首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp90 and its co-chaperones are essential for the medically important parasite Leishmania donovani, facilitating life cycle control and intracellular survival. Activity of Hsp90 is regulated by co-chaperones of the Aha1 and P23 families. In this paper, we studied the expression of L. donovani Aha1 in two life cycle stages, its interaction with Hsp90 and the phenotype of Aha1 null mutants during the insect stage and inside infected macrophages. This study provides a detailed in vitro analysis of the function of Aha1 in Leishmania parasites and the first instance of a reverse genetic analysis of Aha1 in a protozoan parasite. While Aha1 is non-essential under standard growth conditions and at elevated temperature, Aha1 protects against ethanol stress. However, both overexpression and lack of Aha1 affected parasite growth in the presence of the Hsp90 inhibitors radicicol (RAD) and geldanamycin (GA). Under RAD pressure, P23 and Aha1 act in an antagonistic way. By contrast, expression levels of both co-chaperones have similar effects under GA treatment, indicating different inhibition mechanisms by the two compounds. Aha1 is also secreted in virulence-enhancing exosomes. This may explain why the loss of Aha1 reduces the infectivity of L. donovani in ex vivo mouse macrophages, indicating a role during the intracellular mammalian stage.  相似文献   

2.
The Saccharomyces cerevisiae [PSI(+)] prion is believed to be a self-propagating cytoplasmic amyloid. Earlier characterization of HSP70 (SSA1) mutations suggested that [PSI(+)] propagation is impaired by alterations that enhance Ssa1p's substrate binding. This impairment is overcome by second-site mutations in Ssa1p's conserved C-terminal motif (GPTVEEVD), which mediates interactions with tetratricopeptide repeat (TPR) cochaperones. Sti1p, a TPR cochaperone homolog of mammalian Hop1 (Hsp70/90 organizing protein), activates Ssa1p ATPase, which promotes substrate binding by Ssa1p. Here we find that in SSA1-21 cells depletion of Sti1p improved [PSI(+)] propagation, while excess Sti1p weakened it. In contrast, depletion of Fes1p, a nucleotide exchange factor for Ssa1p that facilitates substrate release, weakened [PSI(+)] propagation, while overproducing Fes1p improved it. Therefore, alterations of Hsp70 cochaperones that promote or prolong Hsp70 substrate binding impair [PSI(+)] propagation. We also find that the GPTVEEVD motif is important for physical interaction with Hsp40 (Ydj1p), another Hsp70 cochaperone that promotes substrate binding but is dispensable for viability. We further find that depleting Cpr7p, an Hsp90 TPR cochaperone and CyP-40 cyclophilin homolog, improved [PSI(+)] propagation in SSA1 mutants. Although Cpr7p and Sti1p are Hsp90 cochaperones, we provide evidence that Hsp90 is not involved in [PSI(+)] propagation, suggesting that Sti1p and Cpr7p functionally interact with Hsp70 independently of Hsp90.  相似文献   

3.
In eukaryotic cells, Hsp90 chaperones assist late folding steps of many regulatory protein clients by a complex ATPase cycle. Binding of clients to Hsp90 requires prior interaction with Hsp70 and a transfer reaction that is mediated by the co-chaperone Sti1/Hop. Sti1 furthers client transfer by inhibiting Hsp90's ATPase activity. To better understand how Sti1 prepares Hsp90 for client acceptance, we characterized the interacting domains and analysed how Hsp90 and Sti1 mutually influence their conformational dynamics using hydrogen exchange mass spectrometry. Sti1 stabilizes several regions in all three domains of Hsp90 and slows down dissociation of the Hsp90 dimer. Our data suggest that Sti1 inhibits Hsp90's ATPase activity by preventing N-terminal dimerization and docking of the N-terminal domain with the middle domain. Using crosslinking and mass spectrometry we identified Sti1 segments, which are in close vicinity of the N-terminal domain of Hsp90. We found that the length of the linker between C-terminal dimerization domain and the C-terminal MEEVD motif is important for Sti1 association rates and propose a kinetic model for Sti1 binding to Hsp90.  相似文献   

4.
Sti1 is a novel activator of the Ssa proteins   总被引:1,自引:0,他引:1  
The molecular chaperones Hsp70 and Hsp90 are involved in the folding and maturation of key regulatory proteins in eukaryotes. Of specific importance in this context is a ternary multichaperone complex in which Hsp70 and Hsp90 are connected by Hop. In Saccharomyces cerevisiae two components of the complex, yeast Hsp90 (yHsp90) and Sti1, the yeast homologue of Hop, had already been identified, but it remained to be shown which of the 14 different yeast Hsp70s are part of the Sti1 complex and what were the functional consequences resulting from this interaction. With a two-hybrid approach and co-immunoprecipitations, we show here that Sti1 specifically interacts with the Ssa group of the cytosolic yeast Hsp70 proteins. Using purified components, we reconstituted the dimeric Ssa1-Sti1 complex and the ternary Ssa1-Sti1-yHsp90 complex in vitro. The dissociation constant between Sti1 and Ssa1 was determined to be 2 orders of magnitude weaker than the affinity of Sti1 for yHsp90. Surprisingly, binding of Sti1 activates the ATPase of Ssa1 by a factor of about 200, which is in contrast to the behavior of Hop in the mammalian Hsp70 system. Analysis of the underlying activation mechanism revealed that ATP hydrolysis is rate-limiting in the Ssa1 ATPase cycle and that this step is accelerated by Sti1. Thus, Sti1 is a potent novel effector for the Hsp70 ATPase.  相似文献   

5.
cAMP‐mediated responses act as modulators of environmental sensing and cellular differentiation of many kinetoplastidae parasites including Leishmania. Although cAMP synthesizing (adenylate cyclase) and degrading (phosphodiesterase) enzymes have been cloned and characterized from Leishmania, no cAMP‐binding effector molecule has yet been identified from this parasite. In this study, a regulatory subunit of cAMP‐dependent protein kinase (Ldpkar1), homologous to mammalian class I cAMP‐dependent protein kinase regulatory subunit, has been identified from L. donovani. Further characterization suggested possible interaction of LdPKAR1 with PKA catalytic subunits and inhibition of PKA activity. This PKA regulatory subunit is expressed in all life cycle stages and its expression attained maximum level in stationary phase promastigotes, which are biochemically similar to the infective metacyclic promastigotes. Starvation condition, the trigger for metacyclogenesis in the parasite, elevates LdPKAR1 expression and under starvation condition promastigotes overexpressing Ldpkar1 attained metacyclic features earlier than normal cells. Furthermore, Ldpkar1 overexpression accelerates autophagy, a starvation‐induced cytological event necessary for metacyclogenesis and amastigote formation. Conditional silencing of Ldpkar1 delays the induction of autophagy in the parasite. The study, for the first time, reports the identification of a functional cAMP‐binding effector molecule from Leishmania that may modulate important cytological events affecting metacyclogenesis.  相似文献   

6.
Sphingosine kinase is a key enzyme in sphingolipid metabolism, catalysing the conversion of sphingosine or dihydrosphingosine into sphingosine‐1‐phosphate or dihydrosphingosine‐1‐phosphate respectively. In mammals, sphingosine‐1‐phosphate is a powerful signalling molecule regulating cell growth, differentiation, apoptosis and immunity. Functions of sphingosine kinase or sphingosine‐1‐phosphate in pathogenic protozoans are virtually unknown. While most organisms possess two closely related sphingosine kinases, only one sphingosine kinase homologue (SKa) can be identified in Leishmania, which are vector‐borne protozoan parasites responsible for leishmaniasis. Leishmania SKa is a large, cytoplasmic enzyme capable of phosphorylating both sphingosine and dihydrosphingosine. Remarkably, deletion of SKa leads to catastrophic defects in both the insect stage and mammalian stage of Leishmania parasites. Genetic and biochemical analyses demonstrate that proper expression of SKa is essential for Leishmania parasites to remove toxic metabolites, to survive stressful conditions, and to cause disease in mice. Therefore, SKa is a pleiotropic enzyme with vital roles throughout the life cycle of Leishmania. The essentiality of SKa and its apparent divergence from mammalian counterparts suggests that this enzyme can be selectively targeted to reduce Leishmania infection.  相似文献   

7.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

8.
In eukaryotes, the molecular chaperones Hsp90 and Hsp70 are connected via the co-chaperone Sti1/Hop, which allows transfer of clients. Here, we show that the basic functions of yeast Sti1 and human Hop are conserved. These include the simultaneous binding of Hsp90 and Hsp70, the inhibition of the ATPase activity of Hsp90, and the ability to support client activation in vivo. Importantly, we reveal that both Hop and Sti1 are subject to inhibitory phosphorylation, although the sites modified and the influence of regulatory phosphorylation is species specific. Phospho-mimetic variants have a reduced ability to activate clients in vivo and different affinity for Hsp70. Hop is more tightly regulated, as phosphorylation affects also the interaction with Hsp90 and induces structural rearrangements in the core part of the protein.  相似文献   

9.
Drug resistance is a major public health challenge in leishmaniasis chemotherapy, particularly in the case of emerging Leishmania/HIV‐1 co‐infections. We have delineated the mechanism of cell death induced by the HIV‐1 protease inhibitor, Nelfinavir, in the Leishmania parasite. In order to further study Nelfinavir–Leishmania interactions, we selected Nelfinavir‐resistant axenic amastigotes in vitro and characterized them. RNA expression profiling analyses and comparative genomic hybridizations of closely related Leishmania species were used as a screening tool to compare Nelfinavir‐resistant and ‐sensitive parasites in order to identify candidate genes involved in drug resistance. Microarray analyses of Nelfinavir‐resistant and ‐sensitive Leishmania amastigotes suggest that parasites regulate mRNA levels either by modulating gene copy numbers through chromosome aneuploidy, or gene deletion/duplication by homologous recombination. Interestingly, supernumerary chromosomes 6 and 11 in the resistant parasites lead to upregulation of the ABC class of transporters. Transporter assays using radiolabelled Nelfinavir suggest a greater drug accumulation in the resistant parasites and in a time‐dependent manner. Furthermore, high‐resolution electron microscopy and measurements of intracellular polyphosphate levels showed an increased number of cytoplasmic vesicular compartments known as acidocalcisomes in Nelfinavir‐resistant parasites. Together these results suggest that Nelfinavir is rapidly and dramatically sequestered in drug‐induced intracellular vesicles.  相似文献   

10.
Given the paucity and toxicity of available drugs for leishmaniasis, coupled with the advent of drug resistance, the discovery of new therapies for this neglected tropical disease is recognised as being of the utmost urgency. As such antimicrobial peptides (AMPs) have been proposed as promising compounds against the causative Leishmania species, insect vector‐borne protozoan parasites. Here the AMP temporins A, B and 1Sa have been synthesised and screened for activity against Leishmania mexicana insect stage promastigotes and mammalian stage amastigotes, a significant cause of human cutaneous disease. In contrast to previous studies with other species the activity of these AMPs against L. mexicana amastigotes was low. This suggests that amastigotes from different Leishmania species display varying susceptibility to peptides from the temporin family, perhaps indicating differences in their surface structure, the proposed target of these AMPs. In contrast, insect stage L. mexicana promastigotes were sensitive to two of the screened temporins which clearly demonstrates the importance of screening AMPs against both forms of the parasite. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

11.
Environmental and physiological stresses such as heat shock, oxidative stress, heavy metals, and pathogenic conditions induce cellular stress response. This response is often mediated by heat shock proteins that function as molecular chaperones. A stress-inducible cochaperone, Sti1/Hop (Hsp organizer protein), functions as an adaptor protein that simultaneously binds with Hsp70 and Hsp90 to transfer client proteins from Hsp70 to Hsp90. However, the biological role of STI-1 in vivo is poorly understood in metazoans. Here, we report the characterization of the Caenorhabditis elegans homolog of Sti1/Hop, which is approximately 56% identical with human STI-1. C. elegans STI-1 (CeSTI-1) is expressed in the pharynx, intestine, nervous system, and muscle from larvae to adults. Analysis of proteins immunoprecipitated with anti-STI-1 antibody by mass spectrometry revealed that CeSTI-1 can bind with both Hsp70 and Hsp90 homologs like its mammalian counterpart. sti-1 expression is elevated by heat stress, and an sti-1(jh125) null mutant shows decreased fertility under heat stress conditions. These mutants also show abnormally high lethality in extreme heat and may be functioning with DAF-16 in thermotolerance. In addition, sti-1(jh125) mutants have a shortened life span. Our results confirm that CeSTI-1 is a cochaperone protein that may maintain homeostatic functions during episodes of stress and can regulate longevity in nematodes.  相似文献   

12.
Leishmaniasis is a vector‐borne infectious disease with a wide range of pathologies depending on the species of Leishmania. Leishmania parasites are transmitted by the sand fly vector as promastigotes; within the mammalian host, Leishmania parasites differentiate into amastigotes and replicate in macrophages. The A2 protein from Leishmania donovani is expressed predominantly in amastigotes and therefore likely plays a role in survival in the mammalian host. In the present study, we have determined that the A2 protein colocalized with the Leishmania endoplasmic reticulum binding protein, BiP, was induced by stress and complexed with BiP following heat shock. The A2 gene in Leishmania major is a non‐expressed pseudogene, and we present evidence that ectopic expression of a transfected A2 gene in L. major enhanced its viability following heat shock. A2 may therefore play a role in protecting L. donovani from stress associated with infection in visceral organs, including the fever typically associated with visceral leishmaniasis. Interestingly, when comparing A2 protein localization, we also observed that the Leishmania secreted acid phosphatase SAcP protein was transported out of the parasite‐containing phagolysosome and was located throughout the macrophage cytoplasm in vesicles, providing the first example of a secreted Leishmania‐derived protein exiting the parasite‐containing phagolysosome.  相似文献   

13.
14.
The molecular chaperone Hsp (heat-shock protein) 90 is critical for the activity of diverse cellular client proteins. In a current model, client proteins are transferred from Hsp70 to Hsp90 in a process mediated by the co-chaperone Sti1/Hop, which may simultaneously interact with Hsp70 and Hsp90 via separate TPR (tetratricopeptide repeat) domains, but the mechanism and in vivo importance of this function is unclear. In the present study, we used truncated forms of Sti1 to determine the minimal regions required for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. We found that both TPR1 and TPR2B contribute to the Hsp70 interaction in vivo and that mutations in both TPR1 and TPR2B were required to disrupt the in vitro interaction of Sti1 with the C-terminus of the Hsp70 Ssa1. The TPR2A domain was required for the Hsp90 interaction in vivo, but the isolated TPR2A domain was not sufficient for the Hsp90 interaction unless combined with the TPR2B domain. However, isolated TPR2A was both necessary and sufficient for purified Sti1 to migrate as a dimer in solution. The DP2 domain, which is essential for in vivo function, was dispensable for the Hsp70 and Hsp90 interaction, as well as Sti1 dimerization. As evidence for the role of Sti1 in mediating the interaction between Hsp70 and Hsp90 in vivo, we identified Sti1 mutants that result in reduced recovery of Hsp70 in Hsp90 complexes. We also identified two Hsp90 mutants that exhibit a reduced Hsp70 interaction, which may help clarify the mechanism of client transfer between the two molecular chaperones.  相似文献   

15.
Hsp90 is an important cellular chaperone and attractive target for therapeutics against both cancer and infectious organisms. The Hsp90 protein from the parasite Plasmodium falciparum, the causative agent of malaria, is critical for this organism's survival; the anti‐Hsp90 drug geldanamycin is toxic to P. falciparum growth. We have solved the structure of the N‐terminal ATP‐binding domain of P. falciparum Hsp90, which contains a principal drug‐binding pocket, in both apo and ADP‐bound states at 2.3 Å resolution. The structure shows that P. falciparum Hsp90 is highly similar to human Hsp90, and likely binds agents such as geldanamycin in an identical manner. Our results should aid in the structural understanding of Hsp90‐drug interactions in P. falciparum, and provide a scaffold for future drug‐discovery efforts. Proteins 2010; © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Cholera toxin (Ctx) is an AB‐type protein toxin that acts as an adenosine diphosphate (ADP)‐ribosyltransferase to disrupt intracellular signalling in the target cell. It moves by vesicle carriers from the cell surface to the endoplasmic reticulum (ER) of an intoxicated cell. The catalytic CtxA1 subunit then dissociates from the rest of the toxin, unfolds, and activates the ER‐associated degradation system for export to the cytosol. Translocation occurs through an unusual ratchet mechanism in which the cytosolic chaperone Hsp90 couples CtxA1 refolding with CtxA1 extraction from the ER. Here, we report that Hsp90 recognises two peptide sequences from CtxA1: an N‐terminal RPPDEI sequence (residues 11–16) and an LDIAPA sequence in the C‐terminal region (residues 153–158) of the 192 amino acid protein. Peptides containing either sequence effectively blocked Hsp90 binding to full‐length CtxA1. Both sequences were necessary for the ER‐to‐cytosol export of CtxA1. Mutagenesis studies further demonstrated that the RPP residues in the RPPDEI motif are required for CtxA1 translocation to the cytosol. The LDIAPA sequence is unique to CtxA1, but we identified an RPPDEI‐like motif at the N‐ or C‐termini of the A chains from four other ER‐translocating toxins that act as ADP‐ribosyltransferases: pertussis toxin, Escherichia coli heat‐labile toxin, Pseudomonas aeruginosa exotoxin A, and Salmonella enterica serovar Typhimurium ADP‐ribosylating toxin. Hsp90 plays a functional role in the intoxication process for most, if not all, of these toxins. Our work has established a defined RPPDEI binding motif for Hsp90 that is required for the ER‐to‐cytosol export of CtxA1 and possibly other toxin A chains as well.  相似文献   

17.
The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal titration calorimetry, circular dichroism spectroscopy and analytical ultracentrifugation, and determined the effect of their binding on the inherent ATPase activity of Hsp90. Sti1 and Cpr6 both bind with sub-micromolar affinity, with Sti1 binding accompanied by a large conformational change. Two co-chaperone molecules bind per Hsp90 dimer, and Sti1 itself is found to be a dimer in free solution. The inherent ATPase activity of Hsp90 is completely inhibited by binding of Sti1, but is not affected by Cpr6, although Cpr6 can reactivate the ATPase activity by displacing Sti1 from Hsp90. Bound Sti1 makes direct contact with, and blocks access to the ATP-binding site in the N-terminal domain of Hsp90. These results reveal an important role for TPR-domain co-chaperones as regulators of the ATPase activity of Hsp90, showing that the ATP-dependent step in Hsp90-mediated protein folding occurs after the binding of the folding client protein, and suggesting that ATP hydrolysis triggers client-protein release.  相似文献   

18.
In vivo analysis of the Hsp90 cochaperone Sti1 (p60).   总被引:12,自引:2,他引:10       下载免费PDF全文
Hsp90 interacts with Sti1 (p60) in lysates of yeast and vertebrate cells. Here we provide the first analysis of their interaction in vivo. Saccharomyces cerevisiae mutations that eliminate Sti1 or reduce intracellular concentrations of Hsp90 individually have little or no effect on growth at normal temperatures. However, when combined, the mutations greatly reduce or eliminate growth. Furthermore, overexpression of Sti1 has allele-specific effects on cells carrying various hsp90ts point mutations. These genetic interactions provide strong evidence that Hsp90 and Sti1 interact in vivo and that their functions are closely allied. Indeed, deletion of STI1 reduces the in vivo activity of the Hsp90 target protein, glucocorticoid receptor (GR). Mutations in GR that eliminate interaction with Hsp90 also eliminate the effects of the sti1 deletion. Examination of GR protein complexes in the sti1 deletion mutant reveals a selective increase in the concentration of GR-Ydj1 complexes, supporting previous hypotheses that Ydj1 functions at an early step in the maturation of GR and that Sti1 acts at an intermediate step. Deletion of STI1 also reduces the in vivo activity of another, unrelated Hsp90 target protein, v-Src. Our data indicate that Sti1 is a general factor in the maturation of Hsp90 target proteins and support earlier suggestions that Hsp90 matures even very different target proteins by a similar mechanism.  相似文献   

19.
The highly abundant molecular chaperone Hsp90 functions with assistance from auxiliary factors, collectively referred to as Hsp90 cochaperones, and the Hsp70 system. Hsp104, a molecular chaperone required for stress tolerance and for maintenance of [psi(+)] prions in the budding yeast Saccharomyces cerevisiae, appears to collaborate only with the Hsp70 system. We now report that several cochaperones previously thought to be dedicated to Hsp90 are shared with Hsp104. We show that the Hsp90 cochaperones Sti1, Cpr7, and Cns1, which utilize tetratricopeptide repeat (TPR) domains to interact with a common surface on Hsp90, form complexes with Hsp104 in vivo and that Sti1 and Cpr7 interact with Hsp104 directly in vitro. The interaction is Hsp90 independent, as further emphasized by the fact that two distinct TPR domains of Sti1 are required for binding Hsp90 and Hsp104. In a striking parallel to the sequence requirements of Hsp90 for binding TPR proteins, binding of Sti1 to Hsp104 requires a related acidic sequence at the C-terminal tail of Hsp104. While Hsp90 efficiently sequesters the cochaperones during fermentative growth, respiratory conditions induce the interaction of a fraction of Hsp90 cochaperones with Hsp104. This suggests that cochaperone sharing may favor adaptation to altered metabolic conditions.  相似文献   

20.
Mitochondrial ribosomes of Trypanosoma brucei are composed of 9S and 12S rRNAs, eubacterial‐type ribosomal proteins, polypeptides lacking discernible motifs and approximately 20 pentatricopeptide repeat (PPR) RNA binding proteins. Several PPRs also populate the polyadenylation complex; among these, KPAF1 and KPAF2 function as general mRNA 3′ adenylation/uridylation factors. The A/U‐tail enables mRNA binding to the small ribosomal subunit and is essential for translation. The presence of A/U‐tail also correlates with requirement for translation of certain mRNAs in mammalian and insect parasite stages. Here, we inquired whether additional PPRs activate translation of individual mRNAs. Proteomic analysis identified KRIPP1 and KRIPP8 as components of the small ribosomal subunit in mammalian and insect forms, but also revealed their association with the polyadenylation complex in the latter. RNAi knockdowns demonstrated essential functions of KRIPP1 and KRIPP8 in the actively respiring insect stage, but not in the mammalian stage. In the KRIPP1 knockdown, A/U‐tailed mRNA encoding cytochrome c oxidase subunit 1 declined concomitantly with the de novo synthesis of this subunit whereas polyadenylation and translation of cyb mRNA were unaffected. In contrast, the KRIPP8 knockdown inhibited A/U‐tailing and translation of both CO1 and cyb mRNAs. Our findings indicate that ribosome‐associated PPRs may selectively activate mRNAs for translation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号