首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Activities of microorganisms residing in terrestrial deep subsurface sediments were examined in 46 sediment samples from three boreholes. Radiolabeled time course experiments assessing in situ microbial activities were initiated within 30 min of core recovery. [1‐C4] Acetate incorporation into lipids, [ methyl‐3H] thymidine incorporation into DNA, [2‐14C]acetate, and [U‐14C]glucose mineralization in addition to microbial enrichment and enumeration studies were examined in surface and subsurface sediments. Surface soils contained the greatest biomass and activities, followed by the shallow aquifer zones. Water‐saturated subsurface sands exhibited three to four orders of magnitude greater activity and culturable microorganisms than the dense clay zones, which had low permeability. Regardless of depth, sediments that contained more than 20% clays exhibited the lowest activities and culturable microorganisms.  相似文献   

2.
Microbiological investigations of deep‐sea sediments recovered from the Peru Margin during the ODP Leg 201 (Hole 1229A, 1–110 mbsf) demonstrated that microoganisms were a consistent component throughout the profile. Optimization of the dilution factor and DAPI‐staining procedures for direct cell counts allowed the determination of the abundance of the entire microbial community, which was about 108 cells per g dry sediment. Microbial diversity in discrete samples taken from the 110‐m profile was analysed using horseradish‐peroxydase‐rRNA‐probes. In general, the majority of the detected cells belonged to the Eubacteria kingdom with a dominance of sulphate‐reducing bacteria. The composition of the suflate‐reducing community varied with depth. Desulfobacteriaceae were dominant in the uppermost sulphate‐reducing zone and Desulfovibrionaceae at deeper depths in the upward diffusing sulphate‐rich brines. Both sulphate‐reducing groups were also detected in the methanogenic zone. Similarly, Archaea were detected throughout the profile, not only in the methanogenic zone but also in the upper and lower sulphate‐reducing zones.  相似文献   

3.
Marine sediments cover two-thirds of our planet and harbor huge numbers of living prokaryotes. Long-term survival of indigenous microorganisms within the deep subsurface is still enigmatic, as sources of organic carbon are vanishingly small. To better understand controlling factors of microbial life, we have analyzed viral abundance within a comprehensive set of globally distributed subsurface sediments. Phages were detected by electron microscopy in deep (320 m below seafloor), ancient (∼14 Ma old) and the most oligotrophic subsurface sediments of the world''s oceans (South Pacific Gyre (SPG)). The numbers of viruses (104–109 cm−3, counted by epifluorescence microscopy) generally decreased with sediment depth, but always exceeded the total cell counts. The enormous numbers of viruses indicate their impact as a controlling factor for prokaryotic mortality in the marine deep biosphere. The virus-to-cell ratios increased in deeper and more oligotrophic layers, exhibiting values of up to 225 in the deep subsurface of the SPG. High numbers of phages might be due to absorption onto the sediment matrix and a diminished degradation by exoenzymes. However, even in the oldest sediments, microbial communities are capable of maintaining viral populations, indicating an ongoing viral production and thus, viruses provide an independent indicator for microbial life in the marine deep biosphere.  相似文献   

4.
The aerobic, chemoheterotrophic bacteria indigenous to deep aquifers and other subsurface sediments (depths to 265 m) at a site in South Carolina were characterized by direct microscopy, enumeration of viable cells, analysis of colony morphologies on plates, and analysis of cell morphologies of isolated strains. Substantial numbers of viable bacteria (105‐108/g) were present in all transmissive, aquifer sediments, and their numbers did not decrease with depth. Fewer bacteria (<103/g) were detected in nontransmissive, confining layers. The highest viable counts were obtained on dilute media, but 10–50% of the bacteria in most aquifer sediments also grew rapidly on concentrated, nutrient‐rich media (indicating a high degree of metabolic flexibility). Most of the bacteria were mesophilic; relatively few psychrophiles or thermophiles were detected (<103/g; in many cases, none). The bacterial flora was diverse (11–62 distinct colony types on enumeration plates of most aquifer sediments). Diversity did not decrease with depth, but the composition of the microflora (based on colony analysis) varied extensively from one geological formation to another. Almost 95% of the platable colonies that grew on enumeration plates contained nonstreptomycete bacteria, more than 80% of which were gram‐negative rods. Light microscopy of films released from aquifer sediments by flotation revealed the presence of dividing cells and microcolonies, thus implying that the in situ deep aquifer microflora was more metabolically active than that seen previously in shallow aquifers.  相似文献   

5.
Microbial fuel cell energy from an ocean cold seep   总被引:5,自引:0,他引:5  
Benthic microbial fuel cells are devices that generate modest levels of electrical power in seafloor environments by a mechanism analogous to the coupled biogeochemical reactions that transfer electrons from organic carbon through redox intermediates to oxygen. Two benthic microbial fuel cells were deployed at a deep-ocean cold seep within Monterey Canyon, California, and were monitored for 125 days. Their anodes consisted of single graphite rods that were placed within microbial mat patches of the seep, while the cathodes consisted of carbon-fibre/titanium wire brushes attached to graphite plates suspended ∼0.5 m above the sediment. Power records demonstrated a maximal sustained power density of 34 mW·m−2 of anode surface area, equating to 1100 mW m−2 of seafloor. Molecular phylogenetic analyses of microbial biofilms that formed on the electrode surfaces revealed changes in microbial community composition along the anode as a function of sediment depth and surrounding geochemistry. Near the sediment surface (20–29 cm depth), the anodic biofilm was dominated by micro-organisms closely related to Desulfuromonas acetoxidans. At horizons 46–55 and 70–76 cm below the sediment–water interface, clone libraries showed more diverse populations, with increasing representation of δ-proteobacteria such as Desulfocapsa and Syntrophus, as well as ɛ-proteobacteria. Genes from phylotypes related to Pseudomonas dominated the cathode clone library. These results confound ascribing a single electron transport role performed by only a few members of the microbial community to explain energy harvesting from marine sediments. In addition, the microbial fuel cells exhibited slowly decreasing current attributable to a combination of anode passivation and sulfide mass transport limitation. Electron micrographs of fuel cell anodes and laboratory experiments confirmed that sulfide oxidation products can build up on anode surfaces and impede electron transfer. Thus, while cold seeps have the potential to provide more power than neighbouring ocean sediments, the limits of mass transport as well as the proclivity for passivation must be considered when developing new benthic microbial fuel cell designs to meet specific power requirements.  相似文献   

6.
The deep sea is a unique and extreme environment characterized by low concentrations of highly recalcitrant carbon. As a consequence, large organic inputs have potential to cause significant perturbation. To assess the impact of organic enrichment on deep sea microbial communities, we investigated bacterial diversity in sediments underlying two whale falls at 1820 and 2893 m depth in Monterey Canyon, as compared with surrounding reference sediment 10–20 m away. Bacteroidetes, Epsilonproteobacteria and Firmicutes were recovered primarily from whale fall‐associated sediments, while Gammaproteobacteria and Planctomycetes were found primarily within reference sediments. Abundant Deltaproteobacteria were recovered from both sediment types, but the Desulfobacteraceae and Desulfobulbaceae families were observed primarily beneath the whale falls. UniFrac analysis revealed that bacterial communities from the two whale falls (~30 km apart) clustered to the exclusion of corresponding reference sediment communities, suggesting that deposition of whale fall biomass is more influential on deep sea microbial communities than specific seafloor location. The bacterial population at whale‐1820 at 7 months post deposition was less diverse than reference sediments, with Delta‐ and Epsilonproteobacteria and Bacteroidetes making up 89% of the community. At 70 months, bacterial diversity in reference sediments near whale‐2893 had decreased as well. Over this time, there was a convergence of each community's membership at the phyla level, although lower‐taxonomic‐level composition remained distinct. Long‐term impact of organic carbon loading from the whale falls was also evident by elevated total organic carbon and enhanced proteolytic activity for at least 17–70 months. The response of the sedimentary microbial community to large pulses of organic carbon is complex, likely affected by increased animal bioturbation, and may be sustained over time periods that span years to perhaps even decades.  相似文献   

7.
The bacterial community composition of marine surface sediments originating from various regions of the Eastern Mediterranean Sea (12 sampling sites) was compared by parallel use of three fingerprinting methods: analysis of 16S rRNA gene fragment heterogeneity by denaturing gradient electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), and analysis of phospholipid-linked fatty acid composition (PLFA). Sampling sites were located at variable depths (30–2860 m; water column depth above the sediments) and the sediments differed greatly also in their degree of petroleum contamination (0.4–18 μg g−1), organic carbon (0.38–1.5%), and chlorophyll a content (0.01–7.7 μg g−1). Despite a high degree of correlation between the three different community fingerprint methods, some major differences were observed. DGGE banding patterns showed a significant separation of sediment communities from the northern, more productive waters of the Thermaikos Gulf and the oligotrophic waters of the Cretan, S. Ionian, and Levantine Sea. T-RFLP analysis clearly separated the communities of deep sediments (>1494 m depth) from their shallow (<617 m) counterparts. PLFA analysis grouped a shallow station from the productive waters of the north with the deep oligotrophic sediments from the Ionian and Levantine Sea, with low concentrations of PLFAs, and hence low microbial biomass, as the common denominator. The degree of petroleum contamination was not significantly correlated to the apparent composition of the microbial communities for any of the three methods, whereas organic carbon content and sediment chlorophyll a were important in this regard.  相似文献   

8.
Biogeochemical changes in marine sediments during coastal water hypoxia are well described, but less is known about underlying changes in microbial communities. Bacterial and archaeal communities in Louisiana continental shelf (LCS) hypoxic zone sediments were characterized by pyrosequencing 16S rRNA V4‐region gene fragments obtained by PCR amplification of community genomic DNA with bacterial‐ or archaeal‐specific primers. Duplicate LCS sediment cores collected during hypoxia had higher concentrations of Fe(II), and dissolved inorganic carbon, phosphate, and ammonium than cores collected when overlying water oxygen concentrations were normal. Pyrosequencing yielded 158 686 bacterial and 225 591 archaeal sequences from 20 sediment samples, representing five 2‐cm depth intervals in the duplicate cores. Bacterial communities grouped by sampling date and sediment depth in a neighbor‐joining analysis using Chao–Jaccard shared species values. Redundancy analysis indicated that variance in bacterial communities was mainly associated with differences in sediment chemistry between oxic and hypoxic water column conditions. Gammaproteobacteria (26.5%) were most prominent among bacterial sequences, followed by Firmicutes (9.6%), and Alphaproteobacteria (5.6%). Crenarchaeotal, thaumarchaeotal, and euryarchaeotal lineages accounted for 57%, 27%, and 16% of archaeal sequences, respectively. In Thaumarchaeota Marine Group I, sequences were 96–99% identical to the Nitrosopumilus maritimus SCM1 sequence, were highest in surficial sediments, and accounted for 31% of archaeal sequences when waters were normoxic vs. 13% of archaeal sequences when waters were hypoxic. Redundancy analysis showed Nitrosopumilus‐related sequence abundance was correlated with high solid‐phase Fe(III) concentrations, whereas most of the remaining archaeal clusters were not. In contrast, crenarchaeotal sequences were from phylogenetically diverse lineages, differed little in relative abundance between sampling times, and increased to high relative abundance with sediment depth. These results provide further evidence that marine sediment microbial community composition can be structured according to sediment chemistry and suggest the expansion of hypoxia in coastal waters may alter sediment microbial communities involved in carbon and nitrogen cycling.  相似文献   

9.
The aerobic polyaromatic hydrocarbon (PAH) degrading microbial communities of two petroleum-impacted Spartina-dominated salt marshes in the New York/New Jersey Harbor were examined using a combination of microbiological, molecular and chemical techniques. Microbial isolation studies resulted in the identification of 48 aromatic hydrocarbon-degrading bacterial strains from both vegetated and non-vegetated marsh sediments. The majority of the isolates were from the genera Paenibacillus and Pseudomonas. Radiotracer studies using 14C-phenanthrene and 14C-pyrene were used to measure the PAH-mineralization activity in salt marsh sediments. The results suggested a trend towards increased PAH mineralization in vegetated sediments relative to non-vegetated sediments. This trend was supported by the enumeration of PAH-degrading bacteria in non-vegetated and vegetated sediment using a Most Probable Numbers (MPN) technique, which demonstrated that PAH-degrading bacteria existed in non-vegetated and vegetated sediments at levels ranging from 102 to 105 cells/g sediment respectively. No difference between microbial communities present in vegetated versus non-vegetated sediments was found using terminal restriction fragment length polymorphism (of the 16S rRNA gene) or phospholipid fatty acid analysis. These studies provide information on the specific members and activity of the PAH-degrading aerobic bacterial communities present in Spartina-dominated salt marshes in the New York/New Jersey Harbor estuary.  相似文献   

10.
Marine sediments of the Ross Sea, Antarctica, harbor microbial communities that play a significant role in the decomposition, mineralization, and recycling of organic carbon (OC). In this study, the cell densities within a 153‐cm sediment core from the Ross Sea were estimated based on microbial phospholipid fatty acid (PLFA) concentrations and acridine orange direct cell counts. The resulting densities were as high as 1.7 × 107 cells mL?1 in the top ten centimeters of sediments. These densities are lower than those calculated for most near‐shore sites but consistent with deep‐sea locations with comparable sedimentation rates. The δ13C measurements of PLFAs and sedimentary and dissolved carbon sources, in combination with ribosomal RNA (SSU rRNA) gene pyrosequencing, were used to infer microbial metabolic pathways. The δ13C values of dissolved inorganic carbon (DIC) in porewaters ranged downcore from ?2.5‰ to ?3.7‰, while δ13C values for the corresponding sedimentary particulate OC (POC) varied from ?26.2‰ to ?23.1‰. The δ13C values of PLFAs ranged between ?29‰ and ?35‰ throughout the sediment core, consistent with a microbial community dominated by heterotrophs. The SSU rRNA gene pyrosequencing revealed that members of this microbial community were dominated by β‐, δ‐, and γ‐Proteobacteria, Actinobacteria, Chloroflexi and Bacteroidetes. Among the sequenced organisms, many appear to be related to known heterotrophs that utilize OC sources such as amino acids, oligosaccharides, and lactose, consistent with our interpretation from δ13CPLFA analysis. Integrating phospholipids analyses with porewater chemistry, δ13CDIC and δ13CPOC values and SSU rRNA gene sequences provides a more comprehensive understanding of microbial communities and carbon cycling in marine sediments, including those of this unique ice shelf environment.  相似文献   

11.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

12.
The emplacement of subaqueous gravity‐driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro‐organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate‐reducing Deltaproteobacteria across the buried La Jolla Canyon sediment–water interface reflect turbidite‐induced changes to the geochemical environment. Species‐level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1‐cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low‐energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.  相似文献   

13.

Bacterial populations exist at great depths in marine sediments, but little is known about the type and characteristics of organisms in this unique bacterial environment. Cascadia Margin sediments from the Pacific Ocean have deep bacterial activity and bacterial populations, which are stimulated around a gas hydrate zone (215–225 m below sea floor [mbsf]). Bacterial sulfate reduction is the dominant anaerobic process within these sediments, and the depth distribution of sulfate‐reducing activity corresponds with distributions of viable sulfate‐reducing bacteria (SRB). Anaerobically stored sediments from this site were used to isolate sulfate‐reducing bacteria using a temperature‐gradient system, elevated pressure and temperatures, different media, and a range of growth substrates. A variety of enrichments on lactate were obtained from 0.5 and 222 mbsf, with surprisingly more rapid growth from the deeper sediments. The temperature range of enrichments producing strong growth from 222 mbsf was markedly wider than those from the near surface sediment (15–45°C and 9–19°C, respectively). This presumably reflects a temperature increase in deeper sediments. Only a few of these enrichments were successfully isolated due to very slow or no growth on subculture, despite the use of a wide range of different media and growth conditions. Psychrophilic and mesophilic sulfate‐reducing isolates were obtained from 0.5 m depth. As the minimum growth temperature of the mesophile (probably a Desulfotomaculum sp.) was above the in situ temperature of 3°C, it must have been present in the sediment as spores. A larger number of isolates (23) was obtained from 222 mbsf, and these barophilic SRB were closely related (based on 16S rRNA gene analysis), but not identical to, Desulfovibrio profundus, recently isolated from deep sediments from the Japan Sea. Bacteria related to D. profundus may be widespread in deep marine sediments.  相似文献   

14.
Bacterial numbers and activities (as estimated by glucose uptake and total thymidine incorporation) were investigated at two sites in Long Island, New York aquifer sediments. In general, bacterial activities were higher in shallow (1.5–4.5 m below the water table or BWT), oxic sediments than in deep (10–18 m BWT), anoxic sediments. The average total glucose uptake rates were 0.18 ± 0.10 ng gdw–1 h–1 in shallow sediments and 0.09 ± 0.11 ng gdw–1 h–1 in deep sediments; total thymidine incorporation rates were 0.10 ± 0.13 pmol gdw–1 h–1 and 0.03 ± 0.03 pmol gdw–1 h–1 in shallow and deep sediments, respectively. Incorporation of glucose was highly efficient, as only about 10% of added label was recovered as CO2. Bacterial abundance (estimated from acridine orange direct counts) was 2.5 ± 2.0 × 107 cells gdw–1 and 2.0 ± 1.3 × 107 cells gdw–1 in shallow and deep sediments, respectively. These bacterial activity and abundance estimates are similar to values found in other aquifer environments, but are 10- to 1000-fold lower than values in soil or surface sediment of marine and estuarine systems. In general, cell specific microbial activities were lower in sites from Connetquot Park, a relatively pristine site, when compared to activities found in sites from Jamesport, which has had a history of aldicarb (a pesticide) contamination. To our knowledge, this is the first report of bacterial activity measurements in the shallow, sandy aquifers of Long Island, New York.Correspondence to: D.G. Capone  相似文献   

15.
This study addresses deep pore water chemistry in a permeable intertidal sand flat at the NW German coast. Sulphate, dissolved organic carbon (DOC), nutrients, and several terminal metabolic products were studied down to 5 m sediment depth. By extending the depth domain to several meters, insights into the functioning of deep sandy tidal flats were gained. Despite the dynamic sedimentological conditions in the study area, the general depth profiles obtained in the relatively young intertidal flat sediments of some metres depth are comparable to those determined in deep marine surface sediments. Besides diffusion and lithology which control pore water profiles in most marine surface sediments, biogeochemical processes are influenced by advection in the studied permeable intertidal flat sediments. This is supported by the model setup in which advection has to be implemented to reproduce pore water profiles. Water exchange at the sediment surface and in deeper sediment layers converts these permeable intertidal sediments into a “bio-reactor” where organic matter is recycled, and nutrients and DOC are released. At tidal flat margins, a hydraulic gradient is generated, which leads to water flow towards the creekbank. Deep nutrient-rich pore waters escaping at tidal flat margins during low tide presumably form a source of nutrients for the overlying water column in the study area. Significant correlations between the inorganic products of terminal metabolism (NH4 + and PO4 3−) and sulphate depletion suggest sulphate reduction to be the dominant pathway of anaerobic carbon remineralisation. Pore water concentrations of sulphate, ammonium, and phosphate were used to elucidate the composition of organic matter degraded in the sediment. Calculated C:N and C:P ratios were supported by model results.  相似文献   

16.
Subsurface sediment samples, collected from three boreholes ranging in depths from 0.1 to 260 m, were used in substrate mineralization studies to examine the aerobic metabolic potential of microbial populations indigenous to the deep subsurface. Mineralization was measured by quantifying the amount of 14CO2 released from radiolabeled acetate, phenol, or 4‐methoxybenzoate added to subsurface sediments at 10 μg g‐1. Mineralization of the three compounds was observed in all but a few of the subsurface samples and did not decrease with depth. In addition, mineralization data collected from similar geologic formations from the different boreholes indicated that there was significant lateral continuity of microbial activity. Regression analyses were performed to determine which environmental factors were related to microbial metabolic potential. Mineralization was positively correlated with heterotrophic abundance as measured by plate counts. Other parameters that appeared to influence metabolic potential included pH and clay content.  相似文献   

17.
In this report, I describe a method for rapid measurement of total adenylate (ATP + ADP + AMP) in marine sediment samples for estimating microbial biomass. A simple ‘boil and dilute’ method is described here, whereby adding boiled MilliQ water to sediments increases the detection limit for ATP + ADP + AMP up to 100-fold. The lowered detection limit of this method enabled the detection ATP + ADP + AMP in relatively low-biomass sub-seafloor sediment cores with 104 16S rRNA gene copies per gram. Concentrations of ATP + ADP + AMP correlated with 16S rRNA gene concentrations from bacteria and archaea across six different sites that range in water depth from 1 to 6000 m indicating that the ATP + ADP + AMP method can be used as an additional biomass proxy. In deep sea microbial communities, the ratio of ATP + ADP + AMP concentrations to 16S rRNA genes >1 m below seafloor was significantly lower compared to communities in the upper 30 cm of sediment, which may be due to reduced cell sizes and or lower ATP + ADP + AMP concentrations per cell in the deep sea sub-seafloor biosphere. The boil and dilute method for ATP + ADP + AMP is demonstrated here to have a detection limit sufficient for measuring low biomass communities from deep sea sub-seafloor cores. The method can be applied to frozen samples, enabling measurements of ATP + ADP + AMP from frozen sediment cores stored in core repositories from past and future international drilling campaigns.  相似文献   

18.
The oxidation of hydrogen sulfide is essential to sulfur cycling in marine habitats. However, the role of microbial sulfur oxidation in marine sediments and the microorganisms involved are largely unknown, except for the filamentous, mat‐forming bacteria. In this study we explored the diversity, abundance and activity of sulfur‐oxidizing prokaryotes (SOP) in sulfidic intertidal sediments using 16S rRNA and functional gene sequence analyses, fluorescence in situ hybridization (FISH) and microautoradiography. The 16S rRNA gene analysis revealed that distinct clades of uncultured Gammaproteobacteria are important SOP in the tidal sediments. This was supported by the dominance of gammaproteobacterial sequences in clone libraries of genes encoding the reverse dissimilatory sulfite reductase (rDSR) and the adenosine phosphosulfate reductase (APR). Numerous sequences of all three genes grouped with uncultured autotrophic SOP. Accordingly, Gammaproteobacteria accounted for 40–70% of all 14CO2‐incorporating cells in surface sediments as shown by microautoradiography. Furthermore, phylogenetic analysis of all three genes consistently suggested a discrete population of SOP that was most closely related to the sulfur‐oxidizing endosymbionts of the tubeworm Oligobrachia spp. FISH showed that members of this population (WS‐Gam209 group) were abundant, reaching up to 1.3 × 108 cells ml?1 (4.6% of all cells). Approximately 25% of this population incorporated CO2, consistent with a chemolithoautotrophic metabolism most likely based on sulfur oxidation. Thus, we hypothesize that novel, gammaproteobacterial SOP attached to sediment particles may play a more important role for sulfide removal and primary production in marine sediments than previously assumed.  相似文献   

19.
Phospholipid analyses were performed on water column particulate and sediment samples from Ace Lake, a meromictic lake in the Vestfold Hills, Antarctica, to estimate the viable microbial biomass and community structure in the lake. In the water column, methanogenic bacterial phospholipids were present below 17 m in depth at concentrations which converted to a biomass of between 1 and 7×108 cells/liter. Methanogenic biomass in the sediment ranged from 17.7×109 cells/g dry weight of sediment at the surface to 0.1×109 cells/g dry weight at 2 m in depth. This relatively high methanogenic biomass implies that current microbial degradation of organic carbon in Ace Lake sediments may occur at extremely slow rates. Total microbial biomass increased from 4.4×108 cells/ liter at 2 m in depth to 19.4×108 cells/liter at 23 m, near the bottom of the water column. Total nonarchaebacterial biomass decreased from 4.2 ×109 cells/g dry weight in the surface sediment (1/4 the biomass of methanogens) to 0.06×108 cells/g dry weight at 2 m in depth in the sediment. Phospholipid fatty acid profiles showed that microeukaryotes were the major microbial group present in the oxylimnion of the lake, while bacteria dominated the lower, anoxic zone. Sulfate-reducing bacteria (SRB) comprised 25% of the microbial population at 23 m in depth in the water column particulates and were present in the surface sediment but to a lesser extent. Biomass estimates and community structure of the Ace Lake eco-system are discussed in relation to previously measured metabolic rates for this and other antarctic and temperate ecosystems. This is the first instance, to our knowledge, in which the viable biomass of methanogenic and SRB have been estimated for an antarctic microbial community.  相似文献   

20.
Muramic acid, a constituent of procaryotic cell walls, was assayed by high-pressure liquid chromatography in samples from several marine environments (water column, surface microlayer, and sediment) and a bacterial culture. It is used as a microbial biomass indicator. The method gave a good separation of muramic acid from interfering compounds with satisfactory reproducibility. A pseudomonad culture had a muramic acid content of 4.7 × 10−10 to 5.3 × 10−10 μg per cell during growth. In natural water samples, highly significant relationships were found between muramic acid concentrations and bacterial numbers for populations of 108 to 1011 cells per liter. The muramic acid content in natural marine water decreased from 5.3 × 10−10 to 1.6 × 10−10 μg per cell with increasing depth. In coastal sediments exposed to sewage pollution, concentrations of muramic acid, ATP, organic carbon, and total amino acids displayed a parallel decrease with increasing distance from the sewage outlet. Advantages of muramic acid measurement by high-pressure liquid chromatography are its high sensitivity and reduction of preparation steps, allowing a short time analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号