首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of tetra-O-acetyl-β-d-glucopyranosyl N,N-dimethyldithiocarbamate (1) with phenylmercury(II) acetate gives tetra-O-acetyl-1-phenylmercury(II)thio-β-d-glucopyranose (3), which can also be made in high yield from other dithiocarbamates, from tetra-O-acetyl-1-thio-β-d-glucopyranose, and from its S-acetyl derivative. The p-diethylamino derivative (7) of compound 3 displays significantly different properties and is readily convertible into bis(tetra-O-acetyl-1-thio-β-d-glucopyranosyl)mercury(II) (8), which is also obtainable by treatment of tetra-O-acetyl-1-thio-β-d-glucopyranose with mercury(II) acetate. Aspects of the chemistry of compounds 3, 7, and 8 are reported; demercuration of 3 affords a convenient synthesis of 2,3,4,6-tetra-O-acetyl-1-thio-β-d-glucose.  相似文献   

2.
A number of novel, aryl and aralkyl d-mannopyranosides and 1-thio-d-mannopyranosides were synthesized for evaluation of insulin-like and insulin-antagonistic properties. The substituted-phenyl α-d-mannopyranosides were prepared by the general procedure of Helferich and Schmitz-Hillebrecht, the substituted-phenyl 1-thio-α-d-mannopyranosides by a method corresponding to the Michael synthesis of aromatic glycosides, and the aralkyl 1-thio-α-d-mannopyranosides by aralkylation of 2,3,4,6-tetra-O-acetyl-1-thio-α-d-mannopyranose (15) and subsequent O-deacetylation. Compound 15 was obtained by basic cleavage of the amidino group in 2-S-(tetra-O-acetyl-α-d-mannopyranosyl)-2-thiopseudourea hydrobromide, the product of the reaction of tetra-O-acetyl-α-d-mannosyl bromide with thiourea. Benzyl 1-thio-β-d-mannopyranoside, obtained by reaction of the sodium salt of 1-thio-β-d-mannopyranose with α-bromotoluene, and benzyl 1-thio-α-l-mannopyranoside were also synthesized, in order to assess the stereospecificity of the biological activities measured.  相似文献   

3.
2,3,4,6-Tetra-O-acetyl-β-d-mannopyranosyl chloride (2) was obtained in 70% yield by the action of lithium chloride on 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide (1) in hexamethylphosphoric triamide. p-Nitrobenzenethiol reacted with 1 and 2 as well as with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (9) or its β-d-chloro analog (10), giving exclusively and in good yield the corresponding p-nitrophenyl 1-thioglycosides of inverted anomeric configuration. The 1,2-cis-d-manno and -glucop-nitrophenylglycosides were likewise prepared. α-d-Glucopyranosyl 1-thio-α-d-glucopyranoside was similarly obtained by the action of the sodium salt of 1-thio-α-d-glucopyranose on the β-chloride 10 in hexamethylphosphoric triamide, or by treatment of 10 with sodium sulfide, with subsequent deacetylation. Analogous procedures allowed the preparation of β-d-mannopyranosyl 1-thio-β-d-mann opyranoside, the corresponding α,β anomer and α-d-glucopyranosyl 1-thio-α-d-mannopyranoside, starting from bromide 1, 1-thio-α-d-mannopyranose (8),and chloride 10, respectively. When acetone was used as solvent, the reaction between 1 and 8 led instead to the α,α anomer. The thio disaccharides that are interglycosidic 4-thio analogs of methyl 4-O-(β-d-galactopyranosyl)-α-d-galactopyranoside, methyl α-cellobioside, and methyl α-maltoside, respectively, were obtained by way of the peracetates of methyl 4-thio-α-d-galactopyranoside and -glucopyranoside by reaction of the corresponding thiolates with tetra-O-acetyl-α-d-galactopyranosyl bromide, bromide 9, or chloride 10, respectively, in hexamethylphosphoric triamide. These 1-thioglycosides, and (1→1)- and (1→4)-thiodisaccharides, were characterized by 1H- and 1 3C-n.m.r. spectroscopy. Correlations were established between the polarity of the sulfur atom and certain proton and carbon chemical-shifts in the 1-thioglycosides in comparison with the O-glycosyl analogs; these correlations permitted in particular the unambigous attribution of anomeric configuration.  相似文献   

4.
《Carbohydrate research》1987,162(2):199-207
The 2,1′-O-isopropylidene derivative (1) of 3-O-acetyl-4,6-O-isopropylidene-α-d-glucopyranosyl 6-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside and 2,3,4-tri-O-acetyl-6-O-trityl-α-d-glucopyranosyl 3,4-anhydro-1,6-di-O-trityl-β-d-lyxo-hexulofuranoside have been synthesised and 1 has been converted into 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-lyxo-hexulofuranoside (2). The SN2 reactions of 2 with azide and chloride nucleophiles gave the corresponding 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-azido-4-deoxy-β-d-fructofuranoside (6) and 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-chloro-4-deoxy-β-d-fructofuranoside (8), respectively. The azide 6 was catalytically hydrogenated and the resulting amine was isolated as 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 4-acetamido-1,3,6-tri-O-acetyl-4-deoxy-β-d-fructofuranoside. Treatment of 5 with hydrogen bromide in glacial acetic acid followed by conventional acetylation gave 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,3,6-tri-O-acetyl-4-bromo-4-deoxy-β-d-fructofuranoside. Similar SN2 reactions with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl 1,6-di-O-acetyl-3,4-anhydro-β-d-ribo-hexulofuranoside (12) resulted in a number of 4′-derivatives of α-d-glucopyranosyl β-d-sorbofuranoside. The regiospecific nucleophilic substitution at position 4′ in 2 and 12 has been explained on the basis of steric and polar factors.  相似文献   

5.
A comparative study for selective glucosylation of N-unsubstituted 4-hydroxyquinolin-2(1H)-ones into 4-(tetra-O-acetyl-β-d-glucopyranosyloxy)quinolin-2(1H)-ones is reported. Four glycosyl donors including tetra-O-acetyl-α-d-glucopyranosyl bromide, β-d-glucose pentaacetate, glucose tetraacetate and tetra-O-acetyl-α-d-glucopyranosyl trichloroacetimidate were tested, along with different promoters and reaction conditions. The best results were obtained with tetra-O-acetyl-α-d-glucopyranosyl bromide with Cs2CO3 in CH3CN. In some cases the 4-O-glucosylation of the quinolinone ring was accompanied by 2-O-glucosylation yielding the corresponding 2,4-bis(tetra-O-acetyl-β-d-glucopyranosyloxy)quinoline. Next, 4-(tetra-O-acetyl-β-d-glucopyranosyloxy)quinolin-2(1H)-ones were deacetylated into 4-(β-d-glucopyranosyloxy)quinolin-2(1H)-ones with Et3N in MeOH. In some instances the deacetylation was accompanied by the sugar-aglycone bond cleavage. Structure elucidation, complete assignment of proton and carbon resonances as well as assignment of anomeric configuration for all the products under investigation were performed by 1D and 2D NMR spectroscopy.  相似文献   

6.
《Carbohydrate research》1987,161(1):39-47
Condensation of methyl 2,6-di-O-benzyl-β-d-galactopyranoside with 2-methyl-(3,4,6-tri-O-acetyl-1,2-dideoxy-α-d-glucopyrano)-[2,1,-d]-2-oxazoline (1) in 1,2-dichloroethane, in the presence of p-toluenesulfonic acid, afforded a trisaccharide derivative which, on deacetylation, gave methyl 3,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-2,6-di-O-benzyl-β-d- glactopyranoside (5). Hydrogenolysis of the benzyl groups of 5 furnished the title trisaccharide (6). A similar condensation of methyl 2,3-di-O-benzyl-β-d-galactopyranoside with 1 produced a partially-protected disacchraide derivative, which, on O-deacetylation followed by hydrogenolysis, gave methyl 6-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-β-d-glactopyranoside (10). Condensation of methyl 3-O-(2-acetamido-4,6-O-benzylidene-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-benzyl-β-d- galactopyranoside with 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide in 1:1 benzene-nitromethane in the presence of powdered mercuric cyanide gave a fully-protected tetrasaccharide derivative, which was O-deacetylated and then subjected to catalytic hydrogenation to furnish methyl O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→3)-O-β-d-galactopyranosyl-(1å3)-O-(2-acetamido-2-deoxy- β-d-glucopyranosyl)-(1å3)-β-d-galactopyranoside (15). The structures of 6, 10, and 15 were established by 13C-n.m.r. spectroscopy.  相似文献   

7.
《Carbohydrate research》1987,165(2):207-227
8-Methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-β-d-mannopyranoside reacted with 2,3,4-tri-O-acetyl-α-l-rhamnopyranosyl bromide to give a disaccharide from the which the glycosyl-acceptor 8-methoxycarbonyloctyl 2-azido-4,6-O-benzylidene-2-deoxy-3-O-(2,4,-di-O-acetyl-α-l-rhamnopyranosyl)-β-d-manno pyranoside (19) was obtained. This glycosyl-acceptor with 2,3,4,6-tetra-O-benzyl-α-d-glucopyranosyl chloride to give trisaccharide derivative 22 and with 2,3,6-tri-O-(α-2H2)benzyl-4-O-(2,3,4,6-tetra-O-(α-2H2)benzyl-α-d-glucopyranosyl)-α-d-glucopyranosyl chloride to give tetrasaccharide derivative 29. Deblocking of 22 yielded 8-methoxycarbonyloctyl O-(α-d-glucopyranosyl)-(1→3)-O-α-l-rhamnopyranosyl-(1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside and deblocking of 29 8-methoxycarbonyloctyle O-α-d-glucopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→3)-O-α-l-rhamnopyranosyl- (1→3)-2-acetamido-2-deoxy-β-d-mannopyranoside. Both oligosaccharides represent the “repeating unit” of the O-specific chain of the lipopolysaccharide from Aeromonas salmonicida.  相似文献   

8.
The Halide ion-catalysed reaction of benzyl exo-2,3-O-benzylidene-α-l-rhamnopyranoside with tetra-O-benzyl-α-d-galactopyranosyl bromide and hydrogenolysis of the exo-benzylidene group of the product 2 gave benzyl 3-O-benzyl-4-O-(2,3,4,6-tetra-O-benzyl-α-d-galactopyranosyl)-α-l-rhamnopyranoside (6). Compound 2 was converted into 4-O-α-d-galactopyranosyl-l-rhamnose. The reaction of 6 with tetra-O-acetyl-α-d-glucopyranosyl bromide and removal of the protecting groups from the product gave 4-O-α-d-galactopyranosyl-2-O-β-d-glucopyranosyl-l-rhamnose.  相似文献   

9.
Thiodisaccharides having β-d-Galf or α-l-Araf units as non-reducing end have been synthesized by the SnCl4- or MoO2Cl2-promoted thioglycosylation of per-O-benzoyl-d-galactofuranose (1), its 1-O-acetyl analogue 4, or per-O-acetyl-α-l-arabinofuranose (16) with 6-thioglucose or 6-thiogalactose derivatives. After convenient removal of the protecting groups, the free thiodisaccharides having the basic structure β-d-Galf(1→6)-6-thio-α-d-Glcp-OMe (5) or β-d-Galf(1→6)-6-thio-α-d-Galp-OMe (15) were obtained. The respective α-l-Araf analogues 18 and 20 were prepared similarly from 16. Alternatively, β-d-Galf(1→4)-4-thio-3-deoxy-α-l-Xylp-OiPr was synthesized by Michael addition to a sugar enone of 1-thio-β-d-Galf derivative, generated in situ from the glycosyl isothiourea derivative of 1. The free S-linked disaccharides were evaluated as inhibitors of the β-galactofuranosidase from Penicillium fellutanum, being 15 and 20 the more active inhibitors against this enzyme.  相似文献   

10.
O-α-d-Mannopyranosyl-(1→6)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1→4)-2-acetamido-N-(l-aspart-4-oyl)-2-deoxy-β-d-glucopyranosylamine (12), used in the synthesis of glycopeptides and as a reference compound in the structure elucidation of glycoproteins, was synthesized via condensation of 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide with 2-acetamido-4-O-(2-acetamido-3-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide (5) to give the intermediate, trisaccharide azide 7. [Compound 5 was obtained from the known 2-acetamido-4-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl azide by de-O-acetylation, condensation with benzaldehyde, acetylation, and removal of the benzylidene group.] The trisaccharide azide 6 was then acetylated, and the acetate reduced in the presence of Adams' catalyst. The resulting amine was condensed with 1-benzyl N-(benzyloxycarbonyl)-l-aspartate, and the O-acetyl, N-(benzyloxycarbonyl), and benzyl protective groups were removed, to give the title compound.  相似文献   

11.
《Carbohydrate research》1986,149(2):347-361
Glycosylation of 1,2:3,4-di-O-isopropylidene-α-d-galactopyranose (6), as well as its 6-trimethylsilyl ether 7 with 2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl fluoride (5) was achieved stereospecifically in a mild and fast manner in the presence of Lewis acids like, e.g., titanium tetrafluoride, to give the β-(1→6)-linked disaccharide derivative 1. By use of 2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl fluoride (8) or its α anomer 10 and titanium tetrafluoride in acetonitrile with 6 or 7, a fast reaction proceeds preponderantly to yield 1,2:3,4-di-O-isopropylidene 6-O-(2,3,4,6-tetra-O-benzyl-β-d-glucopyranosyl)-α-d-galactopyranose (2). In ether, however, mainly the α-(1→6) anomer was formed. These model systems were used to elucidate the limiting conditions for this procedure, and mechanistic conceptions are discussed. By glycosylation at O-4 of 1,6:2,3-dianhydro-β-d-mannopyranose (11) with the perbenzylated α-fluoride 10 both the α- and the β-d-(1→4) disaccharide derivatives 12 and 14 were obtained, but 5 gave exclusively the β-d-(1→4) compound 16. Opening of the anhydro rings of 12 led to the synthesis of N-acetyl-maltosamine (22). 1,6-Anhydro-2-azido-4-O-benzyl-2-deoxy-β-d-glucopyranose was glycosylated with methyl (2,3,4-tri-O-acetyl-β-d-galactopyranosyl fluoride)uronate under titanium tetrafluoride catalysis to give the β-d-(1→3)-linked disaccharide 16, subsequently transformed into 29.  相似文献   

12.
The two purple-membrane glycolipids O-β-d-glucopyranosyl- and O-β-d-galactopyranosyl-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2, 3-di-O-phytanyl-sn-glycerol were prepared by coupling O-(2,3,4-tri-O-acetyl-α-d-mannopyranosyl)-(1→2)-O-(3,4,6-tri-O-acetyl-α-d-glucopyranosyl)-(1→1)-2, 3-di-O-phytanyl-sn-glycerol (9) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide or 2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl bromide, respectively, followed by deacetylation. The glycolipid sulfate O-(β-d-glucopyranosyl 3-sulfate)-(1→6)-O-α-d-mannopyranosyl-(1→2)-O-α-d-glucopyranosyl-(1→1)-2,3-di-O-phytanyl-sn-glycerol was prepared by coupling of 9 with 2,4,6-tri-O-acetyl-3-O-trichloroethyloxycarbonyl-α-d-glucopyranosyl bromide in the presence of Hg(CN)2/HgBr2 followed by selective removal of the 3?-trichloroethyloxycarbonyl group, sulfation of HO-3?, and deacetylation. The suitably protected key-intermediate 9 could be prepared by two distinct approaches.  相似文献   

13.
Acetolysis of methyl 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-α-d-galactopyranoside afforded 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-1,2,4,6-tetra-O-acetyl-d-galactopyranose (2). Treatment of 2 in dichloromethane with hydrogen bromide in glacial acetic acid gave 3-O-(2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)- 2,4,6-tri-O-acetyl-α-d-galactopyranosyl bromide (3). The α configuration of 3 was indicated by its high, positive, specific rotation, and supported by its 1H-n.m.r. spectrum. Reaction of 3 with Amberlyst A-26-p-nitrophenoxide resin in 1:4 dichloromethane-2-propanol furnished p-nitrophenyl 3-O-(2-acetamido-3,4,6- tri-O-acetyl-2-deoxy-β-d-glucopyranosyl)-2,4,6-tri-O-acetyl-β-d-galactopyranoside (7). Compound 7 was also obtained by the condensation (catalyzed by silver trifluoromethanesulfonate-2,4,6-trimethylpyridine) of 3,4,6-tri-O-acetyl-2-deoxy-2-phthalimido-β-d-glucopyranosyl bromide with p-nitrophenyl 2,4,6-tri-O-acetyl-β-d-galactopyranoside, followed by the usual deacylation-peracetylation procedure. O-Deacetylation of 7 in methanolic sodium methoxide furnished the title disaccharide (8). The structure of 8 was established by 13C-n.m.r. spectroscopy.  相似文献   

14.
Reaction of 1,2-O-cyclopentylidene-α-d-glucofuranurono-6,3-lactone (2) with 2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl bromide (1) gave 1,2-O-cyclopentylidene- 5-O-(2,3,4,6-tetra-O-acetyl-α-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (3, 45%) and 1,2-O-cyclopentylidene-5-O-(2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl)-α-d-glucofuranurono-6,3-lactone (4, 38%). Reduction of 3 and 4 with lithium aluminium hydride, followed by removal of the cyclopentylidene group, afforded 5-O-α-(9) and -β-d-glucopyranosyl-d-glucofuranose (12), respectively. Base-catalysed isomerization of 9 yielded crystalline 5-O-α-d-glucopyranosyl-d-fructopyranose (leucrose, 53%).  相似文献   

15.
Thirteen steroidal saponins were isolated from the leaves of Beaucarnea recurvata Lem. Their structures were established using one- and two-dimensional NMR spectroscopy and mass spectrometry. Six of them were identified as: 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5,20(22)-diene 1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25R)-furosta-5,20(22)-diene-23-one-1β,3β,26-triol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 4)-6-O-acetyl-β-d-glucopyranoside, 26-O-β-d-glucopyranosyl (25S)-furosta-5-ene-1β,3β,22α,26-tetrol 1-O-α-l-rhamnopyranosyl-(1 → 2) β-d-fucopyranoside, and 24-O-β-d-glucopyranosyl (25R)-spirost-5-ene-1β,3β,24-triol 1-O-α-l-rhamnopyranosyl-(1 → 2)-4-O-acetyl-β-d-fucopyranoside. The chemotaxonomic classification of B. recurvata in the family Ruscaceae was discussed.  相似文献   

16.
Condensation of 4,6-di-O-acetyl-2,3-O-carbonyl-α-d-mannopyranosyl bromide with benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside (2) gave an α-d-linked disaccharide, further transformed by removal of the carbonyl and benzylidene groups and acetylation into the previously reported benzyl 2-acetamido-4,6-O-benzylidene-2-deoxy-3-O-(2,3,4,6-tetra-O-acetyl-α-d-mannopyranosyl)-α-d-glucopyranoside. Condensation of 3,4,6-tri-O-benzyl-1,2-O-(1-ethoxyethylidene)-α-d-glucopyranose or 2-O-acetyl-3,4,6-tri-O-benzyl-α-d-glucopyranosyl bromide with 2 gave benzyl 2-acetamido-3-O-(2-O-acetyl-3,4,6-tri-O-benzyl-β-d-glucopyranosyl)-4,6-O-benzylidene-2-deoxy-α-d-glucopyranoside. Removal of the acetyl group at O-2, followed by oxidation with acetic anhydride-dimethyl sulfoxide, gave the β-d-arabino-hexosid-2-ulose 14. Reduction with sodium borohydride, and removal of the protective groups, gave 2-acetamido-2-deoxy-3-O-β-d-mannopyranosyl-d-glucose, which was characterized as the heptaacetate. The anomeric configuration of the glycosidic linkage was ascertained by comparison with the α-d-linked analog.  相似文献   

17.
9-(2-S-Ethyl-2-thio- and α-D-mannofuranosyl)adenine ( and ) were synthesized from ethyl 3,5,6-tri-O-acetyl-2-S-ethyl-1,2-dithio-α-D-mannofuranoside (1) by bromination followed by coupling of the resultant bromide (2) with 6-benzamido-(chloromercuri)purine. The 2-chloro analogues (10α and 10β) of and were obtained by way of a fusion reaction between 1,3,5,6-tetra-O-acetyl-2-S- ethyl-2-thio-α-D-mannofuranose (5) and 2,6-dichloropurine. Fusion of the bromide 2 with 2,4-bis(trimethylsilyloxy)pyrimidine and its 5-methyl derivative led to 1-(2-S- ethyl-2-thio-β-D-mannofuranosyl)uracil (16) and its thymine analogue (15). The action of Raney nickel led to rapid dechlorination of 10α and 10β, and all of the 2′-thio-nucleosides underwent desulfurization to give the corresponding 2′-deoxynucleosides. Sequential periodate oxidation-borohydride reduction converted the hexofuranosyl nucleosides into their pentofuranosyl analogues. Thus prepared were 9-(2-deoxy-α-and β-D-arabino-hexofuranosyl)adenine (11α and 11β) and their 2-deoxy-D-threo-pentofuranosyl counterparts ( and 2′-deoxy-3′-epiadenosine, ), and 1-(2-deoxy- β-D-arabino-hexofuranosyl)-thymine (17) and -uracil (18) and their 2-deoxy-D-threo-pentofuranosyl counterparts (3′-epithymidine, 21, and 2′-deoxy-3′-epiuridine, 20). Detailed n.m.r.-spectral correlations are described for the series, and various derivatives of the nucleosides are reported.  相似文献   

18.
Silver trifluoromethanesulfonate-promoted condensation of 3,4,6-tri-O-acetyl-2-deoxy-phthalimido-β-d-glucopyranosyl bromide with benzyl 3,6-di-O-benzyl-α-d-mannopyranoside and benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave the protected 2,4- and 2,6-linked trisaccharides in yields of 54 and 32%, respectively. After exchanging the 2-deoxy-2-phthalimido groups for 2-acetamido-2-deoxy groups and de-blocking, the trisaccharides 2,4-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose and 2,6-di-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-d-mannose were obtained. Similar condensation of 3,6-di-O-acetyl-2-deoxy-2-phthalimido-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-β-d-glucopyranosyl bromide with benzyl 3,4-di-O-benzyl-α-d-mannopyranoside gave a pentasaccharide derivative in 52% yield. After transformations analogous to those applied to the trisaccharides, 2,6-di-O-[β-d-galactopyranosyl-(1→4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)]-d-mannose was obtained.  相似文献   

19.
The oligosaccharide β-d-Man-(1 → 4)-α-l-Rha (1 → 3)-d-Gal-(6 ← 1)-α-d-Glc, which is the repeating unit of the O-specific polysaccharide chain of the lipopolysaccharide from Salmonella senftenberg, was obtained by glycosylation of benzyl 2,4-di-O-benzyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside or benzyl 2-O-acetyl-6-O-(2,3,4-tri-O-benzyl-6-O-p-nitrobenzoyl-α-d-glucopyranosyl)-β-d-galactopyranoside with 3-O-acetyl-4-O-(2,3,4,6-tetra-O-acetyl-β-d-mannopyranosyl)-β-l-rhamnopyranose 1,2-(methyl orthoacetate) followed by removal of protecting groups.  相似文献   

20.
2-Methyl-[3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d-glucopyrano]-[2,1-d]-2-oxazoline (4) was prepared from 2-acetamido-3,6-di-O-acetyl-2-deoxy-4-O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-α-d- glucopyranosyl chloride. Condensation of 3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal with 4 in the presence of a catalytic amount of p-toluenesulfonic acid afforded O-(2,3,4,6-tetra-O-acetyl-β-d-galactopyranosyl)-(1 → 4)-O-(2-acetamido-3,6-di-O-acetyl-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-3,4:5,6-di-O-isopropylidene-d-mannose dimethyl acetal (6) in 8.6% yield. Catalytic deacetylation of 6 with sodium methoxide, followed by hydrolysis with dilute sulfuric acid, gave O-β-d-galactopyranosyl-(1 → 4)-O-(2-acetamido-2-deoxy-β-d-glucopyranosyl)-(1 → 2)-d-mannose (7). The inhibitory activities of 7 and related sugars against the hemagglutinating activities of various lectins were assayed, and 7 was found to be a good inhibitor against Phaseolus vulgaris hemagglutinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号