首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new abscisic acid catabolic pathway   总被引:9,自引:0,他引:9       下载免费PDF全文
We report the discovery of a new hydroxylated abscisic acid (ABA) metabolite, found in the course of a mass spectrometric study of ABA metabolism in Brassica napus siliques. This metabolite reveals a previously unknown catabolic pathway for ABA in which the 9'-methyl group of ABA is oxidized. Analogs of (+)-ABA deuterated at the 8'-carbon atom and at both the 8'- and 9'-carbon atoms were fed to green siliques, and extracts containing the deuterated oxidized metabolites were analyzed to determine the position of ABA hydroxylation. The results indicated that hydroxylation of ABA had occurred at the 9'-methyl group, as well as at the 7'- and 8'-methyl groups. The chromatographic characteristics and mass spectral fragmentation patterns of the new ABA metabolite were compared with those of synthetic 9'-hydroxy ABA (9'-OH ABA), in both open and cyclized forms. The new compound isolated from plant extracts was identified as the cyclized form of 9'-OH ABA, which we have named neophaseic acid (neoPA). The proton nuclear magnetic resonance spectrum of pure neoPA isolated from immature seeds of B. napus was identical to that of the authentic synthetic compound. ABA and neoPA levels were high in young seeds and lower in older seeds. The open form (2Z,4E)-5-[(1R,6S)-1-Hydroxy-6-hydroxymethyl-2,6-dimethyl-4-oxo-cyclohex-2-enyl]-3-methyl-penta-2,4-dienoic acid, but not neoPA, exhibited ABA-like bioactivity in inhibiting Arabidopsis seed germination and in inducing gene expression in B. napus microspore-derived embryos. NeoPA was also detected in fruits of orange (Citrus sinensis) and tomato (Lycopersicon esculentum), in Arabidopsis, and in chickpea (Cicer arietinum), as well as in drought-stressed barley (Hordeum vulgare) and B. napus seedlings.  相似文献   

2.
Forty years ago, Coulter and Talalay (A. W. Coulter and P. Talalay, J. Biol. Chem. 243:3238-3247, 1968) established the oxygenase-dependent pathway for the degradation of testosterone by aerobes. The oxic testosterone catabolic pathway involves several oxygen-dependent reactions and is not available for anaerobes. Since then, a variety of anaerobic bacteria have been described for the ability to degrade testosterone in the absence of oxygen. Here, a novel, oxygenase-independent testosterone catabolic pathway in such organisms is described. Steroidobacter denitrificans DSMZ18526 was shown to be capable of degrading testosterone in the absence of oxygen and was selected as the model organism in this study. In a previous investigation, we identified the initial intermediates involved in an anoxic testosterone catabolic pathway, most of which are identical to those of the oxic pathway demonstrated in Comamonas testosteroni. In this study, five additional intermediates of the anoxic pathway were identified. We demonstrated that subsequent steps of the anoxic pathway greatly differ from those of the established oxic pathway, which suggests that a novel pathway for testosterone catabolism is present. In the proposed anoxic pathway, a reduction reaction occurs at C-4 and C-5 of androsta-1,4-diene-3,17-dione, the last common intermediate of both the oxic and anoxic pathways. After that, a novel hydration reaction occurs and a hydroxyl group is thus introduced to the C-1α position of C(19)steroid substrates. To our knowledge, an enzymatic hydration reaction occurring at the A ring of steroid compounds has not been reported before.  相似文献   

3.
D-Arabitol catabolic pathway in Klebsiella aerogenes   总被引:1,自引:5,他引:1       下载免费PDF全文
Klebsiella aerogenes strain W70 has an inducible pathway for the degradation of d-arabitol which is comparable to the one found in Aerobacter aerogenes strain PRL-R3. The pathway is also similar to the pathway of ribitol catabolism in that it is composed of a pentitol dehydrogenase, d-arabitol dehydrogenase (ADH), and a pentulokinase, d-xylulokinase (DXK). These two enzymes are coordinately controlled and induced in response to d-arabitol, the apparent inducer of synthesis of these enzymes. We obtained mutants which lacked a functional d-xylose pathway and were constitutive for the ribitol catabolic pathway. These mutants were able to grow on the unusual pentitol, xylitol, only if they contained the functional DXK of the d-arabitol pathway. This provided us with a specific selection technique for DXK(+) transductants. As in A. aerogenes, mutants constitutive for ADH were able to use this enzyme to convert the hexitol d-mannitol to d-fructose. With mutants blocked in the normal d-mannitol catabolic pathway, growth on d-mannitol became a test for ADH constitutivity. Growth of such mutants on xylitol, d-arabitol, and d-mannitol was utilized to classify transductants in mapping, by transductional analysis, the loci involved in d-arabitol utilization. Three-point crosses gave the order dalK-dalD-dalC, where dalK is the DXK structural gene, dalD is the ADH structural gene, and dalC is a regulatory site controlling synthesis of both enzymes.  相似文献   

4.
Ribitol catabolic pathway in Klebsiella aerogenes   总被引:1,自引:11,他引:1       下载免费PDF全文
In Klebsiella aerogenes W70, there is an inducible pathway for the catabolism of ribitol consisting of at least two enzymes, ribitol dehydrogenase (RDH) and d-ribulokinase (DRK). These two enzymes are coordinately controlled and induced in response to d-ribulose, an intermediate of the pathway. Whereas wild-type K. aerogenes W70 are unable to utilize xylitol as a carbon and energy source, mutants constitutive for the ribitol pathway are able to utilize RDH to oxidize the unusual pentitol, xylitol, to d-xylulose. These mutants are able to grow on xylitol, presumably by utilization of the d-xylulose produced. Mutants constitutive for l-fucose isomerase can utilize the isomerase to convert d-arabinose to d-ribulose. In the presence of d-ribulose, RDH and DRK are induced, and such mutants are thus able to phosphorylate the d-ribulose by using the DRK of the ribitol pathway. Derivatives of an l-fucose isomerase-constitutive mutant were plated on d-arabinose, ribitol, and xylitol to select and identify mutations in the ribitol pathway. Using the transducing phage PW52, we were able to demonstrate genetic linkage of the loci involved. Three-point crosses, using constitutive mutants as donors and RDH(-), DRK(-) double mutants as recipients and selecting for DRK(+) transductants on d-arabinose, resulted in DRK(+)RDH(+)-constitutive, DRK(+)RDH(+)-inducible, and DRK(+)RDH(-)-inducible transductants but no detectable DRK(+)RDH(-) constitutive transductants, data consistent with the order rbtC-rbtD-rbtK, where rbtC is a control site and rbtD and rbtK correspond to the sites for the sites for the enzymes RDH and DRK, respectively.  相似文献   

5.
6.
myoinositol (MI) is a key sugar alcohol component of various metabolites, e.g. phosphatidylinositol‐based phospholipids that are abundant in animal and plant cells. The seven‐step pathway of MI degradation was previously characterized in various soil bacteria including Bacillus subtilis. Through a combination of bioinformatics and experimental techniques we identified a novel variant of the MI catabolic pathway in the marine hyperthermophilic bacterium Thermotoga maritima. By using in vitro biochemical assays with purified recombinant proteins we characterized four inositol catabolic enzymes encoded in the TM0412–TM0416 chromosomal gene cluster. The novel catabolic pathway in T. maritima starts as the conventional route using the myo‐inositol dehydrogenase IolG followed by three novel reactions. The first 2‐keto‐myo‐inositol intermediate is oxidized by another, previously unknown NAD‐dependent dehydrogenase TM0412 (named IolM), and a yet unidentified product of this reaction is further hydrolysed by TM0413 (IolN) to form 5‐keto‐l ‐gluconate. The fourth step involves epimerization of 5‐keto‐l ‐gluconate to d ‐tagaturonate by TM0416 (IolO). T. maritima is unable to grow on myo‐inositol as a single carbon source. The determined in vitro specificity of the InoEFGK (TM0418–TM0421) transporter to myo‐inositol‐phosphate suggests that the novel pathway in Thermotoga utilizes a phosphorylated derivative of inositol.  相似文献   

7.
D-galacturonic acid is the most abundant component of pectin, one of the major polysaccharide constituents of plant cell walls. Galacturonic acid potentially is an important carbon source for microorganisms living on (decaying) plant material. A catabolic pathway was proposed in filamentous fungi, comprising three enzymatic steps, involving D-galacturonate reductase, L-galactonate dehydratase, and 2-keto-3-deoxy-L-galactonate aldolase. We describe the functional, biochemical and genetic characterization of the entire D-galacturonate-specific catabolic pathway in the plant pathogenic fungus Botrytis cinerea. The B. cinerea genome contains two non-homologous galacturonate reductase genes (Bcgar1 and Bcgar2), a galactonate dehydratase gene (Bclgd1), and a 2-keto-3-deoxy-L-galactonate aldolase gene (Bclga1). Their expression levels were highly induced in cultures containing GalA, pectate, or pectin as the sole carbon source. The four proteins were expressed in Escherichia coli and their enzymatic activity was characterized. Targeted gene replacement of all four genes in B. cinerea, either separately or in combinations, yielded mutants that were affected in growth on D-galacturonic acid, pectate, or pectin as the sole carbon source. In Aspergillus nidulans and A. niger, the first catabolic conversion only involves the Bcgar2 ortholog, while in Hypocrea jecorina, it only involves the Bcgar1 ortholog. In B. cinerea, however, BcGAR1 and BcGAR2 jointly contribute to the first step of the catabolic pathway, albeit to different extent. The virulence of all B. cinerea mutants in the D-galacturonic acid catabolic pathway on tomato leaves, apple fruit and bell peppers was unaltered.  相似文献   

8.
An NADH-dependent l-xylulose reductase and the corresponding gene were identified from the yeast Ambrosiozyma monospora. The enzyme is part of the yeast pathway for l-arabinose catabolism. A fungal pathway for l-arabinose utilization has been described previously for molds. In this pathway l-arabinose is sequentially converted to l-arabinitol, l-xylulose, xylitol, and d-xylulose and enters the pentose phosphate pathway as d-xylulose 5-phosphate. In molds the reductions are NADPH-linked, and the oxidations are NAD(+)-linked. Here we show that in A. monospora the pathway is similar, i.e. it has the same two reduction and two oxidation reactions, but the reduction by l-xylulose reductase is not performed by a strictly NADPH-dependent enzyme as in molds but by a strictly NADH-dependent enzyme. The ALX1 gene encoding the NADH-dependent l-xylulose reductase is strongly expressed during growth on l-arabinose as shown by Northern analysis. The gene was functionally overexpressed in Saccharomyces cerevisiae and the purified His-tagged protein characterized. The reversible enzyme converts l-xylulose to xylitol. It also converts d-ribulose to d-arabinitol but has no activity with l-arabinitol or adonitol, i.e. it is specific for sugar alcohols where, in a Fischer projection, the hydroxyl group of the C-2 is in the l-configuration and the hydroxyl group of C-3 is in the d-configuration. It also has no activity with C-6 sugars or sugar alcohols. The K(m) values for l-xylulose and d-ribulose are 9.6 and 4.7 mm, respectively. To our knowledge this is the first report of an NADH-linked l-xylulose reductase.  相似文献   

9.
D-Arginine dehydrogenase activity was discovered in Pseudomonas aeruginosa. This enzyme was inducible by its substrate, D-arginine, as well as by its product, 2-ketoarginine, but not by L-arginine. The enzyme activity was measured in vitro, in the presence of artificial electron acceptore (phenazine methosulphate and iodonitrotetrazolium chloride). 2-ketoarginine was catabolized further to 4-guanidinobutyraldehyde, 4-guanidinobutyrate and 4-aminobutyrate. Two enzymes involved, 4-guanidinobutyraldehyde dehydrogenase and guanidinobutyrase, were inducible by 2-ketoarginine; the latter enzyme was also strongly induced by 4-guanidinobutyrate. An arginine racemase activity was detected by an invivo test. E-Arginine had the potential to be catabolized via the D-arginine dehydrogenase pathway and, after racemization, via the three L-arginine catabolic pathyways previously demonstrated in P. aeruginosa. In mutants blocked in the L-arginine succinyltransferase pathway, but no in the wild-type, L-arginine was channelled partially into the D-arginine dehydrogenase pathway. Mutations in the kauB locus abolished growth of P. aeruginosa on 2-ketoarginine, agmatine and putrescine, and led to loss of 4-guanidinobutyraldehyde dehydrogenase and 4-aminobutyaldehyde dehydrogenase activites. Thus, these two activites appear to be due to one enzyme in P. aeruginosa. The kauB locus was mapped on the chromosome between lysA and argB and was not linked to known genes involved in the three L-arginine catabolic pathways. The existence of four arginine catabolic pathways illustrates the metabolic versatility of P. aeruginosa.  相似文献   

10.
N-Acetylmannosamine kinase activity is absent from yeast cells grown on N-acetylmannosamine. However, other enzymes of the catabolic pathway, namely, N-acetylmannosamine-2-epimerase, N-acetylglucosamine kinase and glucosamine-6-phosphate deaminase are induced. In addition, a high affinity uptake system (permease) for the uptake of N-acetylglucosamine is synthesized under these conditions. The presence of either N-acetylmannosamine or N-acetylglucosamine as inducer is essential for the induced synthesis of these enzymes. The enzyme synthesis stops and their concentration in the cells declines rapidly as soon as inducer is removed from the medium. N-Acetyl-D-galactosamine can also induce all these enzymes except for N-acetylmannosamine-2-epimerase, suggesting the convergence of catabolic pathways for both the aminosugars at N-acetyl-D-glycosamine. Experiments with inhibitors of macromolecule synthesis suggest that the snythesis of RNA and protein is necessary for the induction of these cyzymes whereas the synthesis of DNA is not.  相似文献   

11.
Eukaryotic tail‐anchored (TA) membrane proteins are inserted into the endoplasmic reticulum by a post‐translational TRC40 pathway, but no comparable pathway is known in other domains of life. The crystal structure of an archaebacterial TRC40 sequence homolog bound to ADP?AlF4? reveals characteristic features of eukaryotic TRC40, including a zinc‐mediated dimer and a large hydrophobic groove. Moreover, archaeal TRC40 interacts with the transmembrane domain of TA substrates and directs their membrane insertion. Thus, the TRC40 pathway is more broadly conserved than previously recognized.  相似文献   

12.
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation.Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield.However,although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species,such as Arabidopsis and rice,little is known about the equivalent processes in important crops.Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops,such as barley and wheat;this will enable increased understanding and manipulation of these pathways for agricultural improvement.  相似文献   

13.
The DHHC domain: A new highly conserved cysteine-rich motif   总被引:5,自引:0,他引:5  
A unique clone from a human pancreatic cDNA library was isolated and sequenced. Examination of the deduced polypeptide sequence of the clone showed a new form of cysteine-rich domain that included a region with the form of a Cys4 zinc-finger-like metal binding site followed by a complex Cys-His region. Searches of the Swiss-Protein data bank found a similar 48-residue domain in fifteen open reading frames deduced from A. thaliana, C. elegans, S. cerevisiae and S. pombe genomic sequences. The high degree of conservation of this domain (13 absolutely conserved and 17 highly conserved positions) suggests that it has an important function in the cell, possibly related to protein-protein or protein-DNA interactions. The gene recognized by the clone is is localized to human chromosome 16, and is conserved in vertebrates. The 2 Kb message is expressed in various human fetal and adult tissues. An antibody made to a peptide sequence of the deduced protein showed reactivity in immunoblots of monkey lung and retinal subcellular fractions and immunohistochemically in late fetal mouse tissues and a limited number of adult mouse tissues, including pancreatic islets, Leydig cells of the testis, and the plexiform layers of the retina.  相似文献   

14.
Three enzymes of the l-arabinose catabolic pathway in Aerobacter aerogenes, l-arabinose isomerase, l-ribulokinase, and l-ribulose-5-phosphate 4-epimerase, are specifically induced in the presence of l-arabinose. Mutants constitutive for kinase activity are also constitutive for the isomerase and 4-epimerase activities, suggesting that these three enzymes are coordinately controlled in A. aerogenes. l-Ribulokinase activity can still be induced in the presence of l-arabinose in an isomerase-deficient strain of A. aerogenes. Since l-arabinose is not converted to l-ribulose in such a strain, it appears that l-arabinose must be the inducer of l-ribulokinase, as well as the coordinately controlled isomerase and 4-epimerase. As in the metabolism of l-arabinose, growth of A. aerogenes on l-arabitol also requires a 4-epimerase for the conversion of l-ribulose-5-phosphate to d-xylulose-5-phosphate. However, loss of ability to metabolize l-arabinose, due to a deficiency in 4-epimerase synthesis in the presence of l-arabinose, does not affect growth on l-arabitol. In addition, synthesis of the 4-epimerase associated with l-arabitol metabolism is not accompanied by l-arabinose isomerase or l-ribulokinase synthesis. These results suggest either the existence of two different l-ribulose-5-phosphate 4-epimerases in A. aerogenes, or of two different regulatory mechanisms for the control of the same epimerase.  相似文献   

15.
The aim of this review is to give a general account on the oxidative microbial degradation of flavonols. Since now 50 years, various research groups have deciphered the way microorganisms aerobically deal with this important class of flavonoids. Flavonols such as rutin and quercetin are abundantly found in vegetal tissues and exudates, and it was thus patent that various microorganisms will bear the enzymatic machinery necessary to cope with these vegetal secondary metabolites. After initial studies focussed on the general metabolic capacity of various microorganisms towards flavonols, the so called rutin catabolic pathway was rapidly established in moulds. Enzymes of the path as well as substrates and products were known at the beginning of the seventies. Then during 30 years, only sporadic studies were focused on this pathway, before a new burst of interest at the beginning of the new century arose with structural, genomic and theorical studies mainly conducted towards quercetinase. This is the goal of this work to relate this 50 years journey at the crossroads of microbiology, biochemistry, genetic and chemistry. Some mention of the potential usefulness of the enzymes of the path as well as micro-organisms bearing the whole rutin catabolic pathway is also discussed.  相似文献   

16.
In this study, we present a glimpse of the diversity of Lactococcus lactis subsp. lactis IL1403 beta-galactosidase phenotype-negative mutants isolated by negative selection on solid media containing cellobiose or lactose and X-Gal (5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside), and we identify several genes essential for lactose assimilation. Among these are ccpA (encoding catabolite control protein A), bglS (encoding phospho-beta-glucosidase), and several genes from the Leloir pathway gene cluster encoding proteins presumably essential for lactose metabolism. The functions of these genes were demonstrated by their disruption and testing of the growth of resultant mutants in lactose-containing media. By examining the ccpA and bglS mutants for phospho-beta-galactosidase activity, we showed that expression of bglS is not under strong control of CcpA. Moreover, this analysis revealed that although BglS is homologous to a putative phospho-beta-glucosidase, it also exhibits phospho-beta-galactosidase activity and is the major enzyme in L. lactis IL1403 involved in lactose hydrolysis.  相似文献   

17.
Eaton RW 《Journal of bacteriology》2001,183(12):3689-3703
Several 2-substituted benzoates (including 2-trifluoromethyl-, 2-chloro-, 2-bromo-, 2-iodo-, 2-nitro-, 2-methoxy-, and 2-acetyl-benzoates) were converted by phthalate-grown Arthrobacter keyseri (formerly Micrococcus sp.) 12B to the corresponding 2-substituted 3,4-dihydroxybenzoates (protocatechuates). Because these products lack a carboxyl group at the 2 position, they were not substrates for the next enzyme of the phthalate catabolic pathway, 3,4-dihydroxyphthalate 2-decarboxylase, and accumulated. When these incubations were carried out in iron-containing minimal medium, the products formed colored chelates. This chromogenic response was subsequently used to identify recombinant Escherichia coli strains carrying genes encoding the responsible enzymes, phthalate 3,4-dioxygenase and 3,4-dihydroxy-3,4-dihydrophthalate dehydrogenase, from the 130-kbp plasmid pRE1 of strain 12B. Beginning with the initially cloned 8.14-kbp PstI fragment of pRE824 as a probe to identify recombinant plasmids carrying overlapping fragments, a DNA segment of 33.5 kbp was cloned from pRE1 on several plasmids and mapped using restriction endonucleases. From these plasmids, the sequence of 26,274 contiguous bp was determined. Sequenced DNA included several genetic units: tnpR, pcm operon, ptr genes, pehA, norA fragment, and pht operon, encoding a transposon resolvase, catabolism of protocatechuate (3,4-dihydroxybenzoate), a putative ATP-binding cassette transporter, a possible phthalate ester hydrolase, a fragment of a norfloxacin resistance-like transporter, and the conversion of phthalate to protocatechuate, respectively. Activities of the eight enzymes involved in the catabolism of phthalate through protocatechuate to pyruvate and oxaloacetate were demonstrated in cells or cell extracts of recombinant E. coli strains.  相似文献   

18.
A pathway for cytochrome c maturation (Ccm) in bacteria, archaea and eukaryotes (mitochondria) requires the genes encoding eight membrane proteins (CcmABCDEFGH). The CcmABCDE proteins are proposed to traffic haem to the cytochrome c synthetase (CcmF/H) for covalent attachment to cytochrome c by unknown mechanisms. For the first time, we purify pathway complexes with trapped haem to elucidate the molecular mechanisms of haem binding, trafficking and redox control. We discovered an early step in trafficking that involves oxidation of haem (to Fe3+), yet the final attachment requires reduced haem (Fe2+). Surprisingly, CcmF is a cytochrome b with a haem never before realized, and in vitro, CcmF functions as a quinol:haem oxidoreductase. Thus, this ancient pathway has conserved and orchestrated mechanisms for trafficking, storing and reducing haem, which assure its use for cytochrome c synthesis even in limiting haem (iron) environments and reducing haem in oxidizing environments.  相似文献   

19.
Signal transduction systems and ABC transporters often contribute jointly to adaptive bacterial responses to environmental changes. In Bacillus subtilis, three such pairs are involved in responses to antibiotics: BceRSAB, YvcPQRS and YxdJKLM. They are characterized by a histidine kinase belonging to the intramembrane sensing kinase family and by a translocator possessing an unusually large extracytoplasmic loop. It was established here using a phylogenomic approach that systems of this kind are specific but widespread in Firmicutes, where they originated. The present phylogenetic analyses brought to light a highly dynamic evolutionary history involving numerous horizontal gene transfers, duplications and lost events, leading to a great variety of Bce-like repertories in members of this bacterial phylum. Based on these phylogenetic analyses, it was proposed to subdivide the Bce-like modules into six well-defined subfamilies. Functional studies were performed on members of subfamily IV comprising BceRSAB from B. subtilis, the expression of which was found to require the signal transduction system as well as the ABC transporter itself. The present results suggest, for the members of this subfamily, the occurrence of interactions between one component of each partner, the kinase and the corresponding translocator. At functional and/or structural levels, bacitracin dependent expression of bceAB and bacitracin resistance processes require the presence of the BceB translocator loop. Some other members of subfamily IV were also found to participate in bacitracin resistance processes. Taken together our study suggests that this regulatory mechanism might constitute an important common antibiotic resistance mechanism in Firmicutes. [Supplemental material is available online at http://www.genome.org.].  相似文献   

20.

   

A widespread and highly conserved family of apparently inactivated derivatives of archaeal B-family DNA polymerases is described. Phylogenetic analysis shows that the inactivated forms comprise a distinct clade among archaeal B-family polymerases and that, within this clade, Euryarchaea and Crenarchaea are clearly separated from each other and from a small group of bacterial homologs. These findings are compatible with an ancient duplication of the DNA polymerase gene followed by inactivation and parallel loss in some of the lineages although contribution of horizontal gene transfer cannot be ruled out. The inactivated derivative of the archaeal DNA polymerase could form a complex with the active paralog and play a structural role in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号