首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Objective

To improve the production of trans-10,cis-12-conjugated linoleic acid (t10,c12-CLA) from linoleic acid in recombinant Yarrowia lipolytica.

Results

Cells of the yeast were permeabilized by freeze/thawing. The optimal conditions for t10,c12-CLA production by the permeabilized cells were at 28 °C, pH 7, 200 rpm with 1.5 g sodium acetate l?1, 100 g wet cells l?1, and 25 g LA l?1. Under these conditions, the permeabilized cells produced 15.6 g t10,c12-CLA l?1 after 40 h, with a conversion yield of 62 %. The permeabilized cells could be used repeatedly for three cycles, with the t10,c12-CLA extracellular production remaining above 10 g l?1.

Conclusion

Synthesis of t10,c12-CLA was achieved using a novel method, and the production reported in this work is the highest value reported to date.
  相似文献   

2.

Objectives

To improve 1,3-propanediol (1,3-PD) production and reduce byproduct concentration during the fermentation of Klebsiella pneumonia.

Results

Klebsiella. pneumonia 2-1ΔldhA, K. pneumonia 2-1ΔaldH and K. pneumonia 2-1ΔldhaldH mutant strains were obtained through deletion of the ldhA gene encoding lactate dehydrogenase required for lactate synthesis and the aldH gene encoding acetaldehyde dehydrogenase involved in the synthesis of ethanol. After fed-batch fermentation, the production of 1,3-PD from glycerol was enhanced and the concentrations of byproducts were reduced compared with the original strain K. pneumonia 2-1. The maximum yields of 1,3-PD were 85.7, 82.5 and 87.5 g/l in the respective mutant strains.

Conclusion

Deletion of either aldH or ldhA promoted 1,3-PD production in K. pneumonia.
  相似文献   

3.

Objectives

N-Acetyl-d-neuraminic acid (Neu5Ac) is often synthesized from exogenous N-acetylglucosamine (GlcNAc) and excess pyruvate. We have previously constructed a recombinant Escherichia coli strain for Neu5Ac production using GlcNAc and intracellular phosphoenolpyruvate (PEP) as substrates (Zhu et al. Biotechnol Lett 38:1–9, 2016).

Results

PEP synthesis-related genes, pck and ppsA, were overexpressed within different modes to construct PEP-supply modules, and their effects on Neu5Ac production were investigated. All the PEP-supply modules enhanced Neu5Ac production. For the best module, pCDF-pck-ppsA increased Neu5Ac production to 8.6 ± 0.15 g l?1, compared with 3.6 ± 0.15 g l?1 of the original strain. Neu5Ac production was further increased to 15 ± 0.33 g l?1 in a 1 l fermenter.

Conclusions

The PEP-supply module can improve the intracellular PEP supply and enhance Neu5Ac production, which benefited industrial Neu5Ac production.
  相似文献   

4.

Background

Starch is one of the most abundant organic polysaccharides available for the production of bio-ethanol as an alternative transport fuel. Cost-effective utilisation of starch requires consolidated bioprocessing (CBP) where a single microorganism can produce the enzymes required for hydrolysis of starch, and also convert the glucose monomers to ethanol.

Results

The Aspergillus tubingensis T8.4 α-amylase (amyA) and glucoamylase (glaA) genes were cloned and expressed in the laboratory strain Saccharomyces cerevisiae Y294 and the semi-industrial strain, S. cerevisiae Mnuα1. The recombinant AmyA and GlaA displayed protein sizes of 110–150 kDa and 90 kDa, respectively, suggesting significant glycosylation in S. cerevisiae. The Mnuα1[AmyA-GlaA] and Y294[AmyA-GlaA] strains were able to utilise 20 g l-1 raw corn starch as sole carbohydrate source, with ethanol titers of 9.03 and 6.67 g l-1 (0.038 and 0.028 g l-1 h-1), respectively, after 10 days. With a substrate load of 200 g l-1 raw corn starch, Mnuα1[AmyA-GlaA] yielded 70.07 g l-1 ethanol (0.58 g l-1 h-1) after 120 h of fermentation, whereas Y294[AmyA-GlaA] was less efficient at 43.33 g l-1 ethanol (0.36 g l-1 h-1).

Conclusions

In a semi-industrial amylolytic S. cerevisiae strain expressing the A. tubingensis α-amylase and glucoamylase genes, 200 g l-1 raw starch was completely hydrolysed (saccharified) in 120 hours with 74% converted to released sugars plus fermentation products and the remainder presumably to biomass. The single-step conversion of raw starch represents significant progress towards the realisation of CBP without the need for any heat pretreatment. Furthermore, the amylases were produced and secreted by the host strain, thus circumventing the need for exogenous amylases.
  相似文献   

5.

Introduction

Osteogenesis imperfecta (OI) is a clinically and genetically heterogeneous disease with skeletal fragility and variable extra-skeletal manifestations. To date several point mutations in 18 different genes causing different types of OI have been identified. Mutations in WNT1 compromise activity of the osteoblasts leading to disturbed bone mass accrual, fragility fractures and progressive skeletal abnormalities. The present study was conducted to determine the underlying genetic cause of an autosomal recessive skeletal dysplasia in a large consanguineous family from Chinute, Pakistan.

Materials and methods

Blood was collected from 24 individuals of affected family along with clinical data. Homozygosity mapping was performed to confirm consanguinity. SNPs were identified, followed by whole exome and Sanger sequencing. In silico characterization of WNT1 mutation was performed using multiple platforms.

Results

Nine affected family members exhibited severe bone deformities, recurrent fractures, short stature and low bone mineral density. SNP array data revealed homozygous segments >?1 Mb in length accounting for 2.1–12.7% of the genome in affected individuals and their siblings and a single 6,344,821 bp homozygous region in all affected individuals on chromosome 12q12-q13. This region includes two potential OI candidate genes WNT1 and VDR. We did whole-exome sequencing for both genes in two patients and identified a novel damaging missense mutation in exon 4 of WNT1: c.1168G?>?T (NM_005430) resulting in p.G324C. Sanger sequencing confirmed segregation of mutation with the disease in family.

Conclusion

We report a novel mutation responsible for OI and our investigation expands the spectrum of disease-causing WNT1 mutations and the resulting OI phenotypes.
  相似文献   

6.

Objective

To develop a safe and effective oral vaccine against Helicobacter pylori using its HpaA protein expressed in Lactococcus lactis.

Results

The gene encoding HpaA was obtained by PCR and ligated to pNZ8110-lysM following digestion with NaeI + SphI. The recombinant plasmid was transferred into E. coli for multiplication, and then into L. lactis. The recombinant L. lactis was induced to express HpaA, resulting in two products of 29 and 25 kDa, both of which yielded positive immunoreaction with mouse antisera against H. pylori, as confirmed by immunoblot assays. The 29 kDa product constituted 12% of the cell lysates. Oral inoculation with the engineered L. lactis evoked significantly elevated serum IgG level in mice (P < 0.05).

Conclusions

A novel engineered L. lactis strain was developed that efficiently produces whole HpaA protein with desired antigenicity and potent immunogenicity. It provides a basis for approaches to L. lactis-delivered anti-H. pylori vaccination.
  相似文献   

7.

Objective

To identify new enzymatic bottlenecks of l-tyrosine pathway for further improving the production of l-tyrosine and its derivatives.

Result

When ARO4 and ARO7 were deregulated by their feedback resistant derivatives in the host strains, the ARO2 and TYR1 genes, coding for chorismate synthase and prephenate dehydrogenase were further identified as new important rate-limiting steps. The yield of p-coumaric acid in the feedback-resistant strain overexpressing ARO2 or TYR1, was significantly increased from 6.4 to 16.2 and 15.3 mg l?1, respectively. Subsequently, we improved the strain by combinatorial engineering of pathway genes increasing the yield of p-coumaric acid by 12.5-fold (from 1.7 to 21.3 mg l?1) compared with the wild-type strain. Batch cultivations revealed that p-coumaric acid production was correlated with cell growth, and the formation of by-product acetate of the best producer NK-M6 increased to 31.1 mM whereas only 19.1 mM acetate was accumulated by the wild-type strain.

Conclusion

Combinatorial metabolic engineering provides a new strategy for further improvement of l-tyrosine or other metabolic biosynthesis pathways in S. cerevisiae.
  相似文献   

8.

Aims

To identify Rhizobium strains’ ability to biocontrol Sclerotium rolfsii, a fungus that causes serious damage to the common bean and other important crops, 78 previously isolated rhizobia from common bean were assessed.

Methods

Dual cultures, volatiles, indole-acetic acid (IAA), siderophore production and 16S rRNA sequencing were employed to select strains for pot and field experiments.

Results

Thirty-three antagonistic strains were detected in dual cultures, 16 of which were able to inhibit ≥84% fungus mycelial growth. Antagonistic strains produced up to 36.5 μg mL?1 of IAA, and a direct correlation was verified between IAA production and mycelium inhibition. SEMIA 460 inhibited 45% of mycelial growth through volatile compounds. 16S rRNA sequences confirmed strains as Rhizobium species. In pot condition, common bean plants grown on S. rolfsii-infested soil and inoculated with SEMIA 4032, 4077, 4088, 4080, 4085, or 439 presented less or no disease symptoms. The most efficient strains under field conditions, SEMIA 439 and 4088, decreased disease incidence by 18.3 and 14.5% of the S. rolfsii-infested control.

Conclusions

Rhizobium strains could be strong antagonists towards S. rolfsii growth. SEMIA 4032, 4077, 4088, 4080, 4085, and 439 are effective in the biological control of the collar rot of the common bean.
  相似文献   

9.

Objective

To explore the combined effects of temperature and Daphnia-associated infochemicals on colony formation of Scenedesmus obliquus to faciliate harvesting the algal biomass.

Results

A three-parameter modified Gaussian model fitted the changes of the number of cells per particle in S. obliquus induced by Daphnia culture filtrate well under any temperature. Decreases in temperature enhanced the induced–colony formation of Scenedesmus. The maximum colony size at 15–25 °C was significantly larger than those at 30–35 °C. An additional 1 or 2 days at low temperature was needed to reach the maximum colony size, which indicates the best harvest time for algal biomass.

Conclusion

Induced-colony formation of Scenedesmus by Daphnia culture filtrate at 15–25 °C is recommended to settle algal cells. This condition facilitates harvesting the biomass.
  相似文献   

10.

Background

Previous studies have suggested that DNA double-strand break (DSB) repair is an important protective pathway after damage. The ataxia telangiectasia mutated (ATM) gene plays an important role in the DNA DSB repair pathway. DNA damage is a major cytotoxic effect that can be caused by radiation, and the ability to repair DNA after damage varies among different tissues. Impaired DNA repair pathways are associated with high sensitivity to radiation exposure. Hence, ATM gene polymorphisms are thought to influence the risk of cancer and radiation-induced pneumonitis (RP) risk in cancer patients treated with radiotherapy. However, the results of previous studies are inconsistent. We therefore conducted this comprehensive meta-analysis.

Methods

A systematic literature search was performed in the PubMed, Embase, China National Knowledge Internet (CNKI) and Wanfang databases to identify studies that investigated the association between the ATM gene polymorphisms and both lung cancer and RP radiotherapy-treated lung cancer (the last search was conducted on Dec.10, 2015). The odds ratio (OR) and 95% confidence interval (CI) were used to investigate the strength of these relationships. Funnel plots and Begg’s and Egger’s tests were conducted to assess the publication bias. All analyses were performed in STATA 13.0 software.

Results

Ten eligible case-control studies (4731 cases and 5142 controls) on lung cancer susceptibility and four (192 cases and 772 controls) on RP risk were included. The results of the overall and subgroup analyses indicated that in the ATM gene, the rs189037 (?111G?>?A, ?4519G?>?A), rs664677 (44831C?>?T, 49238C?>?T) and rs664143 (131,717 T?>?G) polymorphisms were significantly associated with lung cancer susceptibility (OR?=?1.21, 95% CI?=?1.04–1.39, P?=?0.01; OR?=?1.26, 95% CI?=?1.06–1.49, P?=?0.01; OR?=?1.43, 95% CI?=?1.15–1.78, P?<?0.01). Additionally, the rs189037 variant was significantly associated with RP risk (OR?=?1.74, 95% CI?=?1.02–2.97, P?=?0.04). No publication bias was found in the funnel plots, Begg’s tests or Egger’s tests.

Conclusions

The results indicate that the ATM rs189037, rs664677 and rs664143 gene polymorphisms are risk factors for lung cancer, while the ATM rs189037 variant was significantly associated with RP risk.
  相似文献   

11.

Objective

To characterize a novel xanthine dehydrogenase (XDH) from Acinetobacter baumannii by recombinant expression in Escherichia coli and to assess its potential for industrial applications.

Results

The XDH gene cluster was cloned from A. baumannii CICC 10254, expressed heterologously in E. coli and purified to homogeneity. The purified recombinant XDH consisted of two subunits with the respective molecular weights of 87 kDa and 56 kDa according to SDS-PAGE. XDH catalysis was optimum at pH 8.5 and 40–45 °C, was stable under alkaline conditions (pH 7–11) and the half-inactivation temperature was 60 °C. The K m, turnover number and catalytic efficiency for xanthine were 25 μM, 69 s?1 and 2.7 μM?1 s?1, respectively, which is an improvement over XDHs characterized previously. A. baumannii XDH is less than 50 % identical to previously identified XDH orthologs from other species, and is the first from the Acinetobacter genus to be characterized.

Conclusion

The novel A. baumannii enzyme was found to be among the most active, thermostable and alkaline-tolerant XDH enzymes reported to date and has potential for use in industrial applications.
  相似文献   

12.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

13.

Objective

To investigate the biocatalytic potential of Colletotrichum acutatum and Colletotrichum nymphaeae for monoterpene biotransformation.

Results

C. acutatum and C. nymphaeae used limonene, α-pinene, β-pinene, farnesene, citronellol, linalool, geraniol, perillyl alcohol, and carveol as sole carbon and energy sources. Both species biotransformed limonene and linalool, accumulating limonene-1,2-diol and linalool oxides, respectively. α-Pinene was only biotransformed by C. nymphaeae producing campholenic aldehyde, pinanone and verbenone. The biotransformation of limonene by C. nymphaeae yielded 3.34–4.01 g limonene-1,2-diol l?1, depending on the substrate (R-(+)-limonene, S-(?)-limonene or citrus terpene (an agro-industrial by-product). This is among the highest concentrations already reported for this product.

Conclusions

This is the first report on the biotransformation of these terpenes by Colletotrichum spp. and the biotransformation of limonene to limonene-1,2-diol possibly involves enzymes similar to those found in Grosmannia clavigera.
  相似文献   

14.
Plasma matrix metalloproteinase (MMP)-9 is a predictor of cardiovascular mortality, and MMP-9 polymorphisms affect plasma MMP-9 levels. However, no study examined whether MMP-9 haplotypes affect MMP-9 levels in obese adults. We examined whether MMP-9 polymorphisms and haplotypes are associated with obesity, and whether they affect MMP-9 levels in obese subjects. We examined the plasma levels of MMP-9 and tissue inhibitor of metalloproteinase (TIMP)-1 in 105 subjects with normal weight (controls), 100 obese subjects, and 156 obese subjects with ≥3 metabolic risk factors (MRFs). We determined genotypes for three polymorphisms: C-1562T (rs3918242), Q279R (A>G, rs17576), and R668Q (G>A, rs17577). MMP-9 levels and activity (MMP-9/TIMP-1 ratio) were higher in obese subjects than in controls (P < 0.05). However, MMP-9 levels were higher in obese subjects with ≥3 MRFs than in obese subjects (P < 0.05). Obese subjects with ≥3 MRFs carrying the GA+AA genotypes for R668Q (G>A) polymorphism had higher MMP-9 levels than subjects carrying the AA genotype (P < 0.05). The “T, G, A” haplotype was more common in both groups of obese subjects than in controls (OR 3.95 and 4.39, respectively; P < 0.01). Notably, obese subjects with ≥3 MRFs carrying the “T, G, A” haplotype had higher MMP-9 levels than subjects carrying the “C, A, G” reference haplotype (P < 0.05). The “T, G, A” haplotype was associated with an increased risk of obesity and affected MMP-9 levels in obese subjects with ≥3 MRFs. Our findings suggest that plasma MMP-9 levels and MMP-9 haplotypes may help to discriminate obese subjects at an increased cardiovascular risk.  相似文献   

15.

Background

The genetics of osteogenesis imperfecta (OI) have not been studied in a Vietnamese population before. We performed mutational analysis of the COL1A1 and COL1A2 genes in 91 unrelated OI patients of Vietnamese origin. We then systematically characterized the mutation profiles of these two genes which are most commonly related to OI.

Methods

Genomic DNA was extracted from EDTA-preserved blood according to standard high-salt extraction methods. Sequence analysis and pathogenic variant identification was performed with Mutation Surveyor DNA variant analysis software. Prediction of the pathogenicity of mutations was conducted using Alamut Visual software. The presence of variants was checked against Dalgleish’s osteogenesis imperfecta mutation database.

Results

The sample consisted of 91 unrelated osteogenesis imperfecta patients. We identified 54 patients with COL1A1/2 pathogenic variants; 33 with COL1A1 and 21 with COL1A2. Two patients had multiple pathogenic variants. Seventeen novel COL1A1 and 10 novel COL1A2 variants were identified. The majority of identified COL1A1/2 pathogenic variants occurred in a glycine substitution (36/56, 64.3 %), usually serine (23/36, 63.9 %). We found two pathogenic variants of the COL1A1 gene c.2461G?>?A (p.Gly821Ser) in four unrelated patients and one, c.2005G?>?A (p.Ala669Thr), in two unrelated patients.

Conclusion

Our data showed a lower number of collagen OI pathogenic variants in Vietnamese patients compared to reported rates for Asian populations. The OI mutational profile of the Vietnamese population is unique and related to the presence of a high number of recessive mutations in non-collagenous OI genes. Further analysis of OI patients negative for collagen mutations, is required.
  相似文献   

16.

Objective

To identify useful native promoters of Corynebacterium glutamicum for fine-tuning of gene expression in metabolic engineering.

Results

Sixteen native promoters of C. glutamicum were characterized. These promoters covered a strength range of 31-fold with small increments and exhibited relatively stable activity during the whole growth phase using β-galactosidase as the reporter. The mRNA level and enzymatic activity of the lacZ reporter gene exhibited high correlation (R 2 = 0.96) under the control of these promoters. Sequence analysis found that strong promoters had high similarity of the -10 hexamer to the consensus sequence and preference of the AT-rich UP element upstream the -35 region. To test the utility of the promoter library, the characterized native promoters were applied to modulate the sucCD-encoded succinyl-CoA synthetase expression for l-lysine overproduction.

Conclusions

The native promoters with various strengths realize the efficient and precise regulation of gene expression in metabolic engineering of C. glutamicum.
  相似文献   

17.
18.

Objective

To identify a novel gene responsible for organic solvent-tolerance by screening a transposon-mediated deletion mutant library based on Saccharomyces cerevisiae L3262.

Results

One strain tolerant of up to 0.5 % (v/v) n-hexane and cyclohexane was isolated. The determination of transposon insertion site identified one gene, YLR162W, and revealed disruption of the ORF of this gene, indicating that organic solvent tolerance can be conferred. Such a tolerant phenotype reverted to the sensitive phenotype on the autologous or overexpression of this gene. This transposon mutant grew faster than the control strain when cultured at 30 °C in YPD medium containing 0.5 % (v/v) n-hexane and cyclohexane respectively.

Conclusion

Disruption of YLR162W in S. cerevisiae results in increased tolerance to organic solvents.
  相似文献   

19.

Objectives

To establish a method for microbial transglutaminase (mTG)-mediated PEGylation of proteins at the level of lysine (Lys) residues.

Results

Carboxybenzyl-glutaminyl–glycinyl-methoxypolyethylene glycol (CBZ-QG-mPEG) was prepared by introducing carboxybenzyl-glutaminyl-glycine (CBZ-QG) to mPEG amine. The analysis by Fourier transform infrared spectroscopy and SDS-PAGE showed that CBZ-QG-mPEG was successfully synthesized and can be recognized by mTG as an acyl donor to modify therapeutic protein, cytochrome c (cyt c). Finally, under an optimized condition (cyt c 0.5 mg/ml, CBZ-QG-mPEG 11.25 mg/ml, mTG 0.5 mg/ml, 37 °C, 2 h), the PEGylation yield reached 76.5 %.

Conclusions

This is the first study regarding the PEGylation of protein at the level of Lys residues catalyzed by mTG. The novel method could be employed to immobilize active proteins and modify therapeutic proteins.
  相似文献   

20.

Objectives

To characterize the genes responsible for ethanol utilization in Pichia pastoris.

Results

ADH3 (XM_002491337) and ADH (FN392323) genes were disrupted in P. pastoris. The ADH3 mutant strain, MK115 (Δadh3), lost its ability to grow on minimal ethanol media but produced ethanol in minimal glucose medium. ADH3p was responsible for 92 % of total Adh enzyme activity in glucose media. The double knockout strain MK117 (Δadh3Δadh) also produced ethanol. The Adh activities of X33 and MK116 (Δadh) strains were not different. Thus, the ADH gene does not play a role in ethanol metabolism.

Conclusion

The PpADH3 is the only gene responsible for consumption of ethanol in P. pastoris.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号