首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dehydration at 95° of d-fructose (0.25m-1.0m) to 5-hydroxymethyl-2-furaldehyde (HMF) and the rehydration of HMF (0.25-1.0m) to levulinic and formic acids in 0.5-2m HCl has been studied. The conversion rate of d-fructose was proportional to the Hammett activity. The acidity had a smaller influence on the conversion rate of HMF, although it was not proportional to the catalyst concentration. The rehydration of HMF was faster in the presence of d-fructose. The yield of levulinic acid was independent of the catalyst concentration, but was lower at higher initial concentrations of d-fructose and HMF, and a kinetic model has been derived. The formation of humin was of an overall order 1.3 in an intermediate between d-fructose and HMF, and of an order 1.7 in an intermediate between HMF and levulinic acid.  相似文献   

2.
In order to study the kinetics of the dehydration of D-fructose, procedures for the qnantitation of fructose and its dehydration products, S-hydroxymethyI-2W furaldehyde (HMF), Ievulinic acid, and a “humin”, were developed. For many reaction conditions, these compounds, together with soluble polymers (up to 15%) that are humin precursors, account for at least 98% of the amount of initial D-fructose. Fructose, HMF, and levulinic acid were determined by g.l.c. of their O-trimethylsilyl derivatives. U.v. absorption and titration could also be used for the determination of HMF and levulinic acid. Humin was determined gravimetrically.  相似文献   

3.
The renewable furan-based platform chemical, 5-hydroxymethylfurfural (HMF), has been efficiently synthesized from d-fructose and sucrose in the presence of a catalytic amount of protic ionic liquids. The 1-methylimidazolium-based and N-methylmorpholinium-based ionic liquids are employed. As a result, 74.8% and 47.5% yields of HMF are obtained from d-fructose and sucrose, respectively, at 90 °C for 2 h under nitrogen atmosphere when N-methylmorpholinium methyl sulfonate ([NMM]+[CH3SO3]) is used as the catalyst in an N,N-dimethylformamide-lithium bromide (DMF-LiBr) system. The acidities of ionic liquids are determined by the Hammett method, and the correlation between acidity and catalytic activity is discussed. Moreover, the effects of reaction temperature and time are investigated, and a plausible reaction mechanism for the dehydration of d-fructose is proposed.  相似文献   

4.
The complexing parameters of d-glucose and d-fructose with germanate, derived from various forms of germanium dioxide, have been studied under the conditions pertaining to the d-glucose isomerase (d-xylose isomerase, d-xylose ketol-isomerase, EC 5.3.1.5) reaction. The interaction of germanate with d-glucose and d-fructose at various pH values has been investigated by means of optical rotation methods. The effects of temperature and concentration on the extent of complex formation are reported. The results are used to predict suitable conditions for the enhancement of d-fructose yield in the reaction of d-glucose with this enzyme.  相似文献   

5.
The catalytic dehydration of fructose to 5-hydroxymethylfurfural (HMF) was investigated by using various rare earth metal trifluoromethanesulfonates, that is, Yb(OTf)3, Sc(OTf)3, Ho(OTf)3, Sm(OTf)3, Nd(OTf)3 as catalysts in DMSO. It is found that the catalytic activity increases with decreasing ionic radius of rare earth metal cations. Among the examined catalysts, Sc(OTf)3 exhibits the highest catalytic activity. Fructose conversion of 100% and a HMF yield of 83.3% are obtained at 120 °C after 2 h by using Sc(OTf)3 as the catalyst. Moreover, the catalytic dehydration of fructose was also carried out in different solvents, for example, DMA, 1,4-dioxane, and a mixture of PEG-400 and water. The results show that among the solvents DMSO is the most efficient in promoting the dehydration of fructose to HMF, and no rehydration byproducts such as levulinic acid and formic acid are detected.  相似文献   

6.
Xie R  Tu M  Wu Y  Adhikari S 《Bioresource technology》2011,102(7):4938-4942
5-Hydroxymethylfurfural (HMF) and furfural could be separated by the Aminex HPX-87H column chromatography, however, the separation and quantification of acetic acid and levulinic acid in biomass hydrolysate have been difficult with this method. In present study, the HPLC separation of acetic acid and levulinic acid on Aminex HPX-87H column has been investigated by varying column temperature, flow rate, and sulfuric acid content in the mobile phase.The column temperature was found critical in resolving acetic acid and levulinic acid. The resolution for two acids increased dramatically from 0.42 to 1.86 when the column temperature was lowered from 60 to 30 °C. So did the capacity factors for levulinic acid that was increased from 1.20 to 1.44 as the column temperature dropped. The optimum column temperature for the separation was found at 45 °C. Variation in flow rate and sulfuric acid concentration improved not as much as the column temperature did.  相似文献   

7.
The addition of germanate anions to high d-glucose feed syrups, which are passed through an immobilized d-glucose isomerase [xylose isomerase, d-xylose ketol-isomerase, EC 5.3.1.5] column, displaces a ca. 50/50 d-glucose/d-fructose mixture (produced in the absence of germanate) in favour of d-fructose. A maximum conversion of 94% from a d-glucose feed (40% w/v) is obtained with no detrimental effect on the enzyme. This is related to the germanate: sugar ratio. Optimization of the d-fructose yield from d-glucose germanate substrate has been carried out. The effects due to temperature, pH and concentration were taken into consideration. Confirmation of the quantitative identification of the d-fructose was obtained by isotope dilution analysis. The theory behind the displacement is also discussed, and shows close agreement with practical results.  相似文献   

8.
Over a pH range 1-4 and temperatures from 170 to 230 degrees C, the decomposition rates of xylose, galactose, mannose, glucose, 2-furfural, and 5-hydroxymethyl-2-furfural (5-HMF) were pseudo first order. The effect of temperature and pH on the pseudo first-order decomposition rate constants was modeled using the Arrhenius equation and acid-base catalysis, respectively. Decomposition rates of the monosaccharides were minimum at a pH 2-2.5. Above pH 2.5, the monosaccharide decomposition was base catalyzed, with acid catalysis occurring at a pH of less than 2 for glucose. The furfurals were subject to acid catalysis at below ca. pH 3.5. The hydrothermal conversion of glucose to its decomposition products during thermochemical Pretreatment can be modeled as a combination of series and parallel reactions. The formation rates of identified soluble products from glucose decomposition, 5-HMF and levulinic acid, were also functions of temperature and pH. The rate of 5-HMF formation relative to glucose decomposition decreased as the pH increased from 2.0 to 4.0, with levulinic acid formation only detected when the pH was 2.5 or less. For glucose decomposition, humic solids accounted for ca. 20% of the decomposition products.  相似文献   

9.
Soluble soybean polysaccharide (SSPS) was fractionated into two sub-fractions, a high-molecular-weight fraction (HMF) and a low-molecular-weight fraction (LMF) by the ethanol-extraction method. Characterization of the sub-fractions, that is, analysis of chemical composition, gel filtration, and SDS–PAGE, revealed that the main component of HMF was a large polysaccharide molecule with covalently-attached peptides, possibly corresponding to the intact SSPS molecule. LMF consisted of free peptides and saccharides of small size, which might have occurred as by-products during the production process of SSPS. HMF exhibited high ability to emulsify oil droplets and stabilize α-casein dispersions in an acidic pH region, but this ability of LMF was inferior to HMF. On the other hand, LMF had higher activity to prevent the oxidation of emulsified lipids than HMF. These results suggest that HMF and LMF had different characteristics and functional properties, and that the combination of the two sub-fractions generates the multi-functions of commercial SSPS.  相似文献   

10.
The interaction of benzeneboronic acid, 4-methoxybenzeneboronic acid, and 3-nitrobenzeneboronic acid with d-glucose, d-mannose, and d-fructose at various pH values has been investigated by means of optical rotation methods. The effects of (a) various molar ratios of sugar and acid and (b) overall concentration on the extent of complex formation are reported.  相似文献   

11.
The formation of 4-hydroxy-5-methyl-3(2H)-furanone (HMF, norfuraneol) by spinach ribosephosphate isomerase was reinvestigated. Incubation experiments using D-ribose-5-phosphate and D-ribulose-5-phosphate clearly revealed a spontaneous nonenzymatic formation of the hydroxy-furanone from the ketose-phosphate under physiological conditions at 35 degrees C and pH 7.5, whereupon up to 1.3% of D-ribulose-5-phosphate was transformed to HMF within 15 h. 4,5-Dihydroxy-2,3-pentanedione was deduced as ultimate precursor of HMF, since addition of o-phenylenediamine to the incubation mixture led to lower amounts of HMF and to the formation of 3-(1,2-dihydroxyethyl)-2-methylquinoxaline, which was identified by means of high pressure liquid chromatography with diode array detection (HPLC-DAD), HPLC-electrospray ionization-tandem mass spectrometry (HPLC-ESI-MS/MS) and NMR spectroscopy. Additionally, the spontaneous formation of 4,5-dihydroxy-2,3-pentanedione was demontrated by its conversion to the respective alditol acetate using either NaBH(4) or NaBD(4) for the reduction. Comparative gas chromatography-mass spectrometry (GC-MS) analysis revealed the incorporation of two deuterium atoms and confirmed the dicarbonyl structure. Application of 1-13C-D-ribulose-5-phosphate as well as 5-13C-D-ribulose-5-phosphate and analysis of the derived quinoxaline derivatives by HPLC-ESI-MS/MS demonstrated the formation of the methyl-group at C-5 of the carbohydrate phosphate in consequence of a nonenzymatic phosphate elimination. Application of o-phenylenediamine into ripe tomatoes led to the detection of 3-(1,2-dihydroxyethyl)-2-methylquinoxaline by means of HPLC-MS/MS analysis implying the genuine occurrence of 4,5-dihydroxy-2,3-pentanedione in this fruit.  相似文献   

12.
《Carbohydrate research》1985,138(2):225-236
d-Fructose and d-fructose/d-glucose mixtures have been hydrogenated in water at 60–80° and 20–75 atm. of hydrogen with Ni, Cu, Ru, Rh, Pd, Os, Ir, and Pt severally as catalysts. The selectivity for the formation of d-mannitol from d-fructose as well as the selectivity for the hydrogenation of d-fructose in the presence of d-glucose with Cu/silica as the catalyst are substantially higher than those for the other catalysts. With Cu/silica as the catalyst, the hydrogenation of d-fructose is first order with respect to the amount of catalyst and the hydrogen pressure, whereas a shift from first- to zero-order kinetics occurs on going from low (<0.3m) to high (0.8m) concentrations of d-fructose. d-Fructose is preferentially hydrogenated via its furanose forms, presumably by attack of a copper hydride-like species at the anomeric carbon atom with inversion of configuration. Preferential adsorption of pyranose with respect to furanose forms occurs, whereas the furanose forms show a much higher reactivity. The mechanism proposed for the copper-catalysed hydrogenation reaction explains both the enhanced yield of d-mannitol from boric esters of d-fructose and the diastereoselectivity of the hydrogenation of seven other ketoses.  相似文献   

13.
The inhibition of ALA dehydratase by levulinic acid during ALA extracellular formation of Rhodobacter sphaeroides correlated with the concentration of undissociated form of levulinic acid irrespective of culture pH. The inhibition constant, Ki, of intracellular ALA dehydratase by Dixon plots was 2.95 μM. Undissociated levulinic acid therefore functions as an inhibitor of ALA dehydratase. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

14.
Lanthanum(III) chloride was found to effectively catalyze the degradation of cellulose in water at 250 degrees C. The degradation conversion of cellulose in the presence of a catalytic amount of lanthanum chloride reached 80.3% after 180 s, which corresponded to the turnover number of 83, whereas the reaction did scarcely proceed in the absence of the catalyst. The degradation products were separately quantified as water-soluble (WS), methanol-soluble (MS), methanol-insoluble (MI), and gaseous (G) products. The HPLC and GC analyses revealed that the WS materials are mainly composed of 5-hydroxymethyl-2-furaldehyde (HMF), D-glucose, and levulinic acid. Cellobiose, the disaccharide component of cellulose, was scarcely detected during the reaction.  相似文献   

15.
A mechanism for the isomerization of d-glucose to d-fructose by sodium aluminate is proposed, involving transformation of a β-d-glucopyranose-1,3-aluminate complex into an α-d-fructofuranose-1,3,6-aluminate complex through an enolaluminate complex that inhibits the formation of a d-mannose-aluminate complex. The α-d-fructofuranose-1,3,6-aluminate further reacts to form a d-psicose-aluminate complex in substantial yield. Constant degradation of the 6-carbon sugars occurred during the reaction because of the high pH of the solution. The C6 sugars were analyzed chromatographically but the degradation products were not identified.  相似文献   

16.
Bio-based 5-hydroxymethylfurfural (HMF) serves as an important platform for several chemicals, among which 2,5-furan dicarboxylic acid (FDCA) has attracted considerable interest as a monomer for the production of polyethylene furanoate (PEF), a potential alternative for fossil-based polyethylene terephthalate (PET). This study is based on the HMF oxidizing activity shown by Mycobacterium sp. MS 1601 cells and investigation of the enzyme catalysing the oxidation. The Mycobacterium whole cells oxidized the HMF to FDCA (60% yield) and hydroxymethyl furan carboxylic acid (HMFCA). A gene encoding a novel bacterial aryl alcohol oxidase, hereinafter MycspAAO, was identified in the genome and was cloned and expressed in Escherichia coli Bl21 (DE3). The purified MycspAAO displayed activity against several alcohols and aldehydes; 3,5 dimethoxy benzyl alcohol (veratryl alcohol) was the best substrate among those tested followed by HMF. 5-Hydroxymethylfurfural was converted to 5-formyl-2-furoic acid (FFCA) via diformyl furan (DFF) with optimal activity at pH 8 and 30–40°C. FDCA formation was observed during long reaction time with low HMF concentration. Mutagenesis of several amino acids shaping the active site and evaluation of the variants showed Y444F to have around 3-fold higher kcat/Km and ~1.7-fold lower Km with HMF.  相似文献   

17.
Benzeneboronic acid, 4-methoxybenzeneboronic acid, 3-nitrobenzeneboronic acid, and sulphonated benzeneboronic acid have been used to displace the pseudo-equilibria established in aqueous alkali between d-glucose, d-fructose, and d-mannose to give greatly increased yields of d-fructose. The effect of reaction temperature, pH, overall concentration, and molar ratio of acid:sugar on the yield of d-fructose has been investigated by using an automated assay for d-fructose.  相似文献   

18.
Various forms of stress can cause an attenuation of bulk translation activity and the accumulation of nontranslating mRNAs into cytoplasmic messenger RNP (mRNP) granules termed processing bodies (P-bodies) and stress granules (SGs) in eukaryotic cells. Furfural and 5-hydroxymethylfurfural (HMF), derived from lignocellulosic biomass, inhibit yeast growth and fermentation as stressors. Since there is no report regarding their effects on the formation of cytoplasmic mRNP granules, here we investigated whether furfural and HMF cause the assembly of yeast P-bodies and SGs accompanied by translational repression. We found that furfural and HMF cause the attenuation of bulk translation activity and the assembly of cytoplasmic mRNP granules in Saccharomyces cerevisiae. Notably, a combination of furfural and HMF induced the remarkable repression of translation initiation and SG formation. These findings provide new information about the physiological effects of furfural and HMF on yeast cells, and also suggest the potential usefulness of cytoplasmic mRNP granules as a warning sign or index of the deterioration of cellular physiological status in the fermentation of lignocellulosic hydrolysates.  相似文献   

19.
A mechanism for the isomerization of d-glucose to d-fructose by sodium aluminate is proposed, involving transformation of a β-d-glucopyranose-1,3-aluminate complex into an α-d-fructofuranose-1,3,6-aluminate complex through an enolaluminate complex that inhibits the formation of a d-mannose-aluminate complex. The α-d-fructofuranose-1,3,6-aluminate further reacts to form a d-psicose-aluminate complex in substantial yield. Constant degradation of the 6-carbon sugars occurred during the reaction because of the high pH of the solution. The C6 sugars were analyzed chromatographically but the degradation products were not identified.  相似文献   

20.
Extracellular formation of 5-aminolevulinic acid (ALA) by Rhodovulum sp. PS88 correlated with the consumption of the undissociated form of levulinic acid (LA) in an intact cell system. The concentration of the undissociated form of LA governed the extracellular formation of ALA at various culture pH values. This phenomenon might be caused by inhibition of ALA dehydratase by the undissociated form of LA after uptake into the cells as observed in Rhodobacter sphaeroides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号