首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Wolbachia and Cardinium are widely distributed and are considered important for their ability to disturb reproduction and affect other fitness‐related traits of their hosts. By using multilocus sequence typing (MLST), RFLP (restriction fragment length polymorphism) and 16S ribosomal DNA gene sequencing methods, we extensively surveyed Wolbachia and Cardinium infection status of four predominant rice planthoppers and one kind of leafhopper in different rice fields. The results demonstrated that Sogatella furcifera (Horváth) and Laodelphax striatellus (Fallén) were infected with the same Wolbachia strain (wStri), while Nilaparvata lugens (Stål) and its closely related species Nilaparvata muiri China were infected with two phylogeneticlly distant strains, wLug and wMui, respectively. Three new Wolbachia strains (provisionally named wMfas1, wMfas2 and wMfas3) were detected in the leafhopper Macrosteles fascifrons (Stål). Only S. furcifera was co‐infected with Cardinium, which indicated that the distribution of Cardinium in these rice planthoppers was narrower than that of Wolbachia. Unambiguous intragenic recombination events among these Wolbachia strains and incongruent phylogenetic relationships show that the connections between different Wolbachia strains and hosts were more complex than we expected. These results suggest that horizontal transmission and host associated specialization are two factors affecting Wolbachia and Cardinium infections among planthoppers and their related species.  相似文献   

2.
Wolbachia is a widespread endosymbiont that induces dramatic manipulations of its host's reproduction. Although there has been substantial progress in the developing theory for Wolbachia–host interactions and in measuring the effects of Wolbachia on host fitness in the laboratory, there is a widely recognized need to quantify the effects of Wolbachia on the host fitness in the field. The wasp Anagrus sophiae, an egg parasitoid of planthoppers, carries a Wolbachia strain that induces parthenogenesis, but its effects on the fitness of its Anagrus host are unknown. We developed a method to estimate the realized lifetime reproductive success of female wasps by collecting them soon after they die naturally in the field, counting the number of eggs remaining in their ovaries and quantifying Wolbachia density in their body. We sampled from a highly infected A. sophiae population and found no evidence for Wolbachia virulence and possible evidence for positive effects of Wolbachia on realized reproductive success.  相似文献   

3.
Wolbachia (Alphaproteobacteria) is an inherited endosymbiont of arthropods and filarial nematodes and was reported to be widespread across insect taxa. While Wolbachia's effects on host biology are not understood from most of these hosts, known Wolbachia‐induced phenotypes cover a spectrum from obligate beneficial mutualism to reproductive manipulations and pathogenicity. Interestingly, data on Wolbachia within the most species‐rich order of arthropods, the Coleoptera (beetles), are scarce. Therefore, we screened 128 species from seven beetle families (Buprestidae, Hydraenidae, Dytiscidae, Hydrophilidae, Gyrinidae, Haliplidae, and Noteridae) for the presence of Wolbachia. Our data show that, contrary to previous estimations, Wolbachia frequencies in beetles (31% overall) are comparable to the ones in other insects. In addition, we used Wolbachia MLST data and host phylogeny to explore the evolutionary history of Wolbachia strains from Hydraenidae, an aquatic lineage of beetles. Our data suggest that Wolbachia from Hydraenidae might be largely host genus specific and that Wolbachia strain phylogeny is not independent to that of its hosts. As this contrasts with most terrestrial Wolbachia–arthropod systems, one potential conclusion is that aquatic lifestyle of hosts may result in Wolbachia distribution patterns distinct from those of terrestrial hosts. Our data thus provide both insights into Wolbachia distribution among beetles in general and a first glimpse of Wolbachia distribution patterns among aquatic host lineages.  相似文献   

4.
It is well known that the rate of ageing varies among individuals dependent on the genetic background. In the present study, we explore how Wolbachia infection (a common insect endosymbiont bacterium) and oxidative stress interact in ageing with respect to two different genetic backgrounds of Drosophila melanogaster. Naturally infected and cured lines of Drosophila are challenged with either paraquat or l ‐arginine to generate two different types of oxidative stress. We first observe that removing Wolbachia infection shortens the lifespan in one genetic background but not in the other. Wolbachia infection only makes one of the genetic lines more sensitive to paraquat. However, only the line unaffected by Wolbachia in the paraquat treatment is protected by Wolbachia from l ‐arginine induced stress. Hence, Wolbachia is modifying free radical defence via two different mechanisms dependent on the genetic background. This supports the idea that factors that can govern ageing (infection and oxidative stress) are not universal, but are specific to the genetic make‐up of an individual.  相似文献   

5.
Social insect sex and caste ratios are well‐studied targets of evolutionary conflicts, but the heritable factors affecting these traits remain unknown. To elucidate these factors, we carried out a short‐term artificial selection study on female caste ratio in the ant Monomorium pharaonis. Across three generations of bidirectional selection, we observed no response for caste ratio, but sex ratios rapidly became more female‐biased in the two replicate high selection lines and less female‐biased in the two replicate low selection lines. We hypothesized that this rapid divergence for sex ratio was caused by changes in the frequency of infection by the heritable bacterial endosymbiont Wolbachia, because the initial breeding stock varied for Wolbachia infection, and Wolbachia is known to cause female‐biased sex ratios in other insects. Consistent with this hypothesis, the proportions of Wolbachia‐infected colonies in the selection lines changed rapidly, mirroring the sex ratio changes. Moreover, the estimated effect of Wolbachia on sex ratio (~13% female bias) was similar in colonies before and during artificial selection, indicating that this Wolbachia effect is likely independent of the effects of artificial selection on other heritable factors. Our study provides evidence for the first case of endosymbiont sex ratio manipulation in a social insect.  相似文献   

6.
The bacterial symbiont Wolbachia can protect insects against viral pathogens, and the varying levels of antiviral protection are correlated with the endosymbiont load within the insects. To understand why Wolbachia strains differ in their antiviral effects, we investigated the factors controlling Wolbachia density in five closely related strains in their natural Drosophila hosts. We found that Wolbachia density varied greatly across different tissues and between flies of different ages, and these effects depended on the host–symbiont association. Some endosymbionts maintained largely stable densities as flies aged while others increased, and these effects in turn depended on the tissue being examined. Measuring Wolbachia rRNA levels in response to viral infection, we found that viral infection itself also altered Wolbachia levels, with Flock House virus causing substantial reductions in symbiont loads late in the infection. This effect, however, was virus‐specific as Drosophila C virus had little impact on Wolbachia in all of the five host systems. Because viruses have strong tissue tropisms and antiviral protection is thought to be cell‐autonomous, these effects are likely to affect the virus‐blocking phenomenon. However, we were unable to find any evidence of a correlation between Wolbachia and viral titres within the same tissues. We conclude that Wolbachia levels within flies are regulated in a complex host–symbiont–virus‐dependent manner and this trinity is likely to influence the antiviral effects of Wolbachia.  相似文献   

7.
Cardinium and Wolbachia are common maternally inherited reproductive parasites that can coinfect arthropods, yet interactions between both bacterial endosymbionts are rarely studied. For the first time, we report their independent expression of complete cytoplasmic incompatibility (CI) in a coinfected host, and CI in a species of the haplodiploid insect order Thysanoptera. In Pezothrips kellyanus, Cardinium‐induced CI resulted in a combination of male development (MD) and embryonic female mortality (FM) of fertilized eggs. In contrast, Wolbachia‐induced CI resulted in FM together with postembryonic mortality not previously reported as a CI outcome. Both endosymbionts appeared to not influence fecundity but virgins produced more offspring than mated females. In coinfected individuals, Wolbachia density was higher than Cardinium. Wolbachia removal did not impact Cardinium density, suggesting a lack of competition within hosts. Maternal transmission was complete for Wolbachia and high for Cardinium. Our data support theoretical predictions and empirical detection of high endosymbiont prevalence in field populations of the native range of this pest thrips. However, previous findings of more frequent loss of Wolbachia than Cardinium, particularly in field populations of the host's invasive range, suggest that genetic diversity or varying environmental factors between field populations also play a role in shaping host‐endosymbiont dynamics.  相似文献   

8.
Wolbachia is a widespread bacterial endosymbiont among arthropod species. It influences the reproduction of the host species and also mitochondrial DNA diversity. Until now there were only a few studies that detected Wolbachia infections in hoverflies (Diptera: Syrphidae), and this is the first broader study with the aim of examining the incidence of Wolbachia in the hoverfly genus Merodon. The obtained results indicate an infection rate of 96% and the presence of both Wolbachia supergroup A and B, which are characteristic for most of the infected arthropod species. Additionally, the presence of multiple Wolbachia strains in the Merodon aureus group species was detected and the mitochondrial DNA COI‐based relationships of the group are discussed in the light of infection. Finally, we discuss plant‐mediated horizontal transmission of Wolbachia strains among the studied hoverfly species.  相似文献   

9.
10.
Abstract Endosymbionts are important components of arthropod biology. The whitefly Bemisia tabaci (Gennadius) (Hemiptera: Aleyrodidae) is a cryptic species complex composed of ≥ 28 putative species. In addition to the primary endosymbiont Portiera aleyrodidarum, six secondary endosymbionts (S‐endosymbionts), Hamiltonella, Rickettsia, Wolbachia, Cardinium, Arsenophonus and Fritschea, have been identified in B. tabaci thus far. Here, we tested five of the six S‐endosymbiont lineages (excluding Fritschea) from 340 whitely individuals representing six putative species from China. Hamiltonella was detected only in the two exotic invaders, Middle East‐Asia Minor 1 (MEAM1) and Mediterranean (MED). Rickettsia was absent in Asia II 1 and MED, scarce in Asia II 3 (13%), but abundant in Asia II 7 (63.2%), China 1 (84.7%) and MEAM1 (100%). Wolbachia, Cardinium and Arsenophonus were absent in the invasive MEAM1 and MED but mostly abundant in the native putative species. Furthermore, phylogenetic analyses revealed that some S‐endosymbionts have several clades and different B. tabaci putative species can harbor different clades of a given S‐endosymbiont, demonstrating further the complexity of S‐endosymbionts in B. tabaci. All together, our results demonstrate the variation and diversity of S‐endosymbionts in different putative species of B. tabaci, especially between invasive and native whiteflies.  相似文献   

11.
The tomentose cochineal scale insect, Dactylopius tomentosus (Lamarck) (Hemiptera: Dactylopiidae), is an important biological control agent against invasive species of Cylindropuntia (Caryophyllales: Cactaceae). Recent studies have demonstrated that this scale is composed of host‐affiliated biotypes with differential host specificity and fitness on particular host species. We investigated genetic variation and phylogenetic relationships among D. tomentosus biotypes and provenances to examine the possibility that genetic diversity may be related to their host‐use pattern, and whether their phylogenetic relationships would give insights into taxonomic relatedness of their host plants. Nucleotide sequence comparison was accomplished using sequences of the mitochondrial cytochrome c oxidase I (COI) gene. Sequences of individuals from the same host plant within a region were identical and characterized by a unique haplotype. Individuals belonging to the same biotype but from different regions had similar haplotypes. However, haplotypes were not shared between different biotypes. Phylogenetic analysis grouped the monophyletic D. tomentosus into 3 well‐resolved clades of biotypes. The phylogenetic relationships and clustering of biotypes corresponded with known taxonomic relatedness of their hosts. Two biotypes, Fulgida and Mamillata, tested positive for Wolbachia (α‐Proteobacteria), a common endosymbiont of insects. The Wolbachia sequences were serendipitously detected by using insect‐specific COI DNA barcoding primers and are most similar to Wolbachia Supergroup F strains. This study is the first molecular characterization of cochineal biotypes that, together with Wolbachia sequences, contribute to the better identification of the biotypes of cochineal insects and to the biological control of cacti using host‐specific biotypes of the scale.  相似文献   

12.
Rice planthoppers are notorious plant sap‐feeding pests which cause serious damage. While several microbes in rice planthoppers have been broadly characterized, the abundance and diversity of bacteria and fungi in field planthoppers are largely unknown. This study investigated the bacterial and fungal community compositions of Chinese wild rice planthoppers Laodelphax striatellus and Sogatella furcifera using parallel 16S rRNA gene amplicon and internal transcribed space region sequencing. The bacteria varied significantly between the species and were partitioned significantly by sex, tissues and host environments in each species. The majority of bacteria were affiliated with the genera Wolbachia, Cardinium, Rickettsia and Pantoea. The abundance of Wolbachia was negatively correlated with that of Cardinium in both planthopper species. Compared with bacteria, the abundance and diversity of fungi did not differ between sexes but both were enriched in the gut. The bacterial community as a whole showed no significant correlation with the fungal community. The majority of fungi were related to Sarocladium, Alternaria, Malassezia, Aspergillus and Curvularia. A phylogenetic analysis revealed that these fungi were closely related to botanic symbionts or pathogens. Our results provide novel insights into the bacteria and fungi of rice planthoppers.  相似文献   

13.
Wolbachia pipientis is a widespread endosymbiont of insects and other arthropods exerting a wide range of biological effects on their hosts. A growing number of recent studies document the influence of Wolbachia on reproduction and lifespan of insect host species. However, little is known regarding effects of Wolbachia on the demographic traits of different host populations. Moreover, whether different Wolbachia strains exert different effects on fitness components of their hosts remains largely unknown. We studied the effects of (a) the Wolbachia strain wCer2 on fitness components of two laboratory lines of the Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae) and (b) two different Wolbachia strains (wCer2 and wCer4) on one of the Mediterranean fruit fly lines. Wolbachia infection (wCer2) shortens the egg‐to‐adult developmental duration of both C. capitata lines, although it prolongs embryonic development. In one of the two lines, egg‐to‐adult mortality increased. Wolbachia infection shortens adult lifespan (to a different extent in males and females) and reduces female fecundity. The different Wolbachia strains differentially affect both immature mortality and developmental duration, and adult longevity and female fecundity. Our findings demonstrate both differential response of two C. capitata lines to Wolbachia infection and differential effects of two Wolbachia strains on the same Mediterranean fruit fly line. Practical and theoretical implications of our findings are discussed.  相似文献   

14.
Female‐producing parthenogenesis can be induced by endosymbionts that increase their transmission by manipulating host reproduction. Our literature survey indicates that such endosymbiont‐induced parthenogenesis is known or suspected in 124 host species from seven different arthropod taxa, with Wolbachia as the most frequent endosymbiont (in 56–75% of host species). Most host species (81%, 100 out of 124) are characterized by haplo‐diploid sex determination, but a strong ascertainment bias likely underestimates the frequency of endosymbiont‐induced parthenogenesis in hosts with other sex determination systems. In at least one taxon, hymenopterans, endosymbionts are a significant driver of transitions from sexual to parthenogenetic reproduction, with one‐third of lineages being parthenogenetic as a consequence of endosymbiont infection. Endosymbiont‐induced parthenogenesis appears to facilitate the maintenance of reproductive polymorphism: at least 50% of species comprise both sexual (uninfected) and parthenogenetic (infected) strains. These strains feature distribution differences similar to the ones documented for lineages with genetically determined parthenogenesis, with endosymbiont‐induced parthenogens occurring at higher latitudes than their sexual relatives. Finally, although gamete duplication is often considered as the main mechanism for endosymbiont‐induced parthenogenesis, it underlies parthenogenesis in only half of the host species studied thus far. We point out caveats in the methods used to test for endosymbiont‐induced parthenogenesis and suggest specific approaches that allow for firm conclusions about the involvement of endosymbionts in the origin of parthenogenesis.  相似文献   

15.
Endosymbionts associated with the whitefly Bemisia tabaci cryptic species are known to contribute to host fitness and environmental adaptation. The genetic diversity and population complexity were investigated for endosymbiont communities of B. tabaci occupying different micro‐environments in Pakistan. Mitotypes of B. tabaci were identified by comparative sequence analysis of the mitochondria cytochrome oxidase I (mtCOI) gene sequence. Whitefly mitotypes belonged to the Asia II‐1, ‐5, and ‐7 mitotypes of the Asia II major clade. The whitefly–endosymbiont communities were characterized based on 16S ribosomal RNA operational taxonomic unit (OTU) assignments, resulting in 43 OTUs. Most of the OTUs occurred in the Asia II‐1 and II‐7 mitotypes (r2 = .9, p < .005), while the Asia II‐5 microbiome was less complex. The microbiome OTU groups were mitotype‐specific, clustering with a basis in phylogeographical distribution and the corresponding ecological niche of their whitefly host, suggesting mitotype‐microbiome co‐adaptation. The primary endosymbiont Portiera was represented by a single, highly homologous OTU (0%–0.67% divergence). Two of six Arsenophonus OTUs were uniquely associated with Asia II‐5 and ‐7, and one occurred exclusively in Asia II‐1, two only in Asia II‐5, and one in both Asia II‐1 and ‐7. Four other secondary endosymbionts, Cardinium, Hemipteriphilus, Rickettsia, and Wolbachia OTUs, were found at ≤29% frequencies. The most prevalent Arsenophonus OTU was found in all three Asia II mitotypes (55% frequency), whereas the same strain of Cardinium and Wolbachia was found in both Asia II‐1 and ‐5, and a single Hemipteriphilus OTU occurred in Asia II‐1 and ‐7. This pattern is indicative of horizontal transfer, suggestive of a proximity between mitotypes sufficient for gene flow at overlapping mitotype ecological niches.  相似文献   

16.
The endosymbiotic bacterium Wolbachia enhances its spread via vertical transmission by generating reproductive effects in its hosts, most notably cytoplasmic incompatibility (CI). Additionally, frequent interspecific horizontal transfer is evident from a lack of phylogenetic congruence between Wolbachia and its hosts. The mechanisms of this lateral transfer are largely unclear. To identify potential pathways of Wolbachia movements, we performed multilocus sequence typing of Wolbachia strains from bees (Anthophila). Using a host phylogeny and ecological data, we tested various models of horizontal endosymbiont transmission. In general, Wolbachia strains seem to be randomly distributed among bee hosts. Kleptoparasite‐host associations among bees as well as other ecological links could not be supported as sole basis for the spread of Wolbachia. However, cophylogenetic analyses and divergence time estimations suggest that Wolbachia may persist within a host lineage over considerable timescales and that strictly vertical transmission and subsequent random loss of infections across lineages may have had a greater impact on Wolbachia strain distribution than previously estimated. Although general conclusions about Wolbachia movements among arthropod hosts cannot be made, we present a framework by which precise assumptions about shared evolutionary histories of Wolbachia and a host taxon can be modelled and tested.  相似文献   

17.
A polymerase chain reaction‐based method was used to screen sandflies for infection with Wolbachia (Rickettsiales: Rickettsiaceae), an intracellular bacterial endosymbiont found in many arthropods and filarial hosts. Positive results were obtained in five of 200 field‐collected sandflies and were confirmed by sequencing. All sandflies were Lutzomyia longipalpis (Diptera: Psychodidae) captured in a region endemic for visceral leishmaniasis in Brazil. This is the first study to identify Wolbachia infection in this Lutzomyia species, which is the main vector of leishmaniasis in the study area. The low infection rate found in this study (2.5%), together with the lack of detection of Wolbachia in previous studies and the diversity found in the sequences analysed, suggests horizontal transmission to these sandflies.  相似文献   

18.
Wolbachia is an intracellular endosymbiont of Brugia malayi parasite whose presence is essential for the survival of the parasite. Treatment of B. malayi‐infected jirds with tetracycline eliminates Wolbachia, which affects parasite survival and fitness. In the present study we have tried to identify parasite proteins that are affected when Wolbachia is targeted by tetracycline. For this Wolbachia depleted parasites (B. malayi) were obtained by tetracycline treatment of infected Mongolian jirds (Meriones unguiculatus) and their protein profile after 2‐DE separation was compared with that of untreated parasites harboring Wolbachia. Approximately 100 protein spots could be visualized followed by CBB staining of 2‐D gel and included for comparative analysis. Of these, 54 showed differential expressions, while two new protein spots emerged (of 90.3 and 64.4 kDa). These proteins were subjected to further analysis by MALDI‐TOF for their identification using Brugia coding sequence database composed of both genomic and EST sequences. Our study unravels two crucial findings: (i) the parasite or Wolbachia proteins, which disappeared/down‐regulated appear be essential for parasite survival and may be used as drug targets and (ii) tetracycline treatment interferes with the regulatory machinery vital for parasites cellular integrity and defense and thus could possibly be a molecular mechanism for the killing of filarial parasite. This is the first proteomic study substantiating the wolbachial genome integrity with its nematode host and providing functional genomic data of human lymphatic filarial parasite B. malayi.  相似文献   

19.
Rice planthoppers (Hemiptera: Delphacidae) are notorious pests for rice (Oryza sativa) in Asia, posing a serious threat to rice production and grain security. Rice planthoppers harbor diverse bacterial symbionts, including Wolbachia, Cardinium, Spiroplasma, and Arsenophonus, which are known to manipulate reproduction in arthropod hosts. This microreview is to introduce current knowledge of bacterial reproductive manipulators in rice planthoppers, including their diversity, population dynamics, localization, transmission, and biological functions.  相似文献   

20.
Like other plant sap‐sucking insects, planthoppers within the family Cixiidae (Insecta: Hemiptera: Fulgoromorpha) host a diversified microbiota. We report the identification and first molecular characterization of symbiotic bacteria in cixiid planthoppers (tribe: Pentastirini). Using universal eubacterial primers we first screened the eubacterial 16S rRNA sequences in Pentastiridius leporinus (Linnaeus) with PCR amplification, cloning, and restriction fragment analysis. We identified three main 16S rRNA sequences that corresponded to a Wolbachia bacterium, a plant pathogenic bacterium, and a novel gammaproteobacterial symbiont. A fourth bacterial species affiliated with ‘Candidatus Sulcia muelleri’ was detected in PCR assays using primers specific for the Bacteroidetes. Within females of two selected cixiid planthoppers, P. leporinus and Oliarus filicicola, fluorescence In situ hybridization analysis and transmission electron microscopy observations showed that ‘Ca. Sulcia muelleri’ and the novel gammaproteobacterial symbiont were housed in separate bacteriomes. Phylogenetic analysis revealed that both of these symbionts occurred in at least four insect genera within the tribe Pentastirini. ‘Candidatus Purcelliella pentastirinorum’ was proposed as the novel gammaproteobacterial symbiont.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号