首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
2.
Locally secreted cytokines of both the embryonic and the endometrial origin control the implantation process. The defects in their signaling that lead to unfavorable environment within the uterus may cause embryo implantation failure. The leukemia inhibitory factor (LIF), interleukin-11 (IL-11) as well as IL-12/IL-15/IL-18 system are regarded to be important signaling vectors. LIF plays an essential role in the preimplantation embryo development and the blastocyst implantation and its gene mutations in women contribute to the implantation failure and subsequent infertility. IL-11 signaling has been shown to be required for the uterine decidualization response as well as for the hatching and attachment of blastocysts. The IL-12/IL-15/IL-18 system interacts with endometrial leukocytes, particularly with NK cells, and influences directly the local angiogenesis and tissue remodeling. Differences in the levels of endometrial leukocytic subpopulations and in the patterns of intra-uterine cytokine concentrations that are observed between fertile and infertile women contribute to infertility probably by affecting the embryonic maternal dialogue during the implantation and early placentation period. Focusing on this cross talk promises to open new era in assisted reproduction techniques that will be based on diagnostics of missing signaling molecules and impairments of uterine receptivity as well as on therapeutic applications of individualized embryo culture and transfer media.  相似文献   

3.
《Reproductive biology》2022,22(2):100645
Extracellular vesicles (EVs) are small, nanometre sized, membrane-enclosed structures released by cells and are thought to be crucial in cellular communication. The cargo of these vesicles includes lipids, proteins, RNAs and DNA, and control various biological processes in their target tissues depending on the parental and receiver cell’s origin and phenotype. Recently data has accumulated in the role of EVs in embryo implantation and pregnancy, with EVs identified in the uterine cavity of women, sheep, cows, horses, and mice, in which they aid blastocyst and endometrial preparation for implantation. Herein is a critical review to decipher the role of extracellular vesicles in endometrial receptivity and their potential in reproductive therapies and diagnosis. The current knowledge of the function of embryo and endometrial derived EVs and their cargoes, with regards to their effect on implantation and receptivity are summarized and evaluated. The findings of the below review highlight that the combined knowledge on EVs deriving from the endometrium and embryo have the potential to be translated to various clinical applications including treatment, a diagnostic biomarker for diseases and a drug delivery tool to ultimately improve pregnancy rates.  相似文献   

4.
In modern-day life, infertility is one of the major issues that can affect an individual, both physically and psychologically. Several anatomical, physiological, and genetic factors might contribute to the infertility of an individual. Intercellular communication between trophectoderm and endometrial epithelium triggers successful embryo implantation and thereby establishes pregnancy. Recent studies demonstrate that Extracellular vesicles (EVs) are emerging as one of the crucial components that are involved in embryo-maternal communication and promote pregnancy. Membrane-bound EVs release several secreted factors within the uterine fluid, which mediates an intermolecular transfer of EVs’ cargos between blastocysts and endometrium. Emerging evidences indicate that several events like imbalance in the release of endometrial or placenta-derived EVs (exosomes/MVs), uptake of their content, failure of embryo selection might lead to implantation failure. Here in this review, we have discussed the current knowledge of the involvement of EVs in maternal-fetal communications during implantation and also highlighted the EVs’ rejuvenating ability to overcome infertility-related issues. We also discussed the alteration of the EVs’ cargo in different pathological conditions that lead to infertility. Therefore, this review would give a better understanding of EVs’ contribution in successful embryo implantation, which could help in the development of new diagnostic tools and cell-free biologics to improve the in vivo reproductive process and to treat infertility by restoring normal reproductive functions.  相似文献   

5.
In vitro fertilization has overcome infertility issues for many couples. However, achieving implantation of a viable embryo into the maternal endometrium remains a limiting step in optimizing pregnancy success. The molecular mechanisms which characterize the transient state of endometrial receptivity, critical in enabling embryo‐endometrial interactions, and proteins which underpin adhesion at the implantation interface, are limited in humans despite these temporally regulated processes fundamental to life. Hence, failure of implantation remains the “final frontier” in infertility. A human coculture model is utilized utilizing spheroids of a trophectoderm (trophoblast stem) cell line, derived from pre‐implantation human embryos, and primary human endometrial epithelial cells, to functionally identify “fertile” versus “infertile” endometrial epithelium based on adhesion between these cell types. Quantitative proteomics identified proteins associated with human endometrial epithelial receptivity (“epithelial receptome”) and trophectoderm adhesion (“adhesome”). As validation, key “epithelial receptome” proteins (MAGT‐1/CDA/LGMN/KYNU/PC4) localized to the epithelium of receptive phase (mid‐secretory) endometrium obtained from fertile, normally cycling women but is largely absent from non‐receptive (proliferative) phase tissues. Factors involved in embryo‐epithelium interaction in successive temporal stages of endometrial receptivity and implantation are demonstrated and potential targets for improving fertility are provided, enhancing potential to become pregnant either naturally or in a clinical setting.  相似文献   

6.
7.
Successful pregnancy is dependent upon the implantation of a competent embryo into a receptive endometrium. Despite major advancement in our understanding of reproductive medicine over the last few decades, implantation failure still occurs in both normal pregnancies and those created artificially by assisted reproductive technology (ART). Consequently, there is significant interest in elucidating the etiology of implantation failure. The complex multistep process of implantation begins when the developing embryo first makes contact with the plasma membrane of epithelial cells within the uterine environment. However, although this biological interaction marks the beginning of a fundamental developmental process, our knowledge of the intricate physiological and molecular processes involved remains sparse. In this synopsis, we aim to provide an overview of our current understanding of the morphological changes which occur to the plasma membrane of the uterine endothelium, and the molecular mechanisms that control communication between the early embryo and the endometrium during implantation. A multitude of molecular factors have been implicated in this complex process, including endometrial integrins, extracellular matrix molecules, adhesion molecules, growth factors, and ion channels. We also explore the development of in vitro models for embryo implantation to help researchers investigate mechanisms which may underlie implantation failure. Understanding the precise molecular pathways associated with implantation failure could help us to generate new prognostic/diagnostic biomarkers, and may identify novel therapeutic targets. Birth Defects Research (Part C) 108:19–32, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

8.
9.
It is well known that embryo implantation is a critical process in which embryo should be able to reach and attach to endometrium. Until now, various types of factors are involved in the regulation of this process. S100 proteins are calcium-binding proteins, which have vital roles in embryo implantation and have been considered as possible candidate markers for endometrial receptivity. However, studies regarding mode of actions of these proteins are scarce and more mechanistic insights are needed to clarify exact roles of each one of the S100 protein family. Understanding of function of these proteins in different compartments, stages, and phases of endometrium, could pave the way for conducting studies regarding the therapeutic significance of these proteins in some disorders such as recurrent implantation failure. In this review, we outlined roles and possible underlying mechanisms of S100 protein family in embryo implantation.  相似文献   

10.
《Reproductive biology》2021,21(4):100569
The successful implantation of the embryo into a receptive endometrium is essential for the establishment of a viable pregnancy while recurrent implantation failure (RIF) is a real challenge in assisted reproduction. The maternal innate immune system, specifically the Toll-like receptors (TLRs), are involved in maintaining immunity in the female reproductive tract (FRT) required for fertility. In this study, we aimed to investigate the importance of innate immunity-related gene expression in the regulation of human fertility and as a prediction of potential outcome of in vitro fertilization - embryo transfer (IVF-ET), thus, we assessed the gene expression levels of TLR signalling molecules using quantitative real-time PCR between endometrial biopsies of healthy fertile women, and the patients experiencing RIF. Interestingly, our results showed that, TRIB2 and TLR9 genes were differentially expressed between the endometrial biopsies of healthy women and those with RIF. However, comparing expression levels of same genes between pre-receptive and receptive healthy endometrial biopsies showed different genes (ICAM1, NFKBIA, VCAM1, LIF, VEGFB, TLR5) had significantly altered expression, suggesting their involvement in endometrial receptivity. Thus, further investigations will enable us to better understand the role of these genes in the biology of FRT and as a possible target for the improvement of infertility treatments and/or development of non-hormonal contraception.  相似文献   

11.
Steroid hormones hold a major role in female fertility and their proper utilisation and monitoring in modern assisted reproduction protocols is important. Oocyte maturation and endometrial receptivity are the two major factors that appear to be related to a successful outcome in Assisted Reproductive Technology (ART). Many reports suggest that oocyte immaturity accounts for a considerable loss of efficiency in ART, mainly due to the poor quality of the obtained embryos and their inability to develop normally. Oestrogen appears to exert its effects on the cytoplasmic maturation of the oocyte, while progesterone has been shown to accelerate meiotic resumption. Moreover, ovarian stimulation appears to affect the normal luteal function and shifts in the window of implantation as a response to hormonal supplementation have also been observed. The ethical limitations in conducting in vivo studies of human implantation, have led to an indirect hormonal- and morphologic-oriented assessment of endometrial receptivity. The two main protocols of luteal support involve either progesterone supplementation or hCG administration, whereas the combined supplementation with oestradiol remains controversial. This brief review aims to summarize the current knowledge on steroidal actions during the above processes and to address their potential use in the improvement of current ART protocols.  相似文献   

12.
13.
14.
Despite expanding global experience with advanced reproductive technologies, the majority of IVF attempts do not result in a successful pregnancy, foremost as a result of implantation failure. The process of embryo implantation, a remarkably dynamic and precisely controlled molecular and cellular event, appears inefficient in humans and is poorly understood. However, insights gained from clinical implantation failure, early pregnancy loss, and emerging techologies that enable molecular interrogation of endometrial–embryo interactions are unravelling this major limiting step in human reproduction. We review current molecular concepts thought to underlie implantation failure, consider the contribution of embryonic and endometrial factors, and discuss the clinical value of putative markers of impaired endometrial receptivity. Finally we highlight the nature of the dialogue between the maternal endometrium and the implanting embryo and discuss the concept of natural embryo selection. This article is part of a Special Issue entitled: Molecular Genetics of Human Reproductive Failure.  相似文献   

15.
Blastocyst implantation and successful establishment of pregnancy require delicate interactions between the embryo and the maternal uterine milieu, which are controlled at the embryo-maternal interface by the coordinated interplay of a variety of growth factors, cytokines, hormones, and cell adhesion molecules expressed by both the decidualized endometrium and the trophoblast cells. Proper implantation of the embryo is solely dependent on the initial endometrial receptivity and the preparation of the blastocyst to glue itself to the uterine wall. Both these events are considered to be mediated by cell adhesion molecules and integrins expressed by the blastocyst as well by as the maternal endometrium. Integrin expression by the blastocyst and the uterus is a dynamic process. However, reports on the expression and the hormonal modulation of integrins and their role in blastocyst activation and uterine receptivity during implantation are meager. The present study investigates the expression and hormonal regulation of alpha4beta1 integrin by steroid hormones in the blastocyst and the receptive uterus using an in vivo, delayed-implantation mouse model system. The dormant and activated blastocysts as well as the uteri were recovered from ovariectomized mice after progesterone-alone and progesterone-plus-estrogen therapy, respectively. Immunolocalization of protein expression of alpha4 and beta1 integrin subunits indicate that steroids modulate the expression of alpha4beta1 integrin receptor in the mouse blastocyst as well as the uterus and that a differential expression is observed with exposure to progesterone and estrogen. Intrauterine blocking of alpha4 integrin by specific antibody resulted in implantation failure in normal as well as in delayed-implantation mice. Based on our data, we propose here, to our knowledge for the first time, that alpha4beta1 integrin, which is responsible for binding to fibronectin and vascular cell adhesion molecule-1, is induced by estradiol and is down-regulated by progesterone in mice during implantation. Furthermore, the results also indicate the direct role of alpha4 integrin in the process of implantation.  相似文献   

16.
Glycosylation alters the molecular and functional features of glycoproteins, which is closely related with many physiological processes and diseases. During “window of implantation”, uterine endometrium transforms into a receptive status to accept the embryo, thereby establishing successful embryo implantation. In this article, we aimed at investigating the role of N-glycosylation, a major modification type of glycoproteins, in the process of endometrial receptivity establishment. Results found that human uterine endometrial tissues at mid-secretory phase exhibited Lectin PHA-E+L (recognizes the branched N-glycans) positive N-glycans as measured by the Lectin fluorescent staining analysis. By utilizing in vitro implantation model, we found that de-N-glycosylation of human endometrial Ishikawa and RL95-2 cells by tunicamycin (inhibitor of N-glycosylation) and peptide-N-glycosidase F (PNGase F) impaired their receptive ability to human trophoblastic JAR cells. Meanwhile, N-glycosylation of integrin αvβ3 and leukemia inhibitory factor receptor (LIFR) are found to play key roles in regulating the ECM-dependent FAK/Paxillin and LIF-induced STAT3 signaling pathways, respectively, thus affecting the receptive potentials of endometrial cells. Furthermore, in vivo experiments and primary mouse endometrial cells-embryos coculture model further verified that N-glycosylation of mouse endometrial cells contributed to the successful implantation. Our results provide new evidence to show that N-glycosylation of uterine endometrium is essential for maintaining the receptive functions, which gives a better understanding of the glycobiology of implantation.  相似文献   

17.
The establishment of endometrial receptivity is a prerequisite for successful pregnancy, which is controlled by a complex mechanism. MicroRNAs (miRNAs) are small non-coding RNAs that have emerged as important regulators of gene expression. However, the contribution of miRNAs in endometrial receptivity is still unknown. Here we used rhesus monkey as an animal model and compared the endometrial miRNA expression profiles during early-secretory (pre-receptive) phase and mid-secretory (receptive) phase by deep sequencing. A set of differentially expressed miRNAs were identified, 8 of which were selected and validated using quantitative RT-PCR. To facilitate the prediction of their target genes, the 3'-UTRome was also determined using tag sequencing of mRNA 3'-termini. Surprisingly, about 50% of the 10,677 genes expressed in the rhesus monkey endometrium exhibited alternative 3'-UTRs. Of special interest, the progesterone receptor (PGR) gene, which is necessary for endometrial receptivity, processes an ultra long 3'-UTR (~10 kb) along with a short variant (~2.5 kb). Evolutionary analysis showed that the 3'-UTR sequences of PGR are poorly conserved between primates and rodents, suggesting a species-biased miRNA binding pattern. We further demonstrated that PGR is a valid target of miR-96 in rhesus monkey and human but not in rodents, whereas the regulation of PGR by miR-375 is rhesus monkey-specific. Additionally, we found that miR-219-5p regulates PGR expression through a primate-specific long non-coding RNA immediately downstream of the PGR locus. Our study provides new insights into the molecular mechanisms underlying endometrial receptivity and presents intriguing species-specific regulatory roles of miRNAs.  相似文献   

18.
Galectin-3 (Gal-3), a ubiquitously expressed gene involved in many cellular processes, has been recently recognized as a factor related to endometrial receptivity. However, the precise biological function of Gal-3 in the endometrium and its regulation is still unclear. In this study, we detected the antiapoptotic role of Gal-3 in endometrial cells and the expression of Gal-3 regulated by estrogen and progesterone. We found that expression of Gal-3 increased when exposed to the apoptosis inducer staurosporine. Gal-3-silenced endometrial cells were more sensitive to the apoptosis inducer. Estradiol (E2) and progesterone (P4) up-regulated Gal-3 expression, which in turn decreased the apoptotic rate of endometrial cells. Our results strongly suggested that hormonal activation of Gal-3 by E2 and P4 is involved in inhibiting endometrial cell apoptosis, playing key roles in embryo implantation.  相似文献   

19.
Insufficient endometrial angiogenesis during peri‐implantation impairs endometrial receptivity (ER), which contributes to recurrent implantation failure (RIF) during in vitro fertilization and embryo transfer (IVF‐ET). Angiopoietin‐like protein 4 (ANGPTL4) acts as a multifunctional secretory protein and is involved in the regulation of lipid metabolism and angiogenesis in various tissues including the endometrium. Herein, we found decreased ANGPTL4 expression in endometrial tissue and serum during peri‐implantation period in 18 RIF‐affected women with elevated uterine arterial impedance (UAI) compared with the pregnancy controls. ANGPTL4 and peroxisome proliferator‐activated receptor gamma (PPARγ) expression were up‐regulated upon decidualization on human endometrial stromal cells (HESCs). Rosiglitazone promoted the expression of ANGPTL4 in HESCs and human umbilical vein endothelial cells (HUVECs) via PPARγ. ANGPTL4 promoted the proliferation, migration and angiogenesis of HUVECs in vitro. Our results suggest that decreased abundance of ANGPTL4 in endometrial tissues impairs the endometrial receptivity via restraining endometrial angiogenesis during decidualization; while rosiglitazone‐induced ANGPTL4 up‐regulation in hESCs and HUVECs through PPARγ. Therefore, ANGPTL4 could be a potential therapeutic approach for some RIF‐affected women with elevated UAI.  相似文献   

20.

Background

Synchronous development of the endometrium (to achieve a receptive state) and of the embryo is essential for successful implantation and ongoing pregnancy. Endometrial receptivity exists only for a finite time in a menstrual cycle and the endometrium is refractory to embryo implantation outside of this window. Administration of hormones to stimulate multifollicular development within the ovary, integral to the majority of assisted reproduction (ART) protocols, dramatically alters the hormonal milieu to which the endometrium is exposed versus normal menstrual cycles. Endometrial maturation may be profoundly affected by this altered endocrine environment.

Aim

Compare endometrial histology in fertile women, fertile women undergoing hormonal stimulation for oocyte donation and infertile women undergoing fresh embryo transfers in an ART cycle with further comparisons between women who did or did not become pregnant. Examine the presence of leukocytes and markers of endometrial maturation.

Methods

Endometrial histology was examined by hematoxylin and eosin staining with a semi quantitative scoring method developed to compare histological appearance of tissues. The presence of leukocytes and developmental markers was examined by immunohistochemistry and scored.

Results

Endometrial histology was dramatically altered upon stimulation for ART. However, those women who became pregnant presented with significantly less alterations in histological endometrial maturation. Numbers and activation status of leukocyte populations were also altered within the endometria stimulated for ART, with neutrophils undergoing degranulation, usually observed only pre-menstrually.

Conclusion

We propose that such developmental changes render the endometrium hostile to the embryo and that modifications to ART protocols should be considered to take account of the requirement for endometrial receptivity and hence increase pregnancy rates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号