首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A previous study (KL Forsythe, MS Feather [1989] Carbohydr Res 185: 315-319) showed that 13C nuclear magnetic resonance spectroscopy can be used to detect and identify mixtures of 1-kestose and neokestose after conversion to the acetate derivatives. In this study, unequivocal assignments are made for the anomeric carbon and proton signals for the above two trisaccharide acetates as well as for 6-kestose hendecaacetate and for nystose tetradecaacetate (a 1-kestose-derived tetrasaccharide). A number of oligosaccharide fractions were isolated from several plant species, converted to the acetates, and nuclear magnetic resonance spectra obtained. Using the above reference data, the following information was obtained. The trisaccharide fraction from Dactylis glomerata L. stem tissue and Asparagus officinalis L. roots contain both 1-kestose and neokestose, and the tetrasaccharide fractions contain three components, one of which is nystose. Penta- and hexasaccharide acetates were also isolated from A. officinalis L. roots and were found to contain, respectively, four and at least five components. All components of both of the above species appear to contain a kestose residue and to be produced by the sequential addition of fructofuranosyl units to these. The trisaccharide fraction from Festuca arundinacea is complex, and contains at least five different components, two of which appear to be 1-kestose and neokestose.  相似文献   

2.
Two novel oligosaccharides, tetra-and penta-saccharides were synthesized by fructosyl transfer from 1-kestose to 4G-beta-D-galactopyranosylsucrose with a purified 1F-fructosyltransferase of asparagus roots and identified as 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose, O-beta-D-fructofuranosyl-(2-->1)-beta-D-fructofuranosyl-O-[beta-D-galactopyranosyl-(1-->4)]-alpha-D-glucopyranoside and 1F(1-beta-D-fructofuranosyl)2-4G-beta-D-galactopyranosylsucrose, [O-beta-D-fructofuranosyl-(2-->1)]2-beta-D-fructofuranosyl-O-[beta-D-galactopyranosyl-(1-->4)]-alpha-D-glucopyranoside, respectively. Both oligosaccharides were scarcely hydrolyzed by carbohydrase from rat small intestine. Human intestinal bacterial growth by 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose was compared with that by the tetrasaccharides, stachyose and nystose. Bifidobacteria utilized 1F-beta-D-fructofuranosyl-4G-beta-D-galactopyranosylsucrose to the same extent as stachyose or nystose. On the other hand, the unfavorable bacteria, Clostridium perfringens, Escherichia coli and Enterococcusfaecalis, that produce mutagenic substances did not use the synthetic oligosaccharide.  相似文献   

3.
Bacillus sp. 3B6, bacterium isolated from cloud water, was incubated on sucrose for exopolysaccharide production. Dialysis of the obtained mixture (MWCO 500) afforded dialyzate (DIM) and retentate (RIM). Both were separated by size exclusion chromatography. RIM afforded eight fractions: levan exopolysaccharide (EPS), fructooligosaccharides (FOSs) of levan and inulin types with different degrees of polymerization (dp 2–7) and monosaccharides fructose:glucose = 9:1. Levan was composed of two components with molecular mass ∼3500 and ∼100 kDa in the ratio 2.3:1. Disaccharide fraction contained difructose anhydride DFA IV. 1-Kestose, 6-kestose, and neokestose were identified as trisaccharides in the ratio 2:1:3. Fractions with dp 4–7 were mixtures of FOSs of levan (2,6-βFruf) and inulin (1,2-βFruf) type. DIM separation afforded two dominant fractions: monosaccharides with fructose: glucose ratio 1:3; disaccharide fraction contained sucrose only. DIM trisaccharide fraction contained 1-kestose, 6-kestose, and neokestose in the ratio1.5:1:2, penta and hexasaccharide fractions contained FOSs of levan type (2,6-βFruf) containing α-glucose. In the pentasaccharide fraction also the presence of a homopentasaccharide composed of 2,6-linked βFruf units only was identified. Nystose, inulin (1,2-βFruf) type, was identified as DIM tetrasaccharide. Identification of levan 2,6-βFruf and inulin 1,2-βFruf type oligosaccharides in the incubation medium suggests both levansucrase and inulosucrase enzymes activity in Bacillus sp. 3B6.  相似文献   

4.
《Process Biochemistry》2014,49(12):2174-2180
Different filamentous fungi isolated from molasses and jams (kiwi and fig) were screened for fructooligosaccharides (FOS) producing activity. Two strains, identified as Penicilium sizovae (CK1) and Cladosporium cladosporioides (CF215), were selected on the basis of the FOS yield and kestose/nystose ratio. In both strains the activity was mostly mycelium-bound. Starting from 600 g/L of sucrose, maximum FOS yield was 184 and 339 g/L for P. sizovae and C. cladosporioides, respectively. Interestingly, the highest FOS concentration with C. cladosporioides was reached at 93% sucrose conversion, which indicated a notable transglycosylation to hydrolysis ratio. The main FOS in the reaction mixtures were identified by HPAEC–PAD chromatography. C. cladosporioides synthesized mainly 1-kestose (158 g/L), nystose (97 g/L), 1F-fructosylnystose (19 g/L), 6-kestose (12 g/L), neokestose (10 g/L) and a disaccharide (34 g/L) that after its purification and NMR analysis was identified as blastose [Fru-β(2  6)-Glc]. P. sizovae was very selective for the formation of 1F-FOS (in particular 1-kestose) with minor contribution of neoFOS and negligible of levan-type FOS.  相似文献   

5.
An extracellular β-fructofuranosidase from the yeast Rhodotorula dairenensis was characterized biochemically. The enzyme molecular mass was estimated to be 680 kDa by analytical gel filtration and 172 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, of which the N -linked carbohydrate accounts for 16% of the total mass. It displays optimum activity at pH 5 and 55–60 °C. The enzyme shows broad substrate specificity, hydrolyzing sucrose, 1-kestose, nystose, leucrose, raffinose and inulin. Although the main reaction catalyzed by this enzyme is sucrose hydrolysis, it also exhibits transfructosylating activity that, unlike other microbial β-fructofuranosidases, produces a varied type of prebiotic fructooligosaccharides containing β-(2→1)- and β-(2→6)-linked fructose oligomers. The maximum concentration of fructooligosaccharides was reached at 75% sucrose conversion and it was 87.9 g L−1. The 17.0% (w/w) referred to the total amount of sugars in the reaction mixture. At this point, the amounts of 6-kestose, neokestose, 1-kestose and tetrasaccharides were 68.9, 10.6, 2.6 and 12.7 g L−1, respectively.  相似文献   

6.
Major fructo-oligosaccharides (FOS) produced by levansucrase (EC 2.4.1.10) from Acetobacter diazotrophicus SRT4 were characterised as 1-kestose and nystose by acid hydrolysis and 13C-NMR spectroscopy. The highest yields of 1-kestose (481 mM; 241 g/l) and nystose (81 mM; 54 g/l) were achieved at initial sucrose concentration of 1754 mM (600 g/l), pH 5.5 and 40°C. The synthesized FOS reached 50% (w/w) of total sugars in the reaction mixture, with a conversion efficiency over 70% (w/w) based on the amount of sucrose converted to 1-kestose.  相似文献   

7.
Four oligofructans (neokestose, 1-kestose, nystose, and an un-identified pentofructan) occurred in the vascular tissues and phloem sap of mature leaves of Agave deserti. Fructosyltransferases (responsible for fructan biosynthesis) also occurred in the vascular tissues. In contrast, oligofructans and fructosyltransferases were virtually absent from the chlorenchyma, suggesting that fructan biosynthesis was restricted to the vascular tissues. On a molar basis, these oligofructans accounted for 46% of the total soluble sugars in the vascular tissues (sucrose [Suc] for 26%) and for 19% in the phloem sap (fructose for 24% and Suc for 53%). The Suc concentration was 1.8 times higher in the cytosol of the chlorenchyma cells than in the phloem sap; the nystose concentration was 4.9 times higher and that of pentofructan was 3.2 times higher in the vascular tissues than in the phloem sap. To our knowledge, these results provide the first evidence that oligofructans are synthesized and transported in the phloem of higher plants. The polymer-trapping mechanism proposed for dicotyledonous C3 species may also be valid for oligofructan transport in monocotyledonous species, such as A. deserti, which may use a symplastic pathway for phloem loading of photosynthates in its mature leaves.  相似文献   

8.
A novel subfamily of putative intracellular invertase enzymes (glycoside hydrolase family 32) has previously been identified in fungal genomes. Here, we report phylogenetic, molecular, and biochemical characteristics of SucB, one of two novel intracellular invertases identified in Aspergillus niger. The sucB gene was expressed in Escherichia coli and an invertase-negative strain of Saccharomyces cerevisiae. Enzyme purified from E. coli lysate displayed a molecular mass of 75 kDa, judging from sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. Its optimum pH and temperature for sucrose hydrolysis were determined to be 5.0 and 37 to 40 degrees C, respectively. In addition to sucrose, the enzyme hydrolyzed 1-kestose, nystose, and raffinose but not inulin and levan. SucB produced 1-kestose and nystose from sucrose and 1-kestose, respectively. With nystose as a substrate, products up to a degree of polymerization of 4 were observed. SucB displayed typical Michaelis-Menten kinetics with substrate inhibition on sucrose (apparent K(m), K(i), and V(max) of 2.0 +/- 0.2 mM, 268.1 +/- 18.1 mM, and 6.6 +/- 0.2 mumol min(-1) mg(-1) of protein [total activity], respectively). At sucrose concentrations up to 400 mM, transfructosylation (FTF) activity contributed approximately 20 to 30% to total activity. At higher sucrose concentrations, FTF activity increased to up to 50% of total activity. Disruption of sucB in A. niger resulted in an earlier onset of sporulation on solid medium containing various carbon sources, whereas no alteration of growth in liquid culture medium was observed. SucB thus does not play an essential role in inulin or sucrose catabolism in A. niger but may be needed for the intracellular conversion of sucrose to fructose, glucose, and small oligosaccharides.  相似文献   

9.
Sucrose-inducible secretory sucrose:sucrose 1-fructosyltransferase (1-SST) from Aspergillus foetidus has been purified and subjected to N-terminal amino acid sequence determination. The enzyme is extensively glycosylated, and the active form is probably represented by a dimer of identical subunits with an apparent molecular mass of 180 kDa as judged from mobility in seminative acrylamide gels. The enzyme catalyzes fructosyl transfer from sucrose to sucrose producing glucose and 1-kestose. Oligosaccharides with a higher degree of polymerization are not obtained with sucrose as the substrate. The cDNA encoding the A. foetidus 1-SST has been cloned and sequenced. Sequence homology was found to be highest to levanases, but no hydrolytic activity was observed when levan was incubated with the enzyme. Expression of the cloned gene in an invertase-deficient mutant of Saccharomyces cerevisiae resulted in 1-kestose production, with 6-kestose and neokestose being side products of the reaction. Products were well distinguishable from those formed by yeast transformants expressing a cytosolic invertase.  相似文献   

10.
The ethanol and temperature effects on the ratio between Zymomonas mobilis 113S extracellular levansucrase activities were studied using fermentation broth supernatant, ??levan?Clevansucrase?? sediment precipitated by ethanol and highly purified enzyme. The fructooligosaccharide (FOS) production at different temperatures in the presence of ethanol was investigated. An ethanol increases FOS biosynthesis activity part of levansucrase. Especially, this effect was pronounced at lower temperatures (35?C40?°C) and using purified levansucrase. The inverse relationship between temperature and ratio synthetic activity/total activity of levansucrase was found. The FOS composition containing mostly 1-kestose, 6-kestose, and neokestose obtained in the presence of different ethanol concentrations was found relative constant, while the changes in the sucrose concentration and temperature gave slight changes in the ratio between 1-kestose and 6-kestose.  相似文献   

11.
Several strains of bacteriophage have been isolated that induce the formation of a polysaccharide hydrolase after infection of Klebsiella aerogenes type 54 [A3(S1)]. The action of this enzyme on polysaccharide solutions was to decrease their viscosity and increase their reducing value. These effects were associated with the release of two oligosaccharides (O1 and O2) from the polysaccharide. These two substances are not identical with any of the four oligosaccharides isolated from autohydrolysates. The two enzymically isolated fractions have been tentatively identified as tetrasaccharides, and oligosaccharide O2 is probably an acetylated version of oligosaccharide O1. This latter oligosaccharide differs in some way, still unknown, from the tetrasaccharide cellobiosylglucuronosylfucose found in acid hydrolysates of the slime polysaccharide. The enzyme is limited in its activity to the polysaccharide excreted by the A3 strain of K. aerogenes type 54 or by similar strains. It is also active on the polysaccharides altered by acid or alkaline treatment. The enzyme has optimum activity at pH6.5. A study of the products released by enzyme action has shown it to be a fucosidase splitting the fucosylglucose linkages found in the intact polysaccharide.  相似文献   

12.
Water-soluble carbohydrate composition of mature (ceased expanding) leaf blades and the elongation zone of developing leaf blades was characterized in wheat (Triticum aestivum L.), tall fescue (Festuca arundinacea Schreb.), and timothy (Phleum pratense L.). These species were chosen because they differ in mean degree of polymerization (DP) of fructan in the mature leaf blade. Our objective was to compare the nature and DP of the fructan. Vegetative plants were grown with a 14-hour photoperiod and constant 21°C at the leaf base. Gel permeation chromatography of leaf blade extracts showed that the apparent mean fructan DP increased in the order wheat < tall fescue < timothy. Apparent mean DP of elongation zone fructan was higher than that of leaf blade fructan in wheat and timothy, but the reverse occurred for tall fescue. Low DP (≤10) and high DP (>10) pools were found in both tissues of tall fescue and wheat, but concentration of low DP fructan was very low in either tissue of timothy. All three species have high DP fructan. Comigration with standards on thin-layer chromotography showed that wheat contained 1-kestose and a noninulin fructan oligomer series. Tall fescue contained neokestose, 1-kestose and higher oligosaccharides that comigrated with neokestose-based compounds and inulins. Thin-layer chromatography showed that small amounts of fructose-containing oligosaccharides were present in timothy.  相似文献   

13.
The enzyme sucrose: sucrose 1-fructosyltransferase was partially purified from barley leaf growth zones. Four steps (ammonium sulphate precipitation and polyethylene glycol precipitation, followed by chromatography on Concanavalin A-sepharose and hydroxylapatite) yielded a 35-fold purification. The resulting preparation of 1-SST which still contained a number of different activities related to fructan metabolism, was subjected to preparative isoelectric focusing, and sections of the gel were analysed individually for 1-SST and related activities, using sucrose and 1-kestose as substrates. This procedure yielded a 196-fold purification and revealed the presence of two isozymes of 1-SST with pI values of 4.93 and 4.99, as determined by analytical isoelectric focusing of the corresponding fractions. Both isozymes produced glucose and 1-kestose when incubated with sucrose. In addition, small amounts of 6-kestose and tetrasaccharides were formed. In particular, one of the two 1-SST isozymes yielded fructose when incubated with 1-kestose, indicating that it also acts as a fructan exohydrolase. The other isozyme exhibited less fructan exohydrolase activity. Nystose was also degraded by the fructan exohydrolase activity but less than 1-kestose, whereas 6-kestose was not a substrate for the enzyme. Incubation of both 1-SSTs with different concentrations of sucrose showed that the enzyme was not saturated even at 500 mM. As for the barley sucrose: fructan 6-fructosyltransferase, both isozymes of 1-SST yielded two polypeptide bands of molecular weight 50 and 22 kDa upon sodium dodecylsulphate polyacrylamide gel electrophoresis, suggesting their close relationship to invertase (composed of two subunits of similar size), as previously reported for other plants.  相似文献   

14.
Nine fructo-oligosaccharides, synthesized in vitro from sucrose by an enzyme preparation from asparagus roots, were isolated and their structures were elucidated to be 1F (1-β-fructofuranosyl)n sucrose [n = 1 (1-kestose), 2 (nystose) and 3], 6G (1-β-fructofuranosyl)n sucrose [n=1 (neokestose), 2 and 3] and 1F (1-β-fructofuranosyl)m-6G (1-β-fructofuranosyl)n sucrose [m=1, n=1; m=2, n =1; and m =1, n=2]. These saccharides are all known to occur naturally in asparagus roots, but 6G (1-β-fructofuranosyl)3 sucrose and 1F (1-β-fructofuranosyl)m-6G-(1-β-fructofuranosyl)n sucrose (m=1, n =1; and m=1, n=2) were the first saccharides enzymatically synthesized in vitro. Also three types of fructosyltransferases were presumed to be involved in the biosynthesis of these oligosaccharides in asparagus roots.  相似文献   

15.
Eight fructo-oligosaccharides were isolated from purified oligosaccharide fractions of the roots of Asparagus officinalis L. (Liliaceae). By examination of constituent sugars, gas-liquid-chromatographic analysis of methyl derivatives, and investigation of partial acid hydrolyzates and products of β-fructofuranosidase action, they were confirmed to be 1F(1-β -fructofuranosyl)n sucrose [n = 1 (1-kestose), 2 (nystose), and 3], 6G (1-β-fructofuranosyl)n sucrose [n = 1 (neokestose), 2, and 3], 1F,6G-di-β-fructofuranosyl sucrose, and a new pentasaccharide 1F (1-β-fructofuranosyl)2-6G-β-fructofuranosyl sucrose.  相似文献   

16.
We have previously described the structures of neutral and sialylated O-glycosidic mannose-linked tetrasaccharides and keratan sulphate polysaccharide chains in the chondroitin sulphate proteoglycan of brain. The present paper provides information on a series of related sialylated and/or sulphated tri- to penta-saccharides released by alkaline-borohydride treatment of the proteoglycan glycopeptides. The oligosaccharides were fractionated by ion-exchange chromatography and gel filtration, and their structural properties were studied by methylation analysis and fast-atom-bombardment mass spectrometry. Five fractions containing [35S]sulphate-labelled oligosaccharides were obtained by ion-exchange chromatography, each of which was eluted from Sephadex G-50 as two well-separated peaks. The apparent Mr values of both the large- and small-molecular-size fractions increased with increasing acidity (and sulphate labelling) of the oligosaccharides. The larger-molecular-size fractions contained short mannose-linked keratan sulphate chains of Mr 3000-4500, together with some asparagine-linked oligosaccharides. The smaller tri- to penta-saccharides, of Mr 800-1400, appear to have a common GlcNac(beta 1-3)Manol core, and to contain one to two residues of sialic acid and/or sulphate.  相似文献   

17.
Five novel oligosaccharides (tetra-, penta- and hexa-saccharides) were synthesized by glucosyltransfer from beta-D-glucose 1-phosphate to isokestose (O-beta-D-fructofuranosyl-(2-->1)-O-beta-D-fructofuranosyl-(2-->1)-alpha-D-glucopyranoside) or nystose (O-beta-D-fructofuranosyl-(2-->1)-O-beta-D-fructofuranosyl-(2-->1)-O-beta-D-fructofuranosyl-(2-->1)-alpha-D-glucopyranoside) using Thermoanaerobacter brockii kojibiose phosphorylase. The oligosaccharides were identified as 2(2-alpha-D-glucopyranosyl)(m)isokestose; [O-alpha-D-glucopyranosyl-(1-->2)](m)-O-[beta-D-fructofuranosyl-(2-->1)](2)-alpha-D-glucopyranoside: m=1, 2, and 3, and 2(2-alpha-D-glucopyranosyl)(n)nystose; [O-alpha-D-glucopyranosyl-(1-->2)](n)-O-[beta-D-fructofuranosyl-(2-->1)](3)-alpha-D-glucopyranoside: n=1 and 2 using gas liquid chromatography analysis of the methyl derivatives, and MALDI-TOF-MS and NMR measurements of the newly formed oligosaccharides. 1H, 13C NMR signals of each saccharide were assigned using 2D-NMR techniques, including COSY, HSQC, HSQC-TOCSY, HMBC, CH(2)-selected E-HSQC, and CH(2)-selected E-HSQC-TOCSY.  相似文献   

18.
An extracellular β-fructofuranosidase from the yeast Xanthophyllomyces dendrorhous was characterized biochemically, molecularly, and phylogenetically. This enzyme is a glycoprotein with an estimated molecular mass of 160 kDa, of which the N-linked carbohydrate accounts for 60% of the total mass. It displays optimum activity at pH 5.0 to 6.5, and its thermophilicity (with maximum activity at 65 to 70°C) and thermostability (with a T50 in the range 66 to 71°C) is higher than that exhibited by most yeast invertases. The enzyme was able to hydrolyze fructosyl-β-(2→1)-linked carbohydrates such as sucrose, 1-kestose, or nystose, although its catalytic efficiency, defined by the kcat/Km ratio, indicates that it hydrolyzes sucrose approximately 4.2 times more efficiently than 1-kestose. Unlike other microbial β-fructofuranosidases, the enzyme from X. dendrorhous produces neokestose as the main transglycosylation product, a potentially novel bifidogenic trisaccharide. Using a 41% (wt/vol) sucrose solution, the maximum fructooligosaccharide concentration reached was 65.9 g liter−1. In addition, we isolated and sequenced the X. dendrorhous β-fructofuranosidase gene (Xd-INV), showing that it encodes a putative mature polypeptide of 595 amino acids and that it shares significant identity with other fungal, yeast, and plant β-fructofuranosidases, all members of family 32 of the glycosyl-hydrolases. We demonstrate that the Xd-INV could functionally complement the suc2 mutation of Saccharomyces cerevisiae and, finally, a structural model of the new enzyme based on the homologous invertase from Arabidopsis thaliana has also been obtained.  相似文献   

19.
Human Tamm-Horsfall glycoprotein has been purified from the urine of one male. The Asn-linked carbohydrate chains were enzymically released by peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F, and separated from the remaining protein by gel-permeation chromatography on Bio-Gel P-100. Fractionation of the intact (sulfated) sialylated carbohydrate chains was achieved by a combination of three liquid-chromatographic techniques, namely, anion-exchange FPLC on Q-Sepharose, amine-adsorption HPLC on Lichrospher-NH2, and high-pH anion-exchange chromatography on CarboPac PA1. In total, more than 150 carbohydrate-containing fractions were obtained, some of which still contained mixtures of oligosaccharides. The primary structure of 30 N-glycans, including 10 novel oligosaccharides, were determined by one- and two-dimensional 1H-NMR spectroscopy at 500 MHz or 600 MHz. The types of compounds identified range from non-fucosylated, monosialylated, diantennary to fucosylated, tetrasialylated, tetraantennary carbohydrate chains, possessing the following terminal structural elements: [formula: see text]  相似文献   

20.
 β-Fructofuranosidase was purified from commercial alkaline protease (Aspergillus oryzae origin). The optimal pH of its transfructosylating activity was more alkaline (pH 8) than that of its hydrolyzing activity (pH 5). In the case of a 24-h reaction with sucrose, the hydrolysis and transfructosylation reaction were optimal at pH 4–5 and pH 8, respectively. In the reaction at pH 8 1-kestose and nystose were the main fructooligosaccharides produced. The transfer ratio was hardly different between pH 5 and pH 8 early in the reaction, but the transfer products (1-kestose and nystose) were decreased at pH 5 as the reaction proceeded because of their hydrolysis. Received: 18 January 1995/Received last revision: 23 August 1995/Accepted: 13 September 1995  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号