首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background  

The leaf is an important plant organ, and how it will respond to future global warming is a question that remains unanswered. The effects of experimental warming on leaf photosynthesis and respiration acclimation has been well studied so far, but relatively little information exists on the structural and biochemical responses to warming. However, such information is very important to better understand the plant responses to global warming. Therefore, we grew Arabidopsis thaliana at the three day/night temperatures of 23/18°C (ambient temperature), 25.5/20.5°C (elevated by 2.5°C) and 28/23°C (elevated by 5°C) to simulate the middle and the upper projected warming expected within the 21st century for this purpose.  相似文献   

2.
Requirement of vernalization is an important factor which plays a crucial role in cereals to transit from vegetative to reproductive phase. There are three types of growth habit in barley: winter, spring and facultative types; in which spring type does not require vernalization but winter and facultative genotypes require full and partial vernalization, respectively. Combination of two loci, Vrn-h1 and Vrn-h2, regulates vernalization in barley genotypes. Specific DNA markers have been identified for growth habit regulator genes in barley. In this study, we examined 24 barley genotypes using specific primers for detecting Vrn-h1 and Vrn-h2 loci. Results showed that among all differently suggested primer combinations, a few markers were precisely correlated with seasonal growth habit in barley. The specific markers of 600, 600 and 200 bps were verified for ZCCT-Ha, ZCCT-Hb and ZCCT-Hc loci, respectively. Our field growth habit test showed that cultivar Bahman as a winter growth habit, where all the others genotypes exhibited spring growth habit. By using specific primers for Vrn-h1, only Bahman cultivar produced 616 bp and 830 bp fragments and spring genotypes showed 574 bp or 616 bp alleles without any amplification for 830 bp fragments. Therefore, presence of 616 bp and 830 bp alleles together in each genotype can be considered as an informative marker for winter growth habit in barley. These informative markers can be used easily in barley breeding programmes for detection of growth habit types in the seedling stage.  相似文献   

3.
Globally increasing temperatures may strongly affect insect herbivore performance, as their growth and development is directly linked to ambient temperature as well as host‐plant quality. In contrast to direct effects of temperature on herbivores, indirect effects mediated via thermal effects on host‐plant quality are only poorly understood, despite having the potential to substantially impact performance and thereby to alter responses to the changing climatic conditions. We here use a full‐factorial design to explore the direct (larvae were reared at 17 °C or 25 °C) and indirect effects (host plants were reared at 17 °C or 25 °C) of temperature on larval growth and life‐history traits in the temperate‐zone butterfly Pieris napi. Direct temperature effects reflected the common pattern of prolonged development and increased body mass at lower temperatures. At the higher temperature, efficiency of converting food into body matter was much reduced being accompanied by an increased food intake, suggesting compensatory feeding. Indirect temperature effects were apparent as reduced body mass, longer development time, an increased food intake, and a reduced efficiency of converting food into body matter in larvae feeding on plants grown at the higher temperature, thus indicating poor host‐plant quality. The effects of host‐plant quality were more pronounced at the higher temperature, at which compensatory feeding was much less efficient. Our results highlight that temperature‐mediated changes in host‐plant quality are a significant, but largely overlooked source of variation in herbivore performance. Such effects may exaggerate negative effects of global warming, which should be considered when trying to forecast species' responses to climate change.  相似文献   

4.
Single mice were kept in various ambient temperatures (15° to 35° C) and motility, oxygen consumption, and body temperature were recorded. Untreated animals: Motility was least at 25° C room temperature. Relations between motility and body temperature were linear at all ambient temperatures. The body temperatures of very agile mice did not vary at ambient temperatures from 15° to 30° C whereas that of quiet mice was strongly influenced by the milieu. The relations between oxygen consumption and body weight were also linear at all ambient temperatures; the corresponding regression coefficients decreased progressively with rising ambient temperatures. Oxygen consumption increased at a constant rate with motility, independent of ambient temperatures. Animals treated with methamphetamine: The LD50 of methamphetamine decreased considerably with rising ambient temperature. The influence on body temperature of methamphetamine was very variable and depended on both dose and ambient temperature. Toxic doses of methamphetamine induced hyperthermia in warm surroundings and hypothermia in a cool milieu. Under the influence of methamphetamine, oxygen consumption increased or decreased considerably with the body temperature. Ambient temperatures exerted an essential influence on the cause of death after toxic doses of methamphetamine.  相似文献   

5.
In long-term experiments with whole plants, boron uptake bybarley genotypes was linearly related to boron supply over arange of boron concentrations from normal to excessive. Thecomparative susceptibility of genotypes to boron toxicity wasreflected by the relative differences in boron uptake ratesover the entire range of boron supply. Root temperature over the range 5–25 °C markedly affectedplant growth but had no effect on the relative susceptibilityof genotypes to boron toxicity. Concentrations of boron in genotypeswere likewise unaffected by root temperature. Uptake of silicon differed greatly amongst genotypes and alsoreflected the relative susceptibility to boron toxicity andboron uptake. No competitive interaction was observed in theuptake of boron and silicon. The variation in boron accumulation, which governs susceptibilityto boron toxicity amongst barley genotypes, is the result ofdifferences in passive boron uptake via a mechanism which apparentlyalso governs silicon uptake. The nature of this mechanism isdiscussed in relation to the permeability of plant membranesto both boron and silicon. Hordeum vulgare L., barley, boron, toxicity, uptake, silicon, genotypic variation  相似文献   

6.
A moderate change in ambient temperature significantly affects plant physiology including flowering time. MiR399 and its target gene PHOSPHATE 2 (PHO2) are known to play a role in the maintenance of phosphate homeostasis. However, the regulation of flowering time by the miR399-PHO2 module has not been investigated. As we have previously identified miR399 as an ambient temperature-responsive miRNA, we further investigated whether a change in expression of the miR399-PHO2 module affects flowering time in response to ambient temperature changes. Here, we showed that miR399b-overexpressing plants and a loss-of-function allele of PHO2 (pho2) exhibited an early flowering phenotype only at normal temperature (23°C). Interestingly, their flowering time at lower temperature (16°C) was similar to that of wild-type plants, suggesting that alteration in flowering time by miR399 and its target PHO2 was seen only at normal temperature (23°C). Flowering time ratio (16°C/23°C) revealed that miR399b-overexpressing plants and pho2 mutants showed increased sensitivity to ambient temperature changes. Expression analysis indicated that expression of TWIN SISTER OF FT (TSF) was increased in miR399b-overexpressing plants and pho2 mutants at 23°C, suggesting that their early flowering phenotype is associated with TSF upregulation. Taken together, our results suggest that miR399, an ambient temperature-responsive miRNA, plays a role in ambient temperature-responsive flowering in Arabidopsis.  相似文献   

7.
Primary production was used to measure the response of phytoplankton to entrainment in once-through cooling water at thermal electric generating stations. Ambient lakewater temperatures ranged from 1.0 to 20.5 °C. The maximum discharge temperature was 32.0 °C. There was no chlorination of cooling water at the stations studied. On a few occasions, primary production was stimulated following station passage by discharge temperatures which were approximately 10 °C above ambient lakewater temperatures of 4.5 to 8.5 °C. Differences in production levels were not apparent, however, following the return of discharge water to ambient lakewater temperature. There was no consistent response of phytoplankton to the temperature regimes tested, with production levels generally differing by less than 20 % as a result of station passage or temperature elevation alone. Entrainment was considered to have minimal impact on phytoplankton productivity in large open water bodies such as the Great Lakes.  相似文献   

8.
Plants detect the presence of neighbouring vegetation by monitoring changes in the ratio of red (R) to far‐red (FR) wavelengths (R:FR) in ambient light. Reductions in R:FR are perceived by the phytochrome family of plant photoreceptors and initiate a suite of developmental responses termed the shade avoidance syndrome. These include increased elongation growth of stems and petioles, enabling plants to overtop competing vegetation. The majority of shade avoidance experiments are performed at standard laboratory growing temperatures (>20°C). In these conditions, elongation responses to low R:FR are often accompanied by reductions in leaf development and accumulation of plant biomass. Here we investigated shade avoidance responses at a cooler temperature (16°C). In these conditions, Arabidopsis thaliana displays considerable low R:FR‐mediated increases in leaf area, with reduced low R:FR‐mediated petiole elongation and leaf hyponasty responses. In Landsberg erecta, these strikingly different shade avoidance phenotypes are accompanied by increased leaf thickness, increased biomass and an altered metabolite profile. At 16°C, low R:FR treatment results in the accumulation of soluble sugars and metabolites associated with cold acclimation. Analyses of natural genetic variation in shade avoidance responses at 16°C have revealed a regulatory role for the receptor‐like kinase ERECTA.  相似文献   

9.
10.
11.
12.
We used instantaneous temperature responses of CO2‐respiration to explore temperature acclimation dynamics for Eucalyptus grandis grown with differing nitrogen supply. A reduction in ambient temperature from 23 to 19 °C reduced light‐saturated photosynthesis by 25% but increased respiratory capacity by 30%. Changes in respiratory capacity were not reversed after temperatures were subsequently increased to 27 °C. Temperature sensitivity of respiration measured at prevalent ambient temperature varied little between temperature treatments but was significantly reduced from ~105 kJ mol?1 when supply of N was weak, to ~70 kJ mol?1 when it was strong. Temperature sensitivity of respiration measured across a broader temperature range (20–40 °C) could be fully described by 2 exponent parameters of an Arrhenius‐type model (i.e., activation energy of respiration at low reference temperature and a parameter describing the temperature dependence of activation energy). These 2 parameters were strongly correlated, statistically explaining 74% of observed variation. Residual variation was linked to treatment‐induced changes in respiration at low reference temperature or respiratory capacity. Leaf contents of starch and soluble sugars suggest that respiratory capacity varies with source‐sink imbalances in carbohydrate utilization, which in combination with shifts in carbon‐flux mode, serve to maintain homeostasis of respiratory temperature sensitivity at prevalent growth temperature.  相似文献   

13.
A study was performed to examine whether or not betaine (glycinebetaine), a compatible solute, is accumulated in response to cold stress and is involved in mechanisms that protect plants from freezing injury. For this purpose, we used near-isogenic lines of barley, with each line differing only in a single gene for the spring type of growth habit; the various lines were produced by back-crosses to a recurrent cultivar of the winter type. The winter type of growth habit requires a low temperature for triggering of flower development (vernalization), whereas the spring type does not. Betaine was accumulated to five times the basal level over the course of 3 weeks at low temperature (5 °C) in the winter-type cultivar and in a spring-sh line having the sh gene for the spring-type growth habit, but the level was only doubled in the spring-Sh3 line, which carried the Sh3 gene for the spring-type growth habit. Among near-isogenic lines of the same cultivar, the levels of betaine accumulated in leaves at low temperature were well correlated with the percentages (on a dry weight basis) of green leaves that survived freezing injury (-5 °C). This observation indicates the possibility, separate from the recognized role of betaine in the response to salinity and/or drought, that betaine accumulates in response to cold stress and that the accumulation of betaine during cold acclimation is associated to some extent with freezing tolerance in leaves of barley plants.  相似文献   

14.
Intracisternal administration of neurotensin or bombesin produces a significant hypothermic response in rodents in an ambient temperature of 23°C or below; bombesin has been reported to produce a significant hyperthermic response in rats at 36°C, but no change in colonic temperature at ambient temperatures between 31 and 33°C. In this study we compared the effects of the two neuropeptides on colonic temperature of mice exposed to different ambient temperatures to determine whether neurotensin also produces a poikilothermic state. From a series of experiments conducted at ambient temperatures of 4, 23, 26, 30, 34 and 38°C, in which mice received an intracisternal injection of an equimolar dose (0.6 nmol) of neurotensin or bombesin (or vehicle), we noted that the two neuropeptides produce different effects on colonic temperature. At ambient temperatures of 26°C and below, both neurotensin and bombesin produce a significant hypothermic response; however, at higher temperatures bombesin has no effect (30°C) or produces hyperthermia (34°C). In contrast, neurotensin produces hypothermia at 30°C and no significant effect at 34 and 38°C. In addition, a wide range of doses of neurotensin failed to produce the poikilothermic effects characteristic of centrally administered bombesin.  相似文献   

15.
Akira Ohta 《Mycoscience》1994,35(2):147-151
Cultivation of mycorrhizal fungus,Lyophyllum shimeji, was examined using selected strains capable of forming primordia in pure culture. Mycelia grew fastest on barley grains containing synthetic liquid medium. The primordia readily formed in test-tubes after lowering the incubation temperature from 23°C to 15°C. The co-existence of pine seedlings had no promotive effect on primordium formation. Fruit-bodies formed on a medium consisting of barley, beech sawdust, and liquid synthetic nutrients in 500-ml glass bottles. Mature fruit-bodies produced basidiospores. The spores thus produced could germinate on an agar medium and formed mycelial colonies. Thereby, the life cycle inL. shimeji was accomplished in pure culture without using the host plant.  相似文献   

16.
To investigate temperature adaptation of cool-climate trees, we studied 14 cottonwood genotypes from riparian (streamside) zones in three ecoregions differing in elevation in the Rocky Mountains of Alberta, Canada. Black cottonwoods (Populus trichocarpa) were collected from the higher, cooler montane and intermediate (aspen) parkland, and narrowleaf cottonwoods (P. angustifolia) were collected from the lower, warmer fescue prairie. The genotypes were grown in growth chambers under three temperature regimes reflecting the ecoregion variation. Sapling growth (dry weight) varied significantly across temperatures and for the genotypes from within and particularly across the ecoregions. Significant temperature × genotype interactions further indicated differentiation of the temperature response. Growth of the montane clones increased by 209% between 15/10 and 20/15°C and was 37% lower at 25/20°C. In contrast, genotypes from the lower ecoregions grew more slowly at the cool and intermediate temperatures (59 and 58% of montane) and then demonstrated constant (−3% parkland) or slightly increased (+16% prairie) growth at 25/20°C. This suggests the existence of P. trichocarpa ecotypes, localized populations with different temperature responses. This differentiation may explain our previous observation of comparable growth across these ecoregions despite substantial temperature variation, and the existence of ecotypes would produce a range of responses to climate warming that should produce an upward shift of the mountain ecoregions.  相似文献   

17.
Summary Effects of root temperature on the growth and morphology of roots were measured in oilseed rape (Brassica napus L.) and barley (Hordeum vulgare L.). Plants were grown in flowing solution culture and acclimatized over several weeks to a root temperature of 5°C prior to treatment at a range of root temperatures between 3 and 25°C, with common shoot temperature. Root temperature affected root extension, mean radius, root surface area, numbers and lengths of root hairs. Total root length of rape plants increased with temperature over the range 3–9°C, but was constant at higher temperatures. Root length of barley increased with temperature in the range 3–25°C, by a factor of 27 after 20 days. Root radii had a lognormal distribution and their means decreased with increasing temperature from 0.14 mm at 3°C to 0.08 mm at 25°C. The density of root hairs on the root surface increased by a factor of 4 in rape between 3 and 25°C, but in barley the highest density was at 9°C. The contribution of root hairs to total root surface area was relatively greater in rape than in barley. The changes in root system morphology may be interpreted as adaptive responses to temperature stress on nutrient uptake, providing greater surface area for absorption per unit root weight or length.  相似文献   

18.
Effects of ambient temperature on avian incubation behavior   总被引:6,自引:1,他引:5  
Ambient temperature is commonly thought to influence avian incubation behavior. However, results of empirical studies examining correlationsbetween ambient temperature and bout duration are equivocal.We propose that these equivocal results can be partly explainedby developing a conceptual understanding of how we should expecttemperature to influence incubation. We demonstrate why linearcorrelation analyses across a wide range of temperatures canbe inappropriate based on development of an incubation model for small birds that incorporates how ambient temperature influencesboth embryonic development and adult metabolism. We found supportfor predictions of the model using incubation data from orange-crownedwarblers (Vermivora celata) in Arizona. Both off- and on-boutduration were positively correlated with ambient temperaturebetween 9° and 26°C, but unrelated to ambient temperature<9° and 26-40°C. Bout durations declined as ambienttemperature approached or exceeded 40°C. Incubating orange-crowned warblers appeared to avoid bouts off the nest <7 min andbouts on the nest <20 min. Time of day, duration of theprevious bout, and variation among nests all explained variationin both on- and off-bout duration. Although we found supportfor the general shape of the incubation model, temperature still explained only a small portion of the overall variation in on-and off-bout duration. Results of previous studies were generallyconsistent with the model for off-bout duration; most studiesin colder environments reported positive correlations withtemperature, and the one negative correlation reported was from a hot environment. However, the relationships between on-boutduration and temperature reported in previous studies wereless consistent with our model and our data. Although somediscrepancies could be explained by considering our model,some studies reported negative correlations in cold environments.The effect of ambient temperature on duration of on-bouts probablydiffers among species based on the amount of fat reserves females typically carry during incubation and the extent of male incubationfeeding. Additional studies of the effects of temperature onavian incubation will help improve the general model and ultimatelyaid our understanding of energetic and ecological constraintson avian incubation.  相似文献   

19.
The gynogenic response of a range of onion genotypes to flower bud culture was compared using a two-step culture system. Embryogenic cultures and plantlets were produced from unpollinated ovules in whole flower bud explants 6 to 19 weeks after culture initiation. Preconditioning stock plants significantly influenced gynogenic embryogenesis. A ten-fold increase in embryogenesis was obtained when flower buds were cultured from stock plants maintained at 15 °C compared to 10 °C or the ambient temperature conditions of a glasshouse (maximum-minimum of 25–12.7 °C). A total of 49 embryos was obtained from 2660 cultured flower buds and 45% of plantlets were successfully acclimatised to glasshouse conditions. The majority of acclimatised plantlets were haploid (68%) but spontaneous double haploid plants (23%) were obtained from three genotypes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

20.
Accumulation of Free Proline at Low Temperatures   总被引:3,自引:0,他引:3  
The accumulation of free proline in the first leaves of barley, Hordeum distichum L., and wheat, Triticum aestivum L., in response to a range of low temperatures was examined with 10-day-old plants. In barley (cv. Prior) no proline accumulated at 8°C or above, but in wheat (cv. Gabo) proline accumulated at 12°C and lower temperatures. In barley, the first leaf survived for 29 days following transfer to 5°C and continued to accumulate proline throughout this period. In contrast, the first leaves of plants maintained at 20°C survived for 13 days only and accumulated no proline. Proline accumulation at low temperature was shown to be light-dependent, both in intact plants and excised leaf sections, and the light requirement could not be replaced by supplying leaf segments with precursors of proline. Proline accumulation in response to water stress was not light-dependent at 20°C but was at 5°C. Inter-specific and intra-specific variation in the extent of accumulation in response to low temperature was also examined. Considerable variation was encountered but there was no clear relationship with geographical distribution or chilling sensitivity for the species and no correlation with accumulation in response to water stress in the cultivars of barley examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号