca2+]iand ethidium uptake in THP-1 monocytes overexpressing theP2Z/P2X7 receptor. In bothwild-type HEK and HEK cells stably expressing theP2Z/P2X7 receptor, MTX-inducedincreases in[Ca2+]iand ethidium uptake were virtually identical. The response of BW5147.3cells to concentrations of MTX that produced large increases in[Ca2+]ihad no effect on ethidium uptake. In both THP-1 and HEK cells, MTX- andBz-ATP-induced pores activate with similar kinetics and exhibit similarsize exclusion. Last, MTX-induced pore formation, but not channelactivation, is greatly attenuated by reducing the temperature to22°C, a characteristic shared by theP2Z/P2X7-induced pore. Together,the results demonstrate that, although MTX activates channels that aredistinct from those activated byP2Z/P2X7 receptor stimulation, thecytolytic/oncotic pores activated by MTX- and Bz-ATP are indistinguishable.

  相似文献   

14.
15.
16.
Excessive production of reactive oxygen species (ROS) and P2X7R activation induced by high glucose increases NLRP3 inflammasome activation, which contributes to the pathogenesis of diabetic cardiomyopathy. Although H3 relaxin has been shown to inhibit cardiac fibrosis induced by isoproterenol, the mechanism has not been well studied. Here, we demonstrated that high glucose (HG) induced the collagen synthesis by activation of the NLRP3 inflammasome, leading to caspase‐1 activation, interleukin‐1β (IL‐1β) and IL‐18 secretion in neonatal rat cardiac fibroblasts. Moreover, we used a high‐glucose model with neonatal rat cardiac fibroblasts and showed that the activation of ROS and P2X7R was augmented and that ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation was critical for the collagen synthesis. Inhibition of ROS and P2X7R decreased NLRP3 inflammasome‐mediated collagen synthesis, similar to the effects of H3 relaxin. Furthermore, H3 relaxin reduced the collagen synthesis via ROS‐ and P2X7R‐mediated NLRP3 inflammasome activation in response to HG. These results provide a mechanism by which H3 relaxin alleviates NLRP3 inflammasome‐mediated collagen synthesis through the inhibition of ROS and P2X7R under HG conditions and suggest that H3 relaxin represents a potential drug for alleviating cardiac fibrosis in diabetic cardiomyopathy.  相似文献   

17.
18.
19.

Background

Activation of ATP-gated P2X7 receptors (P2X7R) in macrophages leads to production of reactive oxygen species (ROS) by a mechanism that is partially characterized. Here we used J774 cells to identify the signaling cascade that couples ROS production to receptor stimulation.

Methods

J774 cells and mP2X7-transfected HEK293 cells were stimulated with Bz-ATP in the presence and absence of extracellular calcium. Protein inhibitors were used to evaluate the physiological role of various kinases in ROS production. In addition, phospho-antibodies against ERK1/2 and Pyk2 were used to determine activation of these two kinases.

Results

ROS generation in either J774 or HEK293 cells (expressing P2X7, NOX2, Rac1, p47phox and p67phox) was strictly dependent on calcium entry via P2X7R. Stimulation of P2X7R activated Pyk2 but not calmodulin. Inhibitors of MEK1/2 and c-Src abolished ERK1/2 activation and ROS production but inhibitors of PI3K and p38 MAPK had no effect on ROS generation. PKC inhibitors abolished ERK1/2 activation but barely reduced the amount of ROS produced by Bz-ATP. In agreement, the amount of ROS produced by PMA was about half of that produced by Bz-ATP.

Conclusions

Purinergic stimulation resulted in calcium entry via P2X7R and subsequent activation of the PKC/c-Src/Pyk2/ERK1/2 pathway to produce ROS. This signaling mechanism did not require PI3K, p38 MAPK or calmodulin.

General significance

ROS is generated in order to kill invading pathogens, thus elucidating the mechanism of ROS production in macrophages and other immune cells allow us to understand how our body copes with microbial infections.  相似文献   

20.
Over‐activated osteoclastogenesis, which is initiated by inflammation, has been implicated in osteoporosis. Corilagin, a natural compound extracted from various medicinal herbaceous plants, such as Cinnamomum cassia, has antioxidant and anti‐inflammatory activities. We found that Corilagin suppressed osteoclast differentiation in a dose‐dependent manner, significantly decreased osteoclast‐related gene expression and impaired bone resorption by osteoclasts. Moreover, phosphorylation of members of the nuclear factor‐kappaB (NF‐κB) and PI3K/AKT signalling pathways was reduced by Corilagin. In a murine model of osteoporosis, Corilagin inhibited osteoclast functions in vivo and restored oestrogen deficiency‐induced bone loss. In conclusion, our findings suggested that Corilagin inhibited osteoclastogenesis by down‐regulating the NF‐κB and PI3K/AKT signalling pathways, thus showing its potential possibility for the treatment of osteoporosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号