首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We studied the influence of the inhibitory effect of clarithromycin (CAM) and erythromycin (EM) on the production of macrophage inflammatory protein (MIP)-2, interleukin-6 (IL-6), and prostaglandin E(2) (PGE(2)), as well as PGE(2) receptor (EP(2)) expression, by LPS-stimulated RAW264.7 cells. Production of IL-6 was significantly decreased by treatment with CAM or EM in a dose-dependent manner, but the inhibitory effect of CAM was significantly weaker than that of EM. In contrast, the production of MIP-2 and PGE(2) was inhibited to the same extent by CAM and EM. LPS induced the expression of EP(2) mRNA and its expression was promoted further by treatment with CAM or EM. In particular, CAM significantly upregulated EP(2) mRNA expression compared with that after stimulation by LPS alone. After treatment with a nonselective cyclooxygenase (COX) inhibitor (indomethacin), a selective COX-2 inhibitor (NS398), or an EP(2)/EP(4) receptor antagonist (AH6809), the inhibitory effect of CAM and EM on LPS-induced IL-6 production was equalized. These results indicate that macrolide antibiotics upregulate the expression of EP(2), which then attenuates the suppressive effect on IL-6 production of these antibiotics, suggesting that these drugs have a variable anti-inflammatory effect that could influence host defenses.  相似文献   

2.
3.
Protein kinase CK2 modulates IL-6 expression in inflammatory breast cancer   总被引:1,自引:0,他引:1  
Inflammatory breast cancer is driven by pro-angiogenic and pro-inflammatory cytokines. One of them Interleukin-6 (IL-6) is implicated in cancer cell proliferation and survival, and promotes angiogenesis, inflammation and metastasis. While IL-6 has been shown to be upregulated by several oncogenes, the mechanism behind this phenomenon is not well characterized. Here we demonstrate that the pleotropic Serine/Threonine kinase CK2 is implicated in the regulation of IL-6 expression in a model of inflammatory breast cancer. We used siRNAs targeted toward CK2 and a selective small molecule inhibitor of CK2, CX-4945, to inhibit the expression and thus suppress the secretion of IL-6 in in vitro as well as in vivo models. Moreover, we report that in a clinical trial, CX-4945 was able to dramatically reduce IL-6 levels in plasma of an inflammatory breast cancer patient. Our data shed a new light on the regulation of IL-6 expression and position CX-4945 and potentially other inhibitors of CK2, for the treatment of IL-6-driven cancers and possibly other diseases where IL-6 is instrumental, including rheumatoid arthritis.  相似文献   

4.
Lysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation. Remarkably, when challenged to chemical skin carcinogenesis, Loxl2-overexpressing mice increased tumor burden and malignant progression, while Loxl2-deficient mice exhibit the opposite phenotypes. Loxl2 levels in premalignant tumors negatively correlate with expression of epidermal differentiation markers and components of the Notch1 pathway. We show that LOXL2 is a direct repressor of NOTCH1. Additionally, we identify an exclusive expression pattern between LOXL2 and members of the canonical NOTCH1 pathway in human HNSCC. Our data identify for the first time novel LOXL2 roles in tissue homeostasis and support it as a target for SCC therapy.  相似文献   

5.
Cardiovascular complications are common in patients with type 2 diabetes. Adipokines have been implicated in the induction of proliferative and pro-atherogenic alterations in human vascular smooth muscle cells (hVSMC). Other reports demonstrated the importance of the miRNA cluster miR-143/145 in the regulation of VSMC homeostasis and insulin sensitivity. Here we investigated whether the detrimental effects of adipokines on hVSMC function could be ascribed to alterations in miR-143/145 expression. The exposure of hVSMC to conditioned media (CM) from primary human subcutaneous adipocytes increased the expression of smooth muscle α-actin (SMA), and the miR-143/145 cluster, but markedly impaired the insulin-mediated phosphorylation of Akt and its substrate endothelial nitric oxide synthase (eNOS). Furthermore, CM promoted the phosphorylation of SMAD2 and p38, which have both been linked to miR-143/145 induction. Accordingly, the induction of miR-143/145 as well as the inhibition of insulin-mediated Akt- and eNOS-phosphorylation was prevented when hVSMC were treated with pharmacological inhibitors for Alk-4/5/7 and p38 before the addition of CM. The transfection of hVSMC with precursor miR-143, but not with precursor miR-145, resulted in impaired insulin-mediated phosphorylation of Akt and eNOS. This inhibition of insulin signaling by CM and miR-143 is associated with a reduction in the expression of the oxysterol-binding protein-related protein 8 (ORP8). Finally, the knock-down of ORP8 resulted in impaired insulin-mediated phosphorylation of Akt in hVSMC. Thus, the detrimental effects of adipocyte-derived conditioned media on insulin action in primary hVSMC can be ascribed to the Alk- and p38-dependent induction of miR-143 and subsequent downregulation of ORP8.  相似文献   

6.
Several studies have shown that leptin, the product of the obese gene, may link obesity with cardiovascular diseases, and in particular with cardiac hypertrophy. In vitro studies suggest that the mechanism by which leptin causes cardiac hypertrophy involves the upregulation of endogenous endothelin-1 (ET-1), a potent vasoconstrictor and mitogen. Whether obesity-associated hyperleptinemia causes an increase in myocardial ET-1 expression in vivo remains unclear. To address this issue, we fed mice with a high-fat diet and analyzed serum levels of ET-1 and ET-1 mRNA in the heart. We found that in mice fed a high-fat diet, serum ET-1, myocardial ET-1, leptin and leptin receptor mRNA were all elevated. In contrast, in leptin-deficient obese (ob/ob) mice, both serum and myocardial ET-1 levels were not higher than in wild type mice. These findings suggest that upregulation of myocardial ET-1 by obesity is mediated by leptin.  相似文献   

7.
IL-27, which is produced by activated APCs, bridges innate and adaptive immunity by regulating the development of Th cells. Recent evidence supports a role for IL-27 in the activation of monocytic cells in terms of inflammatory responses. Indeed, proinflammatory and anti-inflammatory activities are attributed to IL-27, and IL-27 production itself is modulated by inflammatory agents such as LPS. IL-27 primes LPS responses in monocytes; however, the molecular mechanism behind this phenomenon is not understood. In this study, we demonstrate that IL-27 priming results in enhanced LPS-induced IL-6, TNF-α, MIP-1α, and MIP-1β expression in human primary monocytes. To elucidate the molecular mechanisms responsible for IL-27 priming, we measured levels of CD14 and TLR4 required for LPS binding. We determined that IL-27 upregulates TLR4 in a STAT3- and NF-κB-dependent manner. Immunofluorescence microscopy revealed enhanced membrane expression of TLR4 and more distinct colocalization of CD14 and TLR4 upon IL-27 priming. Furthermore, IL-27 priming enhanced LPS-induced activation of NF-κB family members. To our knowledge, this study is the first to show a role for IL-27 in regulating TLR4 expression and function. This work is significant as it reveals new mechanisms by which IL-27 can enhance proinflammatory responses that can occur during bacterial infections.  相似文献   

8.
9.
Park S  Kim ES  Noh DY  Hwang KT  Moon A 《Cytokine》2011,55(1):126-133
Ras expression has been suggested to be a marker for tumor aggressiveness of breast cancer. We previously showed that H-Ras, but not N-Ras, induced invasive/migratory phenotypes in MCF10A human breast epithelial cells. The present study aimed to determine the role of granulocyte colony-stimulating factor in H-Ras-induced malignant progression of human breast epithelial cells. Here, we show that G-CSF plays a crucial role in H-Ras-induced MCF10A cell invasion and migration. The siRNA-mediated knockdown of G-CSF significantly reduced H-Ras-induced matrix metalloproteinase (MMP)-2 expression, as well as invasion/migration, suggesting the functional significance of G-CSF in the invasive phenotype of human breast cells. Importantly, the induction of G-CSF expression conferred the invasive/migratory phenotypes to MCF10A cells with up-regulation of MMP-2 and activation of Rac1, MKK3/6, p38 MAPK, Akt, and ERKs. Knockdown of Rac1 by siRNA significantly inhibited MMP-2 upregulation and invasiveness of G-CSF MCF10A cells, demonstrating that G-CSF-induced MMP-2 upregulation and invasive phenotype is mediated by Rac1. Using human breast tissues and sera from breast cancer patients, we further demonstrate that the expression level of G-CSF is strongly correlated with pathologically-diagnosed breast cancer. These data provide a molecular basis for the crucial role of G-CSF in promoting invasiveness of human breast epithelial cells.  相似文献   

10.
11.
Recent studies have shown that phagosome maturation depends on the balance between pro-inflammatory and anti-inflammatory cytokines, indicating that cytokine modulates phagosome maturation. However, the mechanism of cytokine-mediated modulation of intracellular trafficking remains to be elucidated. Here, we have shown that treatment of macrophages with IL-6 specifically induce the expression of Rab5 through the activation of extracellular signal-regulated kinase, whereas IL-12 exclusively upregulate the expression of Rab7 through the activation of p38 MAPK. We have cloned the 5'-flanking regions of the rab5c or rab7 into the promoterless reporter vector. Our results have shown that cells transfected with rab5c chimera are transactivated by IL-6, and IL-12 specifically transactivates cells containing rab7 chimera. Moreover, our results also show that IL-12 induces lysosomal transport, whereas IL-6 stimulates the fusion between early compartments in macrophages and accordingly modulates Salmonella trafficking and survival in macrophages. This is the first demonstration showing that cytokine differentially regulates endocytic trafficking by controlling the expression of appropriate Rab GTPase, and provides insight into the mechanism of cytokine-mediated regulation of intracellular trafficking.  相似文献   

12.
Studies of the effects of interleukin-6 on osteoblasts have yielded conflicting results. In several earlier in vitro studies it has been stated that IL-6 has no effects on osteoblasts unless soluble IL-6 receptor is added. These results are contradictory to the fact that IL-6 receptors are expressed in osteoblasts in vivo. In this study, MC3T3 preosteoblast cells and rat bone marrow stromal cells were cultured in bone inducing medium containing ascorbic acid, β-glycerophosphate or dexamethasone. We found that IL-6 receptor expression increased in both types of cells during in vitro differentiation. Furthermore in MC3T3 cells IL-6 decreased proliferation and enhanced expression of two osteoblast-specific differentiation markers, Runx2 and osteocalcin, in proper sequential order. Interestingly, in both cell types IL-6-induced apoptosis only in later culture stages. We also found in MC3T3 cells that IL-6 induced STAT3 activation was significantly higher in later culture stages, i.e. when IL-6 receptor expression was high. The present study shows that IL-6 receptor expression increases during in vitro osteoblast differentiation and that IL-6 functions as a differentiation regulator of preosteoblast cells and an apoptosis initiator in more mature cells.  相似文献   

13.
14.
Interleukin-6 (IL-6) is a cytokine with many activities. It has functions in the regulation of the immune system and the nervous system. Furthermore, IL-6 is involved in liver regeneration and in the metabolic control of the body. On target cells, IL-6 binds to an 80 kDa IL-6 receptor (IL-6R). The complex of IL-6 and IL-6R associates with a second protein, gp130, which thereupon dimerizes and initiates intracellular signaling. Whereas gp130 is expressed on all cells, IL-6R is only present on few cells in the body including hepatocytes and some leukocytes. Cells, which do not express IL-6R cannot respond to the cytokine, since gp130 alone has no measurable affinity for IL-6. Interestingly, a soluble form of IL-6R (sIL-6R) comprising the extracellular portion of the receptor can bind IL-6 with a similar affinity as the membrane bound IL-6R. The complex of IL-6 and sIL-6R can bind to gp130 on cells, which do not express the IL-6R, and which are unresponsive to IL-6. This process has been called trans-signaling. Here I will review published evidence that IL-6 trans-signaling is pro-inflammatory whereas classic IL-6 signaling via the membrane bound IL-6R is needed for regenerative or anti-inflammatory activities of the cytokine. Furthermore, the detailed knowledge of IL-6 biology has important consequences for therapeutic strategies aimed at the blockade of the cytokine IL-6.  相似文献   

15.
16.
Murine intraepithelial lymphocytes (IEL) that express the gamma/delta form of the T cell receptor for antigen (TCRgammadelta) also express c-kit, the receptor for stem cell factor (SCF). We show here that SCF upregulates the expression of gammadelta TCR on IEL. More importantly, SCF induces upregulation in the expression of the common gamma-chain (gammac), which is a shared subunit of the receptor complexes for IL-2, -4, -7, -9, and -15. SCF was shown to act synergistically with IL-2 in inducing IEL proliferation, IFNgamma production, non-MHC-restricted cytotoxic activity, and upregulation of the expression of the gammac. SCF also acted synergistically with IL-7 and IL-15 in inducing IEL proliferation. IEL exposed to SCF were shown to have enhanced phosphorylation of JAK-3, and when SCF was combined with IL-2, there was an enhancement in the phosphorylation of JAK-3. These results suggest that SCF may play a more important role in regulating mucosal immune responses than previously appreciated.  相似文献   

17.
Polycystic ovary syndrome (PCOS) is characterized by cystogenesis; however, the cause of this cystogenesis is unknown. At ovulation, preovulatory collagenolytic activities in the ovarian follicles increase and various proteinases are needed to degrade the tissues surrounding the follicles. To clarify the roles of enzymes in collagen degradation of the follicular wall of polycystic ovary (PCO) in relation to the cystogenesis, we examined expression of lysyl oxidase (LOX), which initiates cross-link formation of the collagen and elastin in the extracellular matrix, and expression of matrix metalloproteinases (MMPs) in ovaries of model rats with PCO induced by dehydroepiandrosterone (DHEA) compared with MMP expression in control rats. DHEA treatment increased LOX mRNA expression to more than three times the control value (P: < 0.01). MMP-2 mRNA expression in control rats was threefold greater than that in the DHEA-induced group (P: < 0.05). Expression of both latent and active forms of MMP-2 in controls was more than twice that in the DHEA-induced group (P: < 0.05) as shown by Western blotting, and expression of the active form of MMP-2 was also twice as high in the controls as in the DHEA-treated group (P: < 0.05) as shown by zymography. Our results suggest that depression of MMP-2 activity and increased LOX expression may be one of the causes of the cystogenesis of PCO.  相似文献   

18.
Cytokine gene expression could be studied by both immunohistochemistry and in situ hybridization. These techniques allowed us to demonstrate the role of IL-6 and IL-2 in the pathophysiology of Castelman's disease and CD25 positive malignant lymphomas, respectively.  相似文献   

19.
IL-4-induced Stat6 signaling is active in a variety of cell types, including immune cells and cancer cells, and plays an important role in the regulation of gene expression. Using EMSA gel shift assay and an antibody to Stat6, we phenotyped two breast cancer cell lines, ZR-75-1 being active Stat6(high) phenotype and BT-20 being defective Stat6(null) phenotype, respectively. Breast cancer cells carrying Stat6(null) phenotype exhibited increased spontaneous apoptosis compared with those carrying Stat6(high) phenotype. Expression microarray analyses demonstrated that IL-4 upregulated CCL26, SOCS1, CISH, EGLN3, and SIDT1, and downregulated DUSP1, FOS, and FOSB, respectively, in these breast cancer cells. Among those genes, CCL26 and SOCS1 were known genes regulated by IL-4/Stat6 pathway, but CISH, EGLN3, SIDT1, DUSP1, FOS, and FOSB were novel genes demonstrated to be IL-4 responsive for the first time. IL-4 also upregulated 38 genes unique to Stat6(null) BT-20 cells and 23 genes unique to Stat6(high) ZR-75-1 cells, respectively. Furthermore, Stat6(high) and Stat6(null) cells showed very different profiles of constitutively expressed genes relevant to apoptosis and metastasis among others, which serve as a valuable expression database and warrant for detailed studies of IL-4/Stat6 pathway in breast cancer.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号