首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.

Introduction

Although cultured cells are nowadays regularly analyzed by metabolomics technologies, some issues in study setup and data processing are still not resolved to complete satisfaction: a suitable harvesting method for adherent cells, a fast and robust method for data normalization, and the proof that metabolite levels can be normalized to cell number.

Objectives

We intended to develop a fast method for normalization of cell culture metabolomics samples, to analyze how metabolite levels correlate with cell numbers, and to elucidate the impact of the kind of harvesting on measured metabolite profiles.

Methods

We cultured four different human cell lines and used them to develop a fluorescence-based method for DNA quantification. Further, we assessed the correlation between metabolite levels and cell numbers and focused on the impact of the harvesting method (scraping or trypsinization) on the metabolite profile.

Results

We developed a fast, sensitive and robust fluorescence-based method for DNA quantification showing excellent linear correlation between fluorescence intensities and cell numbers for all cell lines. Furthermore, 82–97 % of the measured intracellular metabolites displayed linear correlation between metabolite concentrations and cell numbers. We observed differences in amino acids, biogenic amines, and lipid levels between trypsinized and scraped cells.

Conclusion

We offer a fast, robust, and validated normalization method for cell culture metabolomics samples and demonstrate the eligibility of the normalization of metabolomics data to the cell number. We show a cell line and metabolite-specific impact of the harvesting method on metabolite concentrations.
  相似文献   

2.
3.

Introduction

The pathogenicity at differing points along the aggregation pathway of many fibril-forming proteins associated with neurodegenerative diseases is unclear. Understanding the effect of different aggregation states of these proteins on cellular processes is essential to enhance understanding of diseases and provide future options for diagnosis and therapeutic intervention.

Objectives

To establish a robust method to probe the metabolic changes of neuronal cells and use it to monitor cellular response to challenge with three amyloidogenic proteins associated with neurodegenerative diseases in different aggregation states.

Method

Neuroblastoma SH-SY5Y cells were employed to design a robust routine system to perform a statistically rigorous NMR metabolomics study into cellular effects of sub-toxic levels of alpha-synuclein, amyloid-beta 40 and amyloid-beta 42 in monomeric, oligomeric and fibrillar conformations.

Results

This investigation developed a rigorous model to monitor intracellular metabolic profiles of neuronal cells through combination of existing methods. This model revealed eight key metabolites that are altered when neuroblastoma cells are challenged with proteins in different aggregation states. Metabolic pathways associated with lipid metabolism, neurotransmission and adaptation to oxidative stress and inflammation are the predominant contributors to the cellular variance and intracellular metabolite levels. The observed metabolite changes for monomer and oligomer challenge may represent cellular effort to counteract the pathogenicity of the challenge, whereas fibrillar challenge is indicative of system shutdown. This implies that although markers of stress are more prevalent under oligomeric challenge the fibrillar response suggests a more toxic environment.

Conclusion

This approach is applicable to any cell type that can be cultured in a laboratory (primary or cell line) as a method of investigating how protein challenge affects signalling pathways, providing additional understanding as to the role of protein aggregation in neurodegenerative disease initiation and progression.
  相似文献   

4.

Background

Human T-cell leukemia virus type 1 (HTLV-1) infection is associated with adult T-cell leukemia/lymphoma (ATLL), a lymphoproliferative malignancy with a dismal prognosis and limited therapeutic options. Recent evidence shows that HTLV-1-transformed cells present defects in both DNA replication and DNA repair, suggesting that these cells might be particularly sensitive to treatment with a small helicase inhibitor. Because the “Werner syndrome ATP-dependent helicase” encoded by the WRN gene plays important roles in both cellular proliferation and DNA repair, we hypothesized that inhibition of WRN activity could be used as a new strategy to target ATLL cells.

Methods

Our analysis demonstrates an apoptotic effect induced by the WRN helicase inhibitor in HTLV-1-transformed cells in vitro and ATL-derived cell lines. Inhibition of cellular proliferation and induction of apoptosis were demonstrated with cell cycle analysis, XTT proliferation assay, clonogenic assay, annexin V staining, and measurement of mitochondrial transmembrane potential.

Results

Targeted inhibition of the WRN helicase induced cell cycle arrest and apoptosis in HTLV-1-transformed leukemia cells. Treatment with NSC 19630 (WRN inhibitor) induces S-phase cell cycle arrest, disruption of the mitochondrial membrane potential, and decreased expression of anti-apoptotic factor Bcl-2. These events were associated with activation of caspase-3-dependent apoptosis in ATL cells. We identified some ATL cells, ATL-55T and LMY1, less sensitive to NSC 19630 but sensitive to another WRN inhibitor, NSC 617145.

Conclusions

WRN is essential for survival of ATL cells. Our studies suggest that targeting the WRN helicase with small inhibitors is a novel promising strategy to target HTLV-1-transformed ATL cells.
  相似文献   

5.
6.

Introduction

Human primary cells originating from different locations within the body could differ greatly in their metabolic phenotypes, influencing both how they act during physiological/pathological processes and how susceptible/resistant they are to a variety of disease risk factors. A novel way to monitor cellular metabolism is through cell energetics assays, so we explored this approach with human primary cell types, as models of sclerotic disorders.

Objectives

In order to better understand pathophysiological processes at the cellular level, our goals were to measure metabolic pathway activities of endothelial cells and fibroblasts, and determine their metabolic phenotype profiles.

Methods

Biolog Phenotype MicroArray? technology was used for the first time to characterize metabolic phenotypes of diverse primary cells. These colorimetric assays enable detection of utilization of 367 specific biochemical substrates by human endothelial cells from the coronary artery (HCAEC), umbilical vein (HUVEC) and normal, healthy lung fibroblasts (NHLF).

Results

Adenosine, inosine, d-mannose and dextrin were strongly utilized by all three cell types, comparable to glucose. Substrates metabolized solely by HCAEC were mannan, pectin, gelatin and prevalently tricarballylic acid. HUVEC did not show any uniquely metabolized substrates whereas NHLF exhibited strong utilization of sugars and carboxylic acids along with amino acids and peptides.

Conclusion

Taken together, we show for the first time that this simple energetics assay platform enables metabolic characterization of primary cells and that each of the three human cell types examined gives a unique and distinguishable profile.
  相似文献   

7.

Background

TER measurements across confluent cellular monolayers provide a useful indication of TJ strength between epithelial and endothelial cells in culture. Having a reliable and accurate method of measuring cell-to-cell adhesion is critical to studies in pathophysiology and cancer metastasis. However, the use of different technical approaches to measure TER has reportedly yielded inconsistent measurements within the same cell lines.

Methods

In the current study, we compared the peak TER values for the MDCK (canine kidney) and MCF-7 (human breast cancer) epithelial cell lines using two common approaches (Chopstick and Endohm) and two types of polymer inserts (PC and PET).

Results

Both cell lines demonstrated a statistically significant difference in the peak TERs obtained using the two different approaches. Further, the MDCK (but not the MCF-7) cells demonstrated a statistically significant difference between the peak TERs when using the same approach but different inserts.

Conclusion

Our study indicates the importance of using a single approach when seeking to measure and compare the TER values of cultured cell lines.
  相似文献   

8.

Objective

To design and synthesize a novel near-infrared (NIR) fluorescent probe based on indocyanine Green (ICG), that can be applied in imaging living cells.

Results

A highly fluorescent novel NIR fluorescent probe (IR-793) was synthesized in two steps. IR-793 had better fluorescence and optical stability than ICG. In addition, no obvious cytotoxicity effect of IR-793 was observed and cell viability was above 75% at the maximum concentration (120 nM). IR-793 also exhibited good performance in imaging living A549 cells.

Conclusion

IR-793, a novel NIR fluorescent probe that is stable, low-cost, highly fluorescent and low cytotoxicity, has been designed and synthesized for imaging living cells.
  相似文献   

9.

Introduction

Nicotinamide adenine dinucleotide (NAD+) is an essential pyridine nucleotide that serves as a key hydride transfer coenzyme for several oxidoreductases. It is also the substrate for intracellular secondary messenger signalling by CD38 glycohydrolases, DNA repair by poly(adenosine diphosphate ribose) polymerase, and epigenetic regulation of gene expression by a class of histone deacetylase enzymes known as sirtuins. The measurement of NAD+ and its related metabolites (hereafter, the NAD+ metabolome) represents an important indicator of cellular function.

Objectives

A study was performed to develop a sensitive, selective, robust, reproducible, and rapid method for the concurrent quantitative determination of intracellular levels of the NAD+ metabolome in glial and oocyte cell extracts using liquid chromatography coupled to mass spectrometry (LC/MS/MS).

Methods

The metabolites were separated on a versatile amino column using a dual HILIC-RP gradient with heated electrospray (HESI) tandem mass spectrometry detection in mixed polarity multiple reaction monitoring mode.

Results

Quantification of 17 metabolites in the NAD+ metabolome in U251 human astroglioma cells could be achieved. Changes in NAD+ metabolism in U251 cell line, and murine oocytes under different culture conditions were also investigated.

Conclusion

This method can be used as a sensitive profiling tool, tailoring chromatography for metabolites that express significant pathophysiological changes in several disease conditions and is indispensable for targeted analysis.
  相似文献   

10.
11.
Lyu  Chuqiao  Wang  Lei  Zhang  Juhua 《BMC genomics》2018,19(10):905-165

Background

The DNase I hypersensitive sites (DHSs) are associated with the cis-regulatory DNA elements. An efficient method of identifying DHSs can enhance the understanding on the accessibility of chromatin. Despite a multitude of resources available on line including experimental datasets and computational tools, the complex language of DHSs remains incompletely understood.

Methods

Here, we address this challenge using an approach based on a state-of-the-art machine learning method. We present a novel convolutional neural network (CNN) which combined Inception like networks with a gating mechanism for the response of multiple patterns and longterm association in DNA sequences to predict multi-scale DHSs in Arabidopsis, rice and Homo sapiens.

Results

Our method obtains 0.961 area under curve (AUC) on Arabidopsis, 0.969 AUC on rice and 0.918 AUC on Homo sapiens.

Conclusions

Our method provides an efficient and accurate way to identify multi-scale DHSs sequences by deep learning.
  相似文献   

12.

Background

The ability to direct the cellular response by means of biomaterial surface topography is important for biomedical applications. Substrate surface topography has been shown to be an effective cue for the regulation of cellular response. Here, the response of human aortic endothelial cells to nanoporous anodic alumina and macroporous silicon with collagen and fibronectin functionalization has been studied.

Methods

Confocal microscopy and scanning electron microscopy were employed to analyse the effects of the material and the porosity on the adhesion, morphology, and proliferation of the cells. Cell spreading and filopodia formation on macro- and nanoporous material was characterized by atomic force microscopy. We have also studied the influence of the protein on the adhesion.

Results

It was obtained the best results when the material is functionalized with fibronectin, regarding cells adhesion, morphology, and proliferation.

Conclusion

These results permit to obtain chemical modified 3D structures for several biotechnology applications such as tissue engineering, organ-on-chip or regenerative medicine.
  相似文献   

13.

Background

ADAM23 is widely expressed in the embryonic central nervous system and plays an important role in tissue formation.

Results

In this study, we showed that ADAM23 contributes to cell survival and is involved in neuronal differentiation during the differentiation of human neural progenitor cells (hNPCs). Upregulation of ADAM23 in hNPCs was found to increase the number of neurons and the length of neurite, while its downregulation decreases them and triggers cell apoptosis. RNA microarray analysis revealed mechanistic insights into genes and pathways that may become involved in multiple cellular processes upon up- or downregulation of ADAM23.

Conclusions

Our results suggest that ADAM23 regulates neuronal differentiation by triggering specific signaling pathways during hNPC differentiation.
  相似文献   

14.

Background

Emerging evidence has suggested that interleukin (IL)-33 and its primary functional receptor ST2 are involved in the pathogenesis of tumorigenesis.

Methods

Using immunohistochemistry (IHC) and double immunofluorescence staining, we characterized the cellular and clinicopathological features of the IL-33/ST2 axis in different compartments in human esophageal squamous cell carcinoma (ESCC) surgical specimens.

Results

IHC data revealed an increased expression of IL-33-immunoreactivity (IR) and ST2-IR located in both ESCC cells and tumor stromal cells; which were associated with advanced clinicopathological features such as TNM stages and node involvement. However, the Kaplan–Meier analysis showed that densities of neither IL-33 positive nor ST2 positive cells in both the ESCC mass and stroma were associated with the overall survival rate in patients with ESCC. Double immunofluorescence staining for cellular feature analysis demonstrated that these IL-33 positive and ST2 positive cells in ESCCs were with a high proliferation rate, and IL-33-IR was frequently co-expressed with ST2-IR in both ESCC and stromal cells.

Conclusion

Significant altered cellular features of the IL-33/ST2 axis in ESCCs were associated with advanced clinicopathological variables. The data suggest that the IL-33/ST2 axis might be involved in the progression of human ESCCs.
  相似文献   

15.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   

16.
17.

Introduction

Hypoxia commonly occurs in cancers and is highly related with the occurrence, development and metastasis of cancer. Treatment of triple negative breast cancer remains challenge. Knowledge about the metabolic status of triple negative breast cancer cell lines in hypoxia is valuable for the understanding of molecular mechanisms of this tumor subtype to develop effective therapeutics.

Objectives

Comprehensively characterize the metabolic profiles of triple negative breast cancer cell line MDA-MB-231 in normoxia and hypoxia and the pathways involved in metabolic changes in hypoxia.

Methods

Differences in metabolic profiles affected pathways of MDA-MB-231 cells in normoxia and hypoxia were characterized using GC–MS based untargeted and stable isotope assisted metabolomic techniques.

Results

Thirty-three metabolites were significantly changed in hypoxia and nine pathways were involved. Hypoxia increased glycolysis, inhibited TCA cycle, pentose phosphate pathway and pyruvate carboxylation, while increased glutaminolysis in MDA-MB-231 cells.

Conclusion

The current results provide metabolic differences of MDA-MB-231 cells in normoxia and hypoxia conditions as well as the involved metabolic pathways, demonstrating the power of combined use of untargeted and stable isotope-assisted metabolomic methods in comprehensive metabolomic analysis.
  相似文献   

18.

Objective

In this study, transfection efficiency of human papillomavirus (HPV) E7 DNA and protein constructs into HEK-293T normal cell line, and A549 and TC-1 tumor cell lines was evaluated by four delivery systems including supercharge GFP, hPP10 cell penetrating peptide, TurboFect and Lipofectamine using fluorescence microscopy and flow cytometry.

Results

The results indicated that Lipofectamine 2000 and TurboFect produced more effective transfection for GFP and E7-GFP DNA constructs in HEK-293T cells compared to in A549 and TC-1 cells (p?<?0.05). In contrast, the supercharge GFP was efficient for E7 DNA and E7 protein delivery in both normal cell (~?83.94 and ~?77.01% for HEK-293T), and cancer cells (~?71.69 and ~?67.19% for TC-1, and ~?73.86 and ~?67.49% for A549), respectively. Indeed, in these cell lines, transfection efficiency by +36 GFP reached ~?60–80%. Moreover, the hPP10 produced the best transfection result for E7-GFP protein in HEK-293T cells (~?63.66%) compared to TurboFect (~?32.95%); however, the efficiency level of hPP10 was only ~?17.51 and ~?16.36% in TC-1 and A549 cells.

Conclusions

Our data suggested that the supercharge GFP is the most suitable transfection vehicle for DNA and protein delivery into TC-1 and A549 tumor cell lines compared to other carriers.
  相似文献   

19.

Background

Metastasis is the primary cause of mortality in cancer patients. Therefore, elucidating the genetics and epigenetics of metastatic tumor cells and the mechanisms by which tumor cells acquire metastatic properties constitute significant challenges in cancer research.

Objective

To summarize the current understandings of the specific genotype and phenotype of the metastatic tumor cells.

Method and Result

In-depth genetic analysis of tumor cells, especially with advances in the next-generation sequencing, have revealed insights of the genotypes of metastatic tumor cells. Also, studies have shown that the cancer stem cell (CSC) and epithelial to mesenchymal transition (EMT) phenotypes are associated with the metastatic cascade.

Conclusion

In this review, we will discuss recent advances in the field by focusing on the genomic instability and phenotypic dynamics of metastatic tumor cells.
  相似文献   

20.

Background

Apoptosis, the most well-known type of programmed cell death, can induce in a paracrine manner a proliferative response in neighboring surviving cells called apoptosis-induced proliferation (AiP). While having obvious benefits when triggered in developmental processes, AiP is a serious obstacle in cancer therapy, where apoptosis is frequently induced by chemotherapy. Therefore, in this study, we evaluated the capacity of an alternative type of cell death, called caspase-independent cell death, to promote proliferation.

Results

Using a novel in vitro isogenic cellular model to trigger either apoptosis or caspase-independent cell death, we found that the later has no obvious compensatory proliferation effects on neighboring cells.

Conclusions

This study enforces the idea that alternative types of cell death such as caspase-independent cell death could be considered to replace apoptosis in the context of cancer treatment.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号