首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A 2 × 2 factorial experiment (n = 12 replicates per treatment, 4 pigs per replicate) was performed to investigate the effects of seaweed extracts, laminarin (derived ß-glucans) and fucoidan (sulphated polysaccharides), independently or in combination on post-weaning piglet performance and selected microbial populations. At weaning, the piglets (24 days of age, 6.4 kg live weight) were assigned to one of the four dietary treatments: (T1) basal diet, (T2) basal diet with 300 p.p.m. laminarin, (T3) basal diet with 240 p.p.m. fucoidan, (T4) basal diet with 300 p.p.m. laminarin and 240 p.p.m. fucoidan. Pigs offered diets supplemented with laminarin had an increased daily gain (P < 0.01), and gain-to-feed ratio (P < 0.05) compared to pigs offered diets without laminarin supplementation during the experimental period (days 0 to 21). Pigs offered laminarin-supplemented diets had an increased faecal dry matter and reduced diarrhoea (P < 0.05) during the critical 7 to 14 day period. Pigs offered diets containing laminarin had reduced faecal Escherichia coli populations. There was a significant interaction (P < 0.01) on faecal Lactobacilli populations between laminarin and fucoidan. Pigs offered the fucoidan diet had an increased Lactobacilli population compared to pigs offered the basal diet. However, there was no effect of fucoidan on faecal Lactobacilli populations when laminarin was added. Overall, the reduction in E. coli population and the increase in daily gain suggest that laminarin may provide a dietary means to improve gut health after weaning.  相似文献   

2.
Sulfated polysaccharides (fucans and fucoidans) from brown algae show several biological activities, including anticoagulant and anti-inflammatory activities. We have extracted a sulfated heterofucan from the brown seaweed Lobophora variegata by proteolytic digestion, followed by acetone fractionation, molecular sieving, and ion-exchange chromatography. Chemical analyses and 13C-NMR and IR spectroscopy showed that this fucoidan is composed of fucose, galactose, and sulfate at molar ratios of 1:3:2. We compared the anticoagulant activity of L. variegata fucoidan with those of a commercial sulfated polysaccharide (also named fucoidan) from Fucus vesiculosus and heparin. The experimental inflammation models utilized in this work revealed that fucoidan from L. variegata inhibits leukocyte migration to the inflammation site. Ear swelling caused by croton oil was also inhibited when sulfated polysaccharides from F. vesiculosus and L. variegata were used. The precise mechanism of different action between homo-and heterofucans is not clear; nevertheless, the polysaccharides studied here may have therapeutic potential in inflammatory disorders. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 9, pp. 1265–1273.  相似文献   

3.
The in vitro antioxidant activities of the following six sulfated polysaccharides were investigated: iota, kappa and lambda carrageenans, which are widely used in the food industry, fucoidan (homofucan) from the edible seaweed Fucus vesiculosus and fucans (heterofucans) F0.5 and F1.1 from the seaweed Padina gymnospora. With respect to the inhibition of superoxide radical formation, fucoidan had an IC50 (the half maximal inhibitory concentration) of 0.058 mg·mL−1, while the IC50 for the kappa, iota and lambda carrageenans were 0.112, 0.332 and 0.046 mg·mL−1, respectively. All of the samples had an inhibitory effect on the formation of hydroxyl radicals. The results of peroxidation tests showed that fucoidan had an IC50 of 1.250 mg·mL−1 and that the kappa, iota and lambda carrageenans had an IC50 of 2.753 and 2.338 and 0.323 mg·mL−1, respectively. Fucan fractions showed low antioxidant activity relative to fucoidan. These results clearly indicate the beneficial effect of algal polysaccharides as antioxidants.  相似文献   

4.
Ten Bacteroides species found in the human colon were surveyed for their ability to ferment mucins and plant polysaccharides ("dietary fiber"). A number of strains fermented mucopolysaccharides (heparin, hyaluronate, and chondroitin sulfate) and ovomucoid. Only 3 of the 188 strains tested fermented beef submaxillary mucin, and none fermented porcine gastric mucin. Many of the Bacteroides strains tested were also able to ferment a variety of plant polysaccharides, including amylose, dextran, pectin, gum tragacanth, gum guar, larch arabinogalactan, alginate, and laminarin. Some plant polysaccharides such as gum arabic, gum karaya, gum ghatti and fucoidan, were not utilized by any of the strains tested. The ability to utilize mucins and plant polysaccharides varied considerably among the Bacteroides species tested.  相似文献   

5.
The aims of this study were to characterise the composition of five seaweed species (Ascophyllum nodosum, Fucus serratus, Fucus vesiculosus, Laminaria hyperborea and Sargassum muticum), their extracts and commercial formulations, using thermogravimetry (TGA), energy dispersive X-ray microanalysis (EDX), Fourier-transform infrared spectroscopy (FTIR) and pyrolysis gas chromatography/mass spectrometry (Py-GC/MS). Analyses of the samples by TGA and EDX provided information on the proportions of algal cell wall, inorganic fractions and minerals. The main carbohydrate constituents of the five species and extracts were identified by their pyrolysis products, e.g. 1-(2-furanyl) ethanone, 5-methyl-2-furcarboxaldehyde, 2-hydroxy-3-methyl-2-cyclopenten-1-one, diannhydromannitol, 1,6-anhydromannopyranose and 1,6-anhydromannofuranose, using Py-GC/MS. The differences in relative intensities of the infrared bands of the five species were enhanced, especially after acid extraction compared with alkaline or neutral treatments, resulting in improved understanding of the compositional changes. In addition four commercial formulations and two acidic extracts of A. nodosum were evaluated for composition using the techniques. The dry matter, pH, electrical conductivity, ash, carbon and nitrogen content of the six preparations showed significant differences in composition. Variations in fatty acid, alginic acid, mannitol, laminarin and fucoidan content of the six formulations were reported. The results have shown that TGA, EDX, Py-GC/MS and FTIR are complementary techniques for rapid evaluation of seaweed materials and products.  相似文献   

6.
Marine heterotrophic bacteria contribute considerably to global carbon cycling, in part by utilizing phytoplankton-derived polysaccharides. The patterns and rates of two different polysaccharide utilization modes – extracellular hydrolysis and selfish uptake – have previously been found to change during spring phytoplankton bloom events. Here we investigated seasonal changes in bacterial utilization of three polysaccharides, laminarin, xylan and chondroitin sulfate. Strong seasonal differences were apparent in mode and speed of polysaccharide utilization, as well as in bacterial community compositions. Compared to the winter month of February, during the spring bloom in May, polysaccharide utilization was detected earlier in the incubations and a higher portion of all bacteria took up laminarin selfishly. Highest polysaccharide utilization was measured in June and September, mediated by bacterial communities that were significantly different from spring assemblages. Extensive selfish laminarin uptake, for example, was detectible within a few hours in June, while extracellular hydrolysis of chondroitin was dominant in September. In addition to the well-known Bacteroidota and Gammaproteobacteria clades, the numerically minor verrucomicrobial clade Pedosphaeraceae could be identified as a rapid laminarin utilizer. In summary, polysaccharide utilization proved highly variable over the seasons, both in mode and speed, and also by the bacterial clades involved.  相似文献   

7.

Laminarin is a low-molecular-weight polysaccharide found in seaweed (kelp), often in equal concentrations to that in the commercially important hydrocolloid alginate. However, while alginate can be easily recovered by dissolution followed by acid precipitation, for laminarin, there is no such straightforward way of recovering it. Laminarin can be used as dietary fiber and, if efficiently extracted, it may be used for functional food/feed applications and as a component in plant defense stimulants for agriculture. One way of concentrating laminarin from dilute solutions is to press the solution through ultrafine membranes that the molecules cannot pass through. When alginate is extracted, an acid pretreatment step is used and the dilute acid residue from that process also contains laminarin. We used cross-flow filtration to concentrate laminarin from Saccharina latissima, retrieving it from the dilute acid solution of the acid pretreatment of an alginate extraction. Three ceramic membranes with 5, 15, and 50 kDa molecular weight cutoffs were used, and the pressure, temperature, and feed velocity were altered to reveal which parameters controlled the flow through the membrane and how efficiently laminarin was concentrated. The effects on laminarin extraction for fresh vs. frozen biomass were evaluated showing that frozen biomass releases more laminarin with a similar biomass homogenization technique. Thermal and microbial degradation of the feed components was studied during the course of the filtrations, showing that microbial degradation can affect the laminarin concentration, while the temperature of the process ~ 65 °C had little impact on laminarin. The techniques used to monitor the components in the feed and permeate during filtration were nuclear magnetic resonance, 1H-NMR, and size exclusion chromatography. The filtrations were performed in a pilot-size filtration unit with ceramic membranes (ZrO2/TiO2, TiO2-Al2O support, 0.08 m2). To be able to operate without quick membrane fouling, the most important parameter was to have a high liquid velocity over the membrane, 4.7 m?s?1. A good technique to concentrate laminarin was to prefilter it through a 50-kDa membrane using 2 bar liquid pressure and to concentrate it over a 5-kDa membrane using 5-bar liquid pressure. With these settings, the liquid flux through the filter became 60–80 and 30–40 L?m?2?h?1 over the 50-kDa and 5-kDa membrane.

  相似文献   

8.
Species of the fungal generaAspergillus andPenicillium produce immunologically active extracellular polysaccharides (EPS) in which galactofuranose residues are immunodominant. The antigenic determinant of the EPSA. fumigatus, A. niger andP. digitatum could be removed by acid hydrolysis. Due to the hydrolysis of the EPS the immunological reaction between IgG anti-native EPS and hydrolysed EPS disappeared. Antibodies raised in rabbits against the acid hydrolysed EPS revealed new antigenic determinants that were exposed as a result of the acid hydrolysis. Immunological inhibitory experiments showed that the antibodies were no longer directed to galactofuranose residues.Enzyme Linked Immunosorbent Assay, carried out with antibodies raised against the acid hydrolysed EPS showed that the antibodies against the acid hydrolysed EPS were more species specific in comparison with the antibodies against the native EPS.  相似文献   

9.
Helicobacter pylori possesses a broad spectrum of pathogenic factors that allow it to survive and colonize the gastric mucosa, and thus, the pathogenetic targets, which have the same diversity, require search for and the development of alternative, effective, and innocuous means for the eradication of H. pylori. In recent years, fucoidans have been extensively studied due to the numerous interesting biological activities, including the anti‐adhesive, anti‐oxidative, antitoxic, immunomodulatory, anticoagulant, and anti‐infection effects. This review summarizes the data on the effects of extracts and sulfated polysaccharides of marine algae, mainly fucoidans, on pathogenic targets in Helicobacter infection. The pathogenetic targets for therapeutic agents after H. pylori infection, such as flagellas, urease, and other enzymes, including adhesins, cytotoxin A (VacA), phospholipase, and L‐8, are characterized here. The main target for the sulfated polysaccharides of seaweed is cell receptors of the gastric mucosa. This review presents the published data about the pleiotropic anti‐inflammatory effects of polysaccharides on the gastric mucosa. It is known that fucoidan and other sulfated polysaccharides from algae have anti‐ulcer effects, prevent the adhesion of H. pylori to, and reduce the formation of biofilm. The authors speculate that the effect of sulfated polysaccharides on the infectious process caused by H. pylori is related to their action on innate and adaptive immunity cells, and also anti‐oxidant and antitoxic potential. Presented in the review are materials indicated for the study of extracts and sulfated polysaccharides from seaweed during H. pylori infection, as these compounds are characterized by multimodality actions. Based on the analysis of literary materials in recent years, the authors concluded that fucoidan can be attributed to the generation of new candidates to create drugs intended for the inclusion in the scheme of eradication therapy of H. pylori infection.  相似文献   

10.
An experiment (3 × 4 factorial arrangement) was conducted to investigate the interaction between different levels of lactose (60 v. 150 v. 250 g/kg) and seaweed extract (0 v. 1 v. 2 v. 4 g/kg) containing both laminarin and fucoidan derived from Laminaria spp. on growth performance and nutrient digestibility of weanling pigs. In all, 384 piglets (24 days of age, 7.5 kg (s.d. 1 kg) live weight) were blocked on the basis of live weight and were assigned to one of 12 dietary treatments (eight replicates per treatment). Piglets were offered diets containing either low (60 g/kg), medium (150 g/kg) or high (250 g/kg) lactose levels with one of the following levels of seaweed extract additive: (1) 0 g/kg, (2) 1 g/kg, (3) 2 g/kg or (4) 4 g/kg seaweed extract. The pigs were offered the diets ad libitum for 21 days post weaning. There was a significant lactose × seaweed extract interaction (P < 0.05) in average daily gain (ADG) during the experimental period (days 0 to 21). At the low and medium levels of lactose, there was an increase in ADG as the level of seaweed extract increased to 2 g/kg (P < 0.05). However, at the high level of lactose there was no further response in ADG as the level of seaweed extract increased above 1 g/kg. There was a significant lactose × seaweed extract interaction during the experimental period (days 0 to 21) (P < 0.05) on the food conversion ratio (FCR). At the low level of lactose, there was a significant improvement in FCR as the levels of seaweed extract increased to 4 g/kg (P < 0.01). At the medium level of lactose, there was a significant improvement in FCR as seaweed extract increased to 2 g/kg. However, there was no significant effect of seaweed extract on FCR at the high levels of lactose (P > 0.05). There was a linear increase in average daily feed intake (ADFI) during the experimental period (days 0 to 21) (P < 0.05) as levels of seaweed extract increased. There was a linear increase in ash digestibility (P < 0.01) during the experimental period (days 0 to 21) as the level of lactose increased. There was a quadratic decrease (P < 0.01) in nitrogen (N) and neutral detergent fibre digestibility as the levels of lactose increased. In conclusion, pigs responded differently to the inclusion levels of seaweed extract at each level of lactose supplementation. The inclusion of a laminarin–fucoidan extract in piglet diets may alleviate the use for high-lactose diets (>60 g/kg) and would also alleviate some of the common problems that occur post weaning.  相似文献   

11.

The invasive brown seaweed Undaria pinnatifida was first recorded in 1992 in Golfo Nuevo, northern Patagonia, Argentina (hereafter Undaria). Like other brown seaweeds, Undaria synthesizes fucoidans, a unique class of sulfated polysaccharides, which display an array of biological activities and have important commercial value. In this work we have measured the content, sulfate, and monosaccharide composition of fucoidans in Undaria sporophylls from Golfo Nuevo. These results were analyzed in relation to harvest month and development stage of algal thalli. Samples were collected between November 2015 and March 2016 and classified according to morphological traits into previously defined development stages. Acid extraction (0.01 M HCl, pH 2) was carried out at room temperature and at 70 °C. Average fucoidan content was 18.1% dry wt. and slightly increased with month progression and in senescent individuals. Average sulfate content in fucoidan extracts was 20.3% dry wt. decreasing with month and development. Predominant sugars were fucose and galactose averaging a total of 91 mol% of neutral sugars. This study confirms that sporophyll fucoidans from Patagonian Undaria are sulfated galactofucans. Fucoidan content significantly increases from 14.5 to 19.2% dry wt. with sporophyte development. Slight increments with month progression are not statistically significant. Molar proportion of neutral sugars is constant between maturity stages and varies slightly with month progression. Sulfate content of fucoidan decreased significantly with development and month progression. Pooled with previous reports about abundance and seasonality of Undaria in Patagonia, our results suggest that sporophylls could be harvested for fucoidan production at least during 5 months between November and March.

  相似文献   

12.
Polysaccharides composition of the tropical brown seaweeds Turbinaria turbinata, Sargassum filipendula, Dictyota caribaea and Padina perindusiata collected at Yucatan Peninsula (Mexico) was determined in this study. Crude fucoidan extracted with HCl and alginate extracted with a hot alkali solution were characterized in terms of their molecular weight, sulfate content, uronic acid, total carbohydrate and neutral sugar components. Low molecular weight sulfated‐fucoidan was the major component in all species studied. Fucoidan from T. turbinata and from D. caribaea were characterized as a homofucan, with fucose as the neutral sugar. Fucoidan from S. filipendula was composed of a galactofucan, and fucoidan from P. perindusiata was characterized as a heterofucan consisting of fucose, glucose and galactose. The Fourier transform infrared (FT‐IR) spectra of fucoidan extracted from species studied indicated that the majority of sulfate groups are located at C‐4 and to a lesser extent at C‐2 and/or C‐3 of the fucopyranose residues. This could be advantageous since several therapeutic effects have been reported for fucoidans with similar characteristics. FT‐IR spectra from D. caribaea and P. perindusiata revealed the presence of O‐acetyl groups in crude fucoidan, which could be potentially utilized as an immune stimulant. Molecular weight of alginate varied between 595 and 1301 kDa with similar uronic acid content in all species. Alginate M : G ratio inferred from FT‐IR spectra suggests a high content of G‐block in all species. Potential applications of these polysaccharides are discussed.  相似文献   

13.
The ecophysiological variabilities in the ectohydrolytic enzyme profiles of the three species of Pseudoalteromonas, P. citrea, P. issachenkonii, and P. nigrifaciens, have been investigated. Forty-one bacteria isolated from several invertebrates, macroalgae, sea grass, and the surrounding water exhibited different patterns of hydrolytic enzyme activities measured as the hydrolysis of either native biopolymers or fluorogenic substrates. The activities of the following enzymes were assayed: proteinase, tyrosinase, lipase, amylase, chitinase, agarase, fucoidan hydrolase, laminaranase, alginase, pustulanase, cellulase, β-glucosidase, α- and β-galactosidases, β-N-acetylglucosaminidase, β-glucosaminidase, β-xylosidase, and α-mannosidase. The occurrence and cell-specific activities of all enzymes varied over a broad range (from 0 to 44 μmol EU per hour) and depended not only on taxonomic affiliation of the strain, but also on the source/place of its isolation. This suggests ‘specialization’ of different species for different types of polymeric substrates as, for example, all strains of P. citrea and P. issachenkonii hydrolyzed alginate and laminaran, while strains of P. nigrifaciens were lacking the ability to hydrolyze most of the algal polysaccharides. The incidence of certain enzymes such as fucoidan hydrolases, alginate lyases, agarases, and α-galactosidases might be strain specific and reflect its particular ecological habitat. Received: 15 February 2002 / Accepted: 27 March 2002  相似文献   

14.
Fucoidan is a uniquely-structured sulfated polysaccharide found in the cell walls of several types of brown seaweed that has recently, especially as enzyme-digested fucoidan extract, attracted a lot attention due to its anti-tumor potential. In this study, we evaluated the effects of enzyme-digested fucoidan extracts prepared from seaweed Mozuku of Cladosiphon novae-caledoniae kylin on in vitro invasion and angiogenesis abilities of human tumor cells. First, we evaluated the effect of the fucoidan extracts on oxidative stress of tumor cells, and demonstrated that intracellular H2O2 level and released H2O2 from tumor cells were both greatly repressed upon the treatment with the fucoidan extracts, suggesting that fucoidan extracts ameliorate oxidative stress of tumor cells. Next, we tested for the effects of fucoidan extracts on invasion ability of human fibrosarcoma HT1080 cells, showing that fucoidan extracts significantly inhibit their invasion, possibly via suppressing matrix metalloproteinases (MMPs) MMP-2/9 activities. Further, we investigated the effects of the fucoidan extracts on angiogenesis of human uterine carcinoma HeLa cells, and found that fucoidan extracts suppressed expression and secretion of an angiogenesis factor vascular endothelial growth factor (VEGF), resulting in suppressed vascular tubules formation of tumor cells. The results taken together clarified that enzyme-digested fucoidan extracts from Cladosiphon novae-caledoniae kylin possess inhibitory effects on invasion and angiogenesis of tumor cells. These effects might, at least partially, be elicited by the antioxidative potential of enzyme digested fucoidan extracts.  相似文献   

15.
Ulvan, carrageenan, alginate and laminarin were tested in olive trees’ twigs to elicit phenolic metabolism and control verticillium wilt of olive (VWO) caused by Verticillium dahliae. The elicitation effect was determined through phenylalanine ammonia-lyase activity, total polyphenol content and lignin content. VWO was assessed in twigs previously elicited (24?h) and maintained in a solution containing bio-elicitors (2?g/L) and conidial suspension (106?conidia/mL). Our results showed stimulation of the phenolic metabolism and the decline of wilt symptoms. Ulvan reduced significantly the area under the disease progress curve for severity to 39.9% and the final incidence to 28.9%. Ulvan and alginate produced significant inhibitory rates on mycelial growth of the fungus in vitro. Seaweed polysaccharides might help to overcome VWO by strengthening the host defense metabolism and restricting the pathogen’s growth.  相似文献   

16.
GC-MS of trimethylsilyl derivatives of the compounds present in the butanolic extract of biomass of brown seaweed Colpomenia peregrina from the Black Sea aided in identification of 24 components, including aliphatic hydroxy and keto and aromatic acids, glycerol, mannitol, floridoside, and monosaccharides. The polysaccharide composition of the biomass was also studied, with high sodium alginate and laminaran contents and a comparatively low level of fucoidan being revealed. The polysaccharides were isolated from the biomass by fractional extraction and purified by precipitation or ion exchange chromatography. The structures of alginic acid and laminaran were deduced from 13C NMR spectra and confirmed, in the case of laminaran, by methylation analysis. The sodium alginate was shown to contain more guluronic (G) than mannuronic acid (M) residues, the M/G ratio being 0.48. Laminaran was demonstrated to be a -glucan with 1 3 linkages in its backbone and 1 6 linkages in its branching points, which is characteristic of brown algae. Fucoidan turned out to be a complex heteropolysaccharide containing, in addition to fucose and sulfate, other neutral monosaccharides and uronic acids.  相似文献   

17.
The initial hydrolysis and acidogenesis of L. hyperborea fronds wereinvestigated in anaerobic batch fermentations. The main product in theacidogenesis of fronds and fronds added extra substrates was acetate.Addition of extra glucose led to a diauxic development with glucose as thepreferred substrate and delayed initiation of alginate lyase activity. Additionof extra mannitol did not affect the initiation of lyase activity, butmaximum activity was reduced. Addition of products such as acetate andpropionate also resulted in a delayed lyase activity. The fermentation ofpure fronds resulted in a high acetate/CO2 ratio, suggesting that thehomoacetogenic pathway played an important role in the degradation ofuronic acids. Addition of mannitol or glucose resulted in a much loweracetate/CO2 ratio and an initial decrease in soluble CODconcentration, probably caused by biomass growth and possibly someH2 production. Thus, the seasonal changes of mannitol and laminaranin L. hyperborea fronds will result in different digestion characteristicsfor this algae throughout the year.  相似文献   

18.
The rumen microbiota enable ruminants to degrade complex ligno-cellulosic compounds to produce high quality protein for human consumption. However, enteric fermentation by domestic ruminants generates negative by-products: greenhouse gases (methane) and environmental nitrogen pollution. The current lack of cultured isolates representative of the totality of rumen microbial species creates an information gap about the in vivo function of the rumen microbiota and limits our ability to apply predictive biology for improvement of feed for ruminants. In this work we took a whole ecosystem approach to understanding how the metabolism of the microbial population responds to introduction of its substrate. Fourier Transform Infra Red (FTIR) spectroscopy-based metabolite fingerprinting was used to discriminate differences in the plant-microbial interactome of the rumen when using three forage grass varieties (Lolium perenne L. cv AberDart, AberMagic and Premium) as substrates for microbial colonisation and fermentation. Specific examination of spectral regions associated with fatty acids, amides, sugars and alkanes indicated that although the three forages were apparently similar by traditional nutritional analysis, patterns of metabolite flux within the plant-microbial interactome were distinct and plant genotype dependent. Thus, the utilisation pattern of forage nutrients by the rumen microbiota can be influenced by subtleties determined by forage genotypes. These data suggest that our interactomic approach represents an important means to improve forages and ultimately the livestock environment.  相似文献   

19.
The distribution of alginate genes encoding biosynthesis of alginate was examined for bacterial isolates associated with corrosive biofilms recovered from source water, cooling lines, and reactor surfaces of a nuclear power plant. A total of 120 diverse Gram-positive and -negative isolates were obtained. Using DNA:DNA hybridization, 11 isolates were shown to contain sequences homologous to structural (algD, algG, alg-76) and/or regulatory (albB) alginate biosynthetic genes derived from an alginate-producing cystic fibrosis isolate of Pseudomonas aeruginosa (FRD1). Identification of isolates was accomplished by fatty acids methyl esters (FAME) analysis and the Biolog identification system. Nine of the twelve isolates were identified as various Pseudomonas spp., and two additional Gram-negative isolates were tentatively identified as Aeromonas veronii and Stenotrophomonas maltophilia. The remaining isolate was identified as a Gram-positive Bacillus pumilus. The results of the investigation extend current knowledge on the distribution of alginate biosynthetic genes in environmental isolates and permits the development of a more environmentally realistic model system to investigate the role of exopolymer production in biofilm formation and biocorrosion processes. Correspondence to: G.S. Sayler.  相似文献   

20.
To reduce the volume of seaweed wastes and extract polysaccharides, seaweed-degrading bacteria were isolated from drifting macroalgae harvested along the coast of Toyama Bay, Japan. Sixty-four bacterial isolates were capable of degrading “Wakame” (Undaria pinnatifida) thallus fragments into single cell detritus (SCD) particles. Amongst these, strain 6532A was the most active degrader of thallus fragments, and was capable of degrading thallus fragments to SCD particles within a day. Although the sequence similarity of the 16S rRNA gene of strain 6532A was 100% similar to that of Microbulbifer elongatus JAMB-A7, several distinct differences were observed between strains, including motility, morphology, and utilization of d-arabinose and gelatin. Consequently, strain 6532A was classified as a new Microbulbifer strain, and was designated Microbulbifer sp. 6532A. Strain 6532A was capable of degrading both alginate and cellulose in the culture medium, zymogram analysis of which revealed the presence of multiple alginate lyases and cellulases. To the best of our knowledge, this is the first study to directly demonstrate the existence of these enzymes in Microbulbifer species. Shotgun cloning and sequencing of the alginate lyase gene in 6532A revealed a 1,074-bp open reading frame, which was designated algMsp. The reading frame encoded a PL family seven enzyme composed of 358 amino acids (38,181 Da). With a similarity of 74.2%, the deduced amino acid sequence was most similar to a Saccharophagus enzyme (alg 7C). These findings suggest that algMsp in strain 6532A is a novel alginate lyase gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号