首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Intact cells are the most stable form of nature's photosynthetic machinery. Coating‐immobilized microbes have the potential to revolutionize the design of photoabsorbers for conversion of sunlight into fuels. Multi‐layer adhesive polymer coatings could spatially combine photoreactive bacteria and algae (complementary biological irradiance spectra) creating high surface area, thin, flexible structures optimized for light trapping, and production of hydrogen (H2) from water, lignin, pollutants, or waste organics. We report a model coating system which produced 2.08 ± 0.01 mmol H2 m?2 h?1 for 4,000 h with nongrowing Rhodopseudomonas palustris, a purple nonsulfur photosynthetic bacterium. This adhesive, flexible, nanoporous Rps. palustris latex coating produced 8.24 ± 0.03 mol H2 m?2 in an argon atmosphere when supplied with acetate and light. A simple low‐pressure hydrogen production and trapping system was tested using a 100 cm2 coating. Rps. palustris CGA009 was combined in a bilayer coating with a carotenoid‐less mutant of Rps. palustris (CrtI?) deficient in peripheral light harvesting (LH2) function. Cryogenic field emission gun scanning electron microscopy (cryo‐FEG‐SEM) and high‐pressure freezing were used to visualize the microstructure of hydrated coatings. A light interaction and reactivity model was evaluated to predict optimal coating thickness for light absorption using the Kubelka‐Munk theory (KMT) of reflectance and absorptance. A two‐flux model predicted light saturation thickness with good agreement to observed H2 evolution rate. A combined materials and modeling approach could be used for guiding cellular engineering of light trapping and reactivity to enhance overall photosynthetic efficiency per meter square of sunlight incident on photocatalysts. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

2.
Maximising seed longevity is crucial for genetic resource preservation and longevity of orthodox seeds is determined by environmental conditions (water content and temperature). The effect of water content (down to 0.01 g·H2O·g?1) on seed viability was studied at different temperatures for a 5‐year storage period in taxonomically related species. Seeds of seven Brassicaceae species (Brassica repanda, Eruca vesicaria, Malcolmia littorea, Moricandia arvensis, Rorippa nasturtium‐aquaticum, Sinapis alba, Sisymbrium runcinatum) were stored at 48 environments comprising a combination of eight water contents, from 0.21 to 0.01 g·H2O·g?1 DW and six temperatures (45, 35, 20, 5, ?25, ?170 °C). Survival curves were modelled and P50 calculated for those conditions where germination was reduced over the 5‐year assay period. Critical water content for storage of seeds of six species at 45 °C ranged from 0.02 to 0.03 g·H2O·g?1. The effect of extreme desiccation at 45 °C showed variability among species: three species showed damaging effects of drying below the critical water content, while for three species it was neither detrimental nor beneficial to seed longevity. Lipid content could be related to longevity, depending on the storage conditions. A variable seed longevity response to water content among taxonomically related species was found. The relative position of some of the species as long‐ or short‐lived at 45 °C varied depending on the humidity at which storage behaviour was evaluated. Therefore, predictions of survival under desiccated conditions based on results obtained at high humidity might be problematic for some species.  相似文献   

3.
Uptake hydrogenase negative mutants of bloom forming cyanobacteria (Nostoc and Anabaena) and the fermentative bacteria Rhodopseudomonas palustris P4 were used together for producing hydrogen within the reverse micelles fabricated by N-ethyl hexyl sodium sulfosuccinate (AOT) in isooctane and cetyl trimethyl ammonium bromide (CTAB) in benzene. The rate of H2 production in AOT/isooctane reverse micellar system was found to be more promising in comparison to the CTAB/Benzene reverse micellar entrapment. After mutagenesis in 2.0% (v/v) ethyl methane sulphonate (EMS) mutants of Nostoc and Anabaena were selected on BG-11 plates (containing 2% agar) and then used for analysis of produced hydrogen. In comparison to the unmutated Nostoc with R. palustris (within AOT/isooctane) the coupled system of mutated Nostoc and R. palustris produced H2 by 3.9-fold higher rate, which is 8.6 mmol H2/h/mg protein. Whereas, mutated Anabaena coupled with R. palustris produced 4.8 times higher hydrogen production within (AOT)/isooctane reverse micelles in comparison to the unmutated Anabaena with R. palustris. Effect of nitrogen to carbon ratio (N/C) on hydrogen production was studied and Anabaena/R. palustris and Nostoc/R. palustris systems were, respectively, found to generate 11.2 and 9.8 mmol H2/h/mg protein continuously for 3 days. Effects of temperature and light intensity were also investigated and we found that 32°C temperature and 1,000 Lux light intensity are the optimum values in these systems. Addition of sodium dithionite also resulted in further enhancement of the rate and duration of hydrogen production in both (mutated Nostoc/R. palustris and mutated Anabaena/R.␣palustris) systems.  相似文献   

4.
Humidification can suppress water loss from an organism and has great potential for improving the cold storage of short‐lived arthropods, such as predatory mites. The effectiveness of humidity‐controlled cold storage was recently verified for Neoseiulus californicus (McGregor) females but was not examined for males. Combining both males and females in one storage protocol might increase the predator population because it would enhance the opportunity for multiple mating, which is necessary for females to maximize their egg production. Newly emerged adult males were stored at an air temperature of 5°C and relative humidity (RH) of 100% or 80%. The median survival time (LT50) was 32 days at 100% RH and 14 days at 80% RH; the survival curves differed significantly. Males stored at 100% RH for 0, 10, 20 and 30 days were introduced to virgin females for mating at 25°C to evaluate their reproductive ability. The pre‐oviposition period was significantly prolonged in the females mated with males stored for ≥20 days. No negative effects of storage were observed on the oviposition period, total number of eggs or net reproduction rate (R0) in the females mated with males stored for ≤20 days or on the mean generation time (T) for those stored for 30 days. A slight decrease in the intrinsic rate of increase (rm) was observed in the females mated with males stored for ≥20 days. Our storage method can preserve N. californicus males for 20 days with only a minor reduction in their survival and reproductive ability.  相似文献   

5.
Pearl millet is increasingly being grown as a premium-value grain for the recreational wildlife and poultry industries in the southern US. We conducted three experiments to assess grain mold development in storage conditions typically encountered in the region of production. Variables included production year, temperature, relative humidity, atmosphere, and grain moisture content. In the first experiment, grain was stored for 9 weeks at 20 or 25°C and maintained at 86% or 91% relative humidity (r.h.). In the second experiment, grain was stored for 9 weeks at 20 or 25°C in either air (aerobic) or N2 (anaerobic), and maintained at 100% r.h. In the third experiment, high-moisture grain was stored for 3 weeks at 20 or 25°C and maintained at 100% r.h. Grain was sampled at weekly intervals and plated to determine changes in fungal frequency. Fungi isolated included Fusarium chlamydosporum (19% of grain), Curvularia spp. (14%), F. semitectum (16%), Alternaria spp. (9%), Aspergillus flavus (8%), “Helminthosporium”-type spp. (6%), and F. moniliforme sensu lato (3%). Year of grain production significantly affected isolation frequency of fungi. Isolation frequencies from low-moisture grain were rarely affected by temperature, relative humidity, or atmosphere treatments, but was affected by storage duration for some fungi. Changes in isolation of toxigenic fungi occurred in high-moisture grain. Isolation frequency of F. chlamydosporum increased in grain stored at 86% and 91% r.h. Incidence of A. flavus increased in high-moisture grain treatments, particularly at 25°C. Incidence of deoxynivalenol was not affected by storage treatment. Low concentrations of nivalenol were detected in most grain incubated at 100% r.h. Zearalenone was detected only when grain moisture content was 20–22%. Aflatoxin contamination averaged 174 ng g−1 over all treatments, and increased up to 798 ng g−1 in high-moisture grain at stored at 25°C.  相似文献   

6.
Increasing the power conversion efficiency (PCE) of the two‐dimensional (2D) perovskite‐based solar cells (PVSCs) is really a challenge. Vertical orientation of the 2D perovskite film is an efficient strategy to elevate the PCE. In this work, vertically orientated highly crystalline 2D (PEA)2(MA)n–1PbnI3n+1 (PEA= phenylethylammonium, MA = methylammonium, n = 3, 4, 5) films are fabricated with the assistance of an ammonium thiocyanate (NH4SCN) additive by a one‐step spin‐coating method. Planar‐structured PVSCs with the device structure of indium tin oxide (ITO)/poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate)/(PEA)2(MA)n–1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester/bahocuproine/Ag are fabricated. The PCE of the PVSCs is boosted from the original 0.56% (without NH4SCN) to 11.01% with the optimized NH4SCN addition at n = 5, which is among the highest PCE values for the low‐n (n < 10) 2D perovskite‐based PVSCs. The improved performance is attributed to the vertically orientated highly crystalline 2D perovskite thin films as well as the balanced electron/hole transportation. The humidity stability of this oriented 2D perovskite thin film is also confirmed by the almost unchanged X‐ray diffraction patterns after 28 d exposed to the moisture in a humidity‐controlled cabinet (Hr = 55 ± 5%). The unsealed device retains 78.5% of its original PCE after 160 h storage in air atmosphere with humidity of 55 ± 5%. The results provide an effective approach toward a highly efficient and stable PVSC for future commercialization.  相似文献   

7.
Latex biocatalytic coatings containing approximately 50% by volume of microorganisms stabilize, concentrate and preserve cell viability on surfaces at ambient temperature. Coatings can be formed on a variety of surfaces, delaminated to generate stand-alone membranes or formulated as reactive inks for piezoelectric deposition of viable microbes. As the latex emulsion dries, cell preservation by partial desiccation occurs simultaneously with the formation of pores and adhesion to the substrate. The result is living cells permanently entrapped, surrounded by nanopores generated by partially coalesced polymer particles. Nanoporosity is essential for preserving microbial viability and coating reactivity. Cryo-SEM methods have been developed to visualize hydrated coating microstructure, confocal microscopy and dispersible coating methods have been developed to quantify the activity of the entrapped cells, and FTIR methods are being developed to determine the structure of vitrified biomolecules within and surrounding the cells in dry coatings. Coating microstructure, stability and reactivity are investigated using small patch or strip coatings where bacteria are concentrated 102- to 103-fold in 5-75 microm thick layers with pores formed by carbohydrate porogens. The carbohydrate porogens also function as osmoprotectants and are postulated to preserve microbial viability by formation of glasses inside the microbes during coat drying; however, the molecular mechanism of cell preservation by latex coatings is not known. Emerging applications include coatings for multistep oxidations, photoreactive coatings, stabilization of hyperthermophiles, environmental biosensors, microbial fuel cells, as reaction zones in microfluidic devices, or as very high intensity (>100 g.L-1 coating volume.h-1) industrial or environmental biocatalysts. We anticipate expanded use of nanoporous adhesive coatings for prokaryotic and eukaryotic cell preservation at ambient temperature and the design of highly reactive "living" paints and inks.  相似文献   

8.
The capability of five strains of the phototrophic bacteriumRhodopseudomonas palustris to produce molecular hydrogen (H2) from the aromatic acids benzoate,p-hydroxybenzoate, cinnamate and D- and L-mandelate was investigated. Optimal H2 production was achieved when the strains were grown anaerobically in the light at 10,000 lx under nitrogen (N) limitation using 1 mM L-glutamate as an N source. In the presence of 2 mM benzoate or L-mandelate as carbon and electron sources, strain DSM 131 produced 45% H2 of the maximal theoretical value and strain F2 32%, respectively. Increased H2 production correlated with increased nitrogenase activities, but H2 formation was not further stimulated by inhibition of the H2 uptake (hup) hydrogenase with ethylenediaminetetraacetic acid (EDTA).  相似文献   

9.
Aims: Listeria monocytogenes is a major safety concern for ready‐to‐eat foods. The overall objective of this study was to investigate whether prior frozen storage could enhance the efficacy of edible coatings against L. monocytogenes on cold‐smoked salmon during subsequent refrigerated storage. Methods and Results: A formulation consisting of sodium lactate (SL, 1·2–2·4%) and sodium diacetate (SD, 0·125–0·25%) or 2·5% Opti.Form (a commercial formulation of SL and SD) was incorporated into each of five edible coatings: alginate, κ‐carrageenan, pectin, gelatin and starch. The coatings were applied onto the surface of cold‐smoked salmon slices inoculated with L. monocytogenes at a level of 500 CFU cm?2. In the first phase, the slices were first frozen at ?18°C for 6 days and stored at 22°C for 6 days. Alginate, gelatin and starch appeared to be the most effective carriers. In the second phase, cold‐smoked salmon slices were inoculated with L. monocytogenes, coated with alginate, gelatin or starch with or without the antimicrobials and stored frozen at ?18°C for 12 months. Every 2 months, samples were removed from the freezer and kept at 4°C for 30 days. Prior frozen storage at ?18°C substantially enhanced the antilisterial efficacy of the edible coatings with or without antimicrobials during the subsequent refrigerated storage. Conclusions: Plain coatings with ≥2 months frozen storage and antimicrobial edible coatings represent an effective intervention to inhibit the growth of L. monocytogenes on cold‐smoked salmon. Significance and Impact of the Study: This study demonstrates the effectiveness of the conjunct application of frozen storage and edible coatings to control the growth of L. monocytogenes to enhance the microbiological safety of cold‐smoked salmon.  相似文献   

10.
Ludwigia palustris (L.) Ell. is an aquatic perennial herb present in several regions of Italy, which is one of its native countries. In this research, micropropagation and encapsulation protocols were established from axillary buds of L. palustris. Shoots proliferated on half-strength Murashige and Skoog medium without growth regulators. Different culture vessels were tested. Shoots in GROWTEK bioreactor showed the highest fresh and dry weight and total length while the plantlets grown in the RITA bioreactor showed the highest shoot number per explant. Encapsulation of L. palustris microcuttings with sodium alginate formed small and whitish beads which were stored for 14 or 28 days at 7° or 25°C. Storage for 14 days at both temperatures gave the best results but prolonged storage at 25°C decreased the shoot viability to 73%. After 4 weeks of recovery, all the plantlets showed the typical features of the species. Even though the latest Italian IUCN Red List does not mention L. palustris, conservation measures are proposed at local level because this species locally remains vulnerable mainly due to the loss of adequate habitats.Our protocol could be one of the methods for ex situ conservation of L. palustris particularly because its seed storage behavior is uncertain.  相似文献   

11.
Nonuniform light distribution is a fundamental limitation to biological hydrogen production by phototrophic bacteria. Numerous light distribution designs and culture conditions have been developed to reduce self-shading and nonuniform reactivity within bioreactors. In this study, highly concentrated (2.0 x 108 CFU/muL formulation) nongrowing Rhodopseudomonas palustris CGA009 were immobilized in thin, nanoporous, latex coatings. The coatings were used to study hydrogen production in an argon atmosphere as a function of coating composition, thickness, and light intensity. These coatings can be generated aerobically or anaerobically and are more reactive than an equivalent number of suspended or settled cells. Rhodopseudomonas palustris latex coatings remained active after hydrated storage for greater than 3 months in the dark and over 1 year when stored at -80 degrees C. The initial hydrogen production rate of the microphotobioreactors containing 6.25 cm2, 58.4 mum thick Rps. palustris latex coatings illuminated by 34.1 PAR mumol photons m-2 s-1 was 6.3 mmol H2 m-2 h-1 and had a final yield of 0.55 mol H2 m-2 in 120 h. A dispersible latex blend has been developed for direct comparison of the specific activity of settled, suspended, and immobilized Rps. palustris.  相似文献   

12.
The phototrophic alpha‐proteobacterium, Rhodopseudomonas palustris, is a model for studies of regulatory and physiological parameters that control the activity of nitrogenase. This enzyme produces the energy‐rich compound H2, in addition to converting N2 gas to NH3. Nitrogenase is an ATP‐requiring enzyme that uses large amounts of reducing power, but the electron transfer pathway to nitrogenase in R. palustris was incompletely known. Here, we show that the ferredoxin, Fer1, is the primary but not sole electron carrier protein encoded by R. palustris that serves as an electron donor to nitrogenase. A flavodoxin, FldA, is also an important electron donor, especially under iron limitation. We present a model where the electron bifurcating complex, FixABCX, can reduce both ferredoxin and flavodoxin to transfer electrons to nitrogenase, and we present bioinformatic evidence that FixABCX and Fer1 form a conserved electron transfer pathway to nitrogenase in nitrogen‐fixing proteobacteria. These results may be useful in the design of strategies to reroute electrons generated during metabolism of organic compounds to nitrogenase to achieve maximal activity.  相似文献   

13.
The hypothesis that plants grown under elevated CO2 allocate more carbon to the production of latex and C‐rich secondary compounds whereas nutrient addition counteracts this effect was tested. Two similar experiments were conducted in two different experimental facilities. In both facilities seedlings of Euphorbia lathyris were exposed to factorial combinations of two CO2 concentrations and two levels of nutrient availability for 2 months. The CO2 treatments and growth conditions differed substantially between these two experiments but treatment responses to elevated CO2 and fertilizer addition were remarkably similar, underlining the robustness of our findings. Elevated CO2 increased biomass to a greater extent in fertilized than in unfertilized plants and reduced the leaf biomass fraction by accelerating leaf senescence. Concentrations of non‐structural carbohydrates (NSC) increased in elevated CO2. However, this apparent carbon surplus did not feed into the whole plant latex pool. The latex harvest per leaf (?25%) and the concentration of latex‐related hydrocarbons (?20%) even decreased under elevated CO2 (both experiments P < 0.05). Fertilization reduced NSC concentrations (?25%) but neither affected latex yield per leaf nor the concentration of latex‐related hydrocarbons. It is concluded that latex and related hydrocarbons in CO2‐enriched plants are a negligible sink for excess carbon irrespective of nutrient status and thus, vigour of growth.  相似文献   

14.
Aims: Development and evaluation of an antimicrobially active titanium dioxide coating. Methods and results: For this purpose, titanium dioxide coatings were applied to glass slides by using a sol‐gel method and then exposed to a light source. The antimicrobial efficiency was determined by a count reduction test for selected test strains (Aspergillus niger, Bacillus atrophaeus, Kocuria rhizophila), which were homogenously sprayed onto surface. The bacterial count of K. rhizophila was reduced by up to 3·3 log10 on titanium dioxide samples within 4 h of UV‐A light exposure. Experiments with spore formers did not lead to any significant log reduction. A further aspect of this work was to evaluate the effect of selected parameters (relative humidity, inoculation density, radiation intensity) on the antimicrobial efficiency to gain knowledge for further optimization procedures. At a high relative humidity (85% r.h.), increased inactivation was observed for K. rhizophila (up to 5·2 log10). Furthermore, a dependency of the antimicrobial effect on the radiation intensity and the inoculation density was identified. Conclusions: Antimicrobial surfaces and coatings based on titanium dioxide have the potential to effectively inactivate vegetative micro‐organisms. Significance and impact of the study: Knowledge about the antimicrobial efficiency of titanium dioxide was gained. This is a prerequisite for industrial applications to improve hygiene, food quality and safety.  相似文献   

15.
This research was conducted to determine the optimum moisture content (MC) that gave maximum longevity to seeds. Three species were used to represent seeds with different dry matter reserves, which gives them different sorption properties: maize (Zea mays L.), elm (Ulmus pumila L.) and safflower (Carthamus tinctorius L.). The seeds of elm, safflower, and maize embryos with MC ranging from 0.00–0.15 g H2O/g dry weight (DW) were stored at 35 °C for different periods of time. The results showed that the optimum MC for seed and embryo storage varied between species (0.057 g H2O/g DW for maize embryos, 0.045 g H2O/g DW for elm, and 0.02 g H2O/g DW for safflower). Drying below this optimum MC increased the aging rate and there were detrimental effects of drying. The relative humidity corresponding to optimum MC in embryos of maize, elms and safflower was about 15%, 12% and 7% respectively, according to the lipid composition of the embryos. The data provided confirmatory evidence that molecular mobility (ΔAzz) in elms, maize and safflower embryos was compatible with the optimum moisture content.  相似文献   

16.
17.
A reactor-scale hydrogen (H2) productionvia the water-gas shift reaction of carbon monoxide (CO) and water was studied using the purple nonsulfur bacterium,Rhodopseudomonas palustris P4. The experiment was conducted in a two-step process: an aerobic/chemoheterotrophic cell growth step and a subsequent anaerobic H2 production step. Important parameters investigated included the agitation speed, inlet CO concentration and gas retention time. P4 showed a stable H2 production capability with a maximum activity of 41 mmol H2 g cell−1h−1 during the continuous reactor operation of 400 h. The maximal volumetric H2 production rate was estimated to be 41 mmol H2 L1h−1, which was about nine-fold and fifteen-fold higher than the rates reported for the photosynthetic bacteriaRhodospirillum rubrum andRubrivivax gelatinosus, respectively. This is mainly attributed to the ability of P4 to grow to a high cell density with a high specific H2 production activity. This study indicates that P4 has an outstanding potential for a continuous H2 productionvia the water-gas shift reaction once a proper bioreactor system that provides a high rate of gas-liquid mass transfer is developed.  相似文献   

18.
Curcuma or Siam tulip (Curcuma alismatifolia Gagnep.) is an ornamental flowering plant with two underground storage organs, rhizomes and storage roots. Characteristics of N and C assimilation and transport in curcuma were investigated. The plants were treated with 15NH4+ + 15NO3? and 13CO2 at 10, 13 or 21 weeks after planting. Plants were sampled at several stages up to 32 weeks. The C stored in old storage roots was used rapidly during the first 10 weeks; after which N stored in old rhizomes and old storage roots were used. The daily gain in C depending on photosynthesis was remarkably high between 10 and 21 weeks. However, the daily gain in N was relatively constant throughout the growth period. The 15N absorbed at 10 weeks was initially accumulated in leaves and roots, but some was transported to flowering organs at 13 weeks. At harvest, 41% of 15N was recovered in new rhizomes and 17% in new storage roots. After 13CO2 exposure at 10 and 13 weeks, the distribution of 13C among organs was relatively constant in subsequent stages. When given 13CO2 at 21 weeks, a large amount of labelled C was recovered in new storage roots and new rhizomes at harvest. Both new rhizomes and new storage roots stored N and C, however, rhizomes played a more important role in supplying N, while storage roots provided C.  相似文献   

19.
Hopanoids are among the most widespread biomarkers of bacteria that are used as indicators for past and present bacterial activity. Our understanding of the production, function, and distribution of hopanoids in bacteria has improved greatly, partly due to genetic, culture‐independent studies. Culture‐based studies are important to determine hopanoid function and the environmental conditions under which these compounds are produced. This study compares the lipid inventory of Rhodopseudomonas palustris strain TIE‐1 under anoxic photoautotrophic conditions using either H2 or Fe(II) as electron donor. The high amount to which adenosylhopane is produced irrespective of the used electron donor suggests a specific function of this compound rather than its exclusive role as an intermediate in bacteriohopanepolyol biosynthesis. C‐2 methylated hopanoids and tetrahymanol account for as much as 59% of the respective C‐2 methylated/non‐methylated homologs during growth with Fe(II) as electron donor, as compared with 24% C‐2 methylation for growth with H2. This observation reveals that C‐2 methylated hopanoids have a specific function and are preferentially synthesized in response to elevated Fe(II) concentrations. The presence of C‐2 methylated pentacyclic triterpenoids has commonly been used as a biosignature for the interpretation of paleoenvironments. These new findings suggest that increased C‐2 methylation may indicate anoxic ferrous conditions, in addition to other environmental stressors that have been previously reported.  相似文献   

20.
The effects of temperature (15 °C, 25 °C, 30°C and 24–29°C), relative humidity (45%, 85% and 86–98%) and harvest maturity on the storage behaviour of cormels of the edible aroid species Colocasia esculenta and Xanthosoma sagittifolium were studied. The changes monitored were respiration rates, weight losses, incidence of decay and sprouting. Post-harvest losses that occurred during storage were influenced by the storage conditions, the state of maturity at harvest and the morphological characteristics of the cormels. When stored under high temperature and humidity more sprouting and decay occurred with C. esculenta cormels than with X. sagittifolium cormels. Less sprouting and decay occurred with Colocasia cormels at high temperature and low humidity than at high temperature and high humidity but higher weight losses were recorded. Wound pathogens were the major cause of post-harvest deterioration in Colocasia cormels and the causal pathogen of cormel decay was Sclerotium rolfsii. Under conditions of low temperature (15 °C) and high humidity (85%), cormels of both C. esculenta and X. sagittifolium were successfully stored for periods of 5–6 weeks. Similar storage periods were also possible under tropical ambient conditions with the Xanthosoma cultivars used in these experiments. Under the same storage conditions up to 60% decay occurred in the Colocasia cormels indicating the need for post-harvest fungicide treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号