首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The architecture of the rice inflorescence, which is determined mainly by the number and length of primary and secondary inflorescence branches, is of importance in both agronomy and developmental biology. The position and number of primary branches are established during the phase transition from vegetative to reproductive growth, and several of the genes identified as participating in this process do so by regulating the meristemic activities of inflorescence. However, little is known about the molecular mechanism that controls inflorescence branch elongation. Here, we report on a novel rice mutant, short panicle1 ( sp1 ), which is defective in rice panicle elongation, and thus leads to the short-panicle phenotype. Gene cloning and characterization indicate that SP1 encodes a putative transporter that belongs to the peptide transporter (PTR) family. This conclusion is based on the findings that SP1 contains a conserved PTR2 domain consisting of 12 transmembrane domains, and that the SP1-GFP fusion protein is localized in the plasma membrane. The SP1 gene is highly expressed in the phloem of the branches of young panicles, which is consistent with the predicted function of SP1 and the sp1 phenotype. Phylogenetic analysis implies that SP1 might be a nitrate transporter. However, neither nitrate transporter activity nor any other compounds transported by known PTR proteins could be detected in either a Xenopus oocyte or yeast system, in our study, suggesting that SP1 may need other component(s) to be able to function as a transporter, or that it transports unknown substrates in the monocotyledonous rice plant.  相似文献   

2.
3.
4.
5.
Quantitative trait locus analysis for rice panicle and grain characteristics   总被引:43,自引:0,他引:43  
 The development of molecular genetic maps has accelerated the identification and mapping of genomic regions controlling quantitative characters, referred to as quantitative trait loci or QTLs. A molecular map derived from an F2 population of a tropical japonica×indica cross (Labelle/Black Gora) consisted of 116 restriction fragment length polymorphism (RFLP) markers. Composite interval mapping was used to identify the QTLs controlling six panicle and grain characteristics. Two QTLs were identified for panicle size at LOD>3.0, with one on chromosome 3 accounting for 16% of the phenotypic variation. Four loci controlling spikelet fertility accounted for 23% of the phenotypic variation. Seven, four, three and two QTLs were detected for grain length, breadth, shape and weight, respectively, with the most prominent QTLs being on chromosomes 3, 4, and 7. Grain shape, measured as the ratio of length to breadth, was mostly controlled by loci on chromosomes 3 and 7 that coincided with the most important QTLs identified for length and breadth, respectively. A model including three loci accounted for 45% of the phenotypic variation for this trait. The identification of economically important QTLs will be useful in breeding for improved grain characteristics. Received: 18 July 1997 / Accepted: 9 December 1997  相似文献   

6.
肖辉海 《生态学报》2007,27(9):3901-3909
以隐性长穗颈温敏核不育水稻(OryzasativaL)长选3S为材料,研究了温度对隐性长穗颈温敏核不育水稻长选3S穗颈伸出长度的影响。结果表明:人工24℃条件下,在始花前第12天至始花前第4天和始花当天至始花后第3天两个时段,穗颈节间伸长速度慢,两者节间日均伸长长度基本一致,但从始花前第4天至始花当天,长选3S穗颈节间伸长速度最快,其节间日均伸长的长度是培矮64S的2.1倍。在敏感期分别进行22、24、26、28℃4种人工温度处理,28℃条件下穗颈节间伸长受阻,出现包颈现象;26~22℃条件下穗颈伸出长度都为正值,不包颈,但穗颈伸出剑叶叶鞘的长度随温度降低而增加。通过对穗颈节间细胞数目和细胞长度的比较分析表明,长选3S穗颈节间的伸长主要是由于细胞分裂和细胞伸长共同作用所致,其中后者作用更显著,且随处理温度的升高,穗颈节间最内和最外层薄壁细胞数目减少,细胞平均长度变短。  相似文献   

7.
8.
Because pathogens use diverse infection strategies, plants cannot use one-size-fits-all defence and modulate defence responses based on the nature of pathogens and pathogenicity mechanism. Here, we report that a rice glycoside hydrolase (GH) plays contrasting roles in defence depending on whether a pathogen is hemibiotrophic or necrotrophic. The Arabidopsis thaliana MORE1 (M agnaporthe o ryzae re sistance 1) gene, encoding a member of the GH10 family, is needed for resistance against Moryzae and Alternaria brassicicola, a fungal pathogen infecting A. thaliana as a necrotroph. Among 13 rice genes homologous to MORE1, 11 genes were induced during the biotrophic or necrotrophic stage of infection by M. oryzae. CRISPR/Cas9-assisted disruption of one of them (OsMORE1a) enhanced resistance against hemibiotrophic pathogens Moryzae and Xanthomonas oryzae pv. oryzae but increased susceptibility to Cochliobolus miyabeanus, a necrotrophic fungus, suggesting that OsMORE1a acts as a double-edged sword depending on the mode of infection (hemibiotrophic vs. necrotrophic). We characterized molecular and cellular changes caused by the loss of MORE1 and OsMORE1a to understand how these genes participate in modulating defence responses. Although the underlying mechanism of action remains unknown, both genes appear to affect the expression of many defence-related genes. Expression patterns of the GH10 family genes in A. thaliana and rice suggest that other members also participate in pathogen defence.  相似文献   

9.
10.
水稻Ds插入淡绿叶突变体的鉴定和遗传分析   总被引:1,自引:0,他引:1  
张向前  刘芳  朱海涛  李晓燕  曾瑞珍 《遗传》2009,31(9):947-952
Ac/Ds插入突变是水稻基因功能鉴定的有力工具之一。文章从水稻中花11 Ds-T-DNA转化纯合体与Ac-T-DNA 转化纯合体的杂交群体中筛选到一个淡绿叶突变体。该突变体在三叶期由绿苗转为淡绿叶苗, 自然光照下突变体迅速焦枯, 但是在弱光照条件下, 突变体能缓慢生长至开花结实; 突变体光合作用特性研究表明该突变是典型的光抑制突变体。遗传分析表明该突变为Ds插入导致的隐性突变。  相似文献   

11.
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.  相似文献   

12.
13.
Excessive cadmium (Cd) accumulation in rice poses a risk to food safety. OsHMA3 plays an important role in restricting Cd translocation from roots to shoots. A non‐functional allele of OsHMA3 has been reported in some Indica rice cultivars with high Cd accumulation, but it is not known if OsHMA3 allelic variation is associated with Cd accumulation in Japonica cultivars. In this study, we identified a Japonica cultivar with consistently high Cd accumulation in shoots and grain in both field and greenhouse experiments. The cultivar possesses an OsHMA3 allele with a predicted amino acid mutation at the 380th position from Ser to Arg. The haplotype had no Cd transport activity when the gene was expressed in yeast, and the allele did not complement a known nonfunctional allele of OsHMA3 in F1 test. The allele is present only in temperate Japonica cultivars among diversity panels of 1483 rice cultivars. Different cultivars possessing this allele showed greatly increased root‐to‐shoot Cd translocation and a shift in root Cd speciation from Cd―S to Cd―O bonding determined by synchrotron X‐ray absorption spectroscopy. Our study has identified a new loss‐of‐function allele of OsHMA3 in Japonica rice cultivars leading to high Cd accumulation in shoots and grain.  相似文献   

14.
15.
Recent advances in comprehensive metabolite profiling techniques, the foundation of metabolomics, is facilitating our understanding of the functions, regulation and complex networks of various metabolites in organisms. Here, we report a quantitative metabolomics technique for complex plant sphingolipids, composed of various polar head groups as well as structural isomers of hydrophobic ceramide moieties. Rice (Oryza sativa L.) was used as an experimental model of monocotyledonous plants and has been demonstrated to possess a highly complex sphingolipidome including hundreds of molecular species with a wide range of abundance. We established a high‐throughput scheme for lipid preparation and mass spectrometry‐based characterization of complex sphingolipid structures, which provided basic information to create a comprehensive theoretical library for targeted quantitative profiling of complex sphingolipids in rice. The established sphingolipidomic approach combined with multivariate analyses of the large dataset obtained clearly showed that different classes of rice sphingolipids, particularly including subclasses of glycosylinositol phosphoceramide with various sugar‐chain head groups, are distributed with distinct quantitative profiles in various rice tissues, indicating tissue‐dependent metabolism and biological functions of the lipid classes and subclasses. The sphingolipidomic analysis also highlighted that disruption of a lipid‐associated gene causes a typical sphingolipidomic change in a gene‐dependent manner. These results clearly support the utility of the sphingolipidomic approach in application to wide screening of sphingolipid‐metabolic phenotypes as well as deeper investigation of metabolism and biological functions of complex sphingolipid species in plants.  相似文献   

16.
17.
High temperature (HT) during the grain developing stage causes deleterious effects on rice quality resulting in mature grains with a chalky appearance. Phospholipase D (PLD) plays an important role in plants, including responses to environmental stresses. OsPLDα1, α3 and β2-knockdown (KD) plants showed decreased production of chalky grains at HT. HT ripening increased H2O2 accumulated in the developing grains. However, the increase was canceled by the knockdown of OsPLDβ2. Expression levels of OsCATA which is one of three rice catalase genes, in developing grains of OsPLDβ2-KD plants at 10 DAF were increased compared with that in vector-controls in HT growth conditions. Overexpression of OsCATA markedly suppressed the production of chalky grains in HT growth conditions. These results suggested that OsPLDβ2 functions as a negative regulator of the induction of OsCATA and is involved in the production of chalky grains in HT growth conditions.  相似文献   

18.
Moderate plant height and successful establishment of reproductive organs play pivotal roles in rice grain production. The molecular mechanism that controls the two aspects remains unclear in rice. In the present study, we characterized a rice gene, ABNORMAL FLOWER AND DWARF1 (AFD1) that determined plant height, floral development and grain yield. The afd1 mutant showed variable defects including the dwarfism, long panicle, low seed setting and reduced grain yield. In addition, abnormal floral organs were also observed in the afd1 mutant including slender and thick hulls, and hull‐like lodicules. AFD1 encoded a DUF640 domain protein and was expressed in all tested tissues and organs. Subcellular localization showed AFD1‐green fluorescent fusion protein (GFP) was localized in the nucleus. Meantime, our results suggested that AFD1 regulated the expression of cell division and expansion related genes.  相似文献   

19.
Genes involved in the differentiation and development of tissues and organs are temporally and spatially regulated in plant development. The DROOPING LEAF (DL) gene, a member of the YABBY gene family, promotes midrib formation in the leaf and carpel specification in the flower. Consistent with these functions, DL is initially expressed in the central region of the leaf primordia (presumptive midrib) and in the presumptive carpel primordia in the meristem. To understand the regulatory mechanism underlying DL expression, we tried to identify cis-regulatory regions required for temporal and spatial expression of this gene. We found that the cis region responsible for the presumptive midrib-specific expression in the leaf primordia is located in intron 2. Next, we confined the region to a sequence of about 200bp, which corresponds to a conserved non-coding sequence (CNS) identified by phylogenetic footprinting. In addition, a sequence termed DG1, incorporating a 5' upstream region of about 7.4kb, and introns 1 and 2, was shown to be sufficient to induce DL in the presumptive midrib, and to suppress it in other regions in the leaf primordia. By contrast, the regulatory region required for carpel-specific expression was not included in the DG1 sequence. We modified Oryza sativa (rice) plant architecture by expressing an activated version of DL (DL-VP16) in a precise manner using the DG1 sequence: the resulting transgenic plant produced a midrib in the distal region of the leaf blade, where there is no midrib in wild type, and formed more upright leaves compared with the wild type.  相似文献   

20.
APⅣ是一份多卵水稻突变体.多卵是由"5-2-1"型、"5-3-0"型和"6-2-0"型等蓼型变异型发育途径发育而来的.多卵都能分别受精,因而使APⅣ出现多胚现象.本结果表明,APⅣ中约有一半胚囊的发育属于蓼型变异型,变异型胚囊发育过程中存在多种异常的核行为,这些核行为受着微管骨架组织变化的影响,显示微管骨架组织在胚囊核行为中起着一定的作用.文中观察到的较为明显的异常情况有:"5-2-1"型四核胚囊存在特殊的核运动,四核胚囊刚形成时,珠孔和合点两端各有2个核,但不久合点端有1个核移向珠孔端,形成珠孔端有3个核、合点端只有1个核的特殊四核胚囊.这种四核胚囊在合点端的1个核移向珠孔端期间,合点端2个姐妹核之间存在特殊的长条状微管束,这种微管可能是促进二核有效分开的重要组成部分."5-3-0"型和"6-2-0"型各个时期胚囊内的核行为和核周围的微管组织骨架与同期正常蓼型的胚囊均存在着差异."5-3-0"型二核胚囊1个核位于珠孔端,另1个核近珠孔端,二核呈纵向排列与胚囊纵轴平行,核之间存在随机排列的微管束,因此可能导致二核无法像正常二核胚囊的核一样移向两端."6-2-0"型功能大孢子、二核胚囊和四核胚囊等时期胚囊核均位于珠孔端或近珠孔端,而在核周则存在复杂的网络状微管."6-2-0"型八核胚囊早期除2个近胚囊中央的核存在朝向合点极的长微管(可能有助于推动核向胚囊中央移动)外,其他核周围的微管组织都呈复杂的网络状.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号